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Abstract. This work implements a video tracking method which com-
bines region covariance detection with motion estimation by Gaussian
Process Regression. The computational and accuracy performance of the
proposed method is compared to two other state-of-the-art algorithms
available in OpenCV using benchmark videos from the VOT public chal-
lenges. The results show that the method is competitive and can be used
in the construction of practical applications in several contexts of video
surveillance.
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1 Introduction

Visual Object Tracking is a task in Computer Vision which is the core of ap-
plications such as scene understanding, anomaly detection, video surveillance,
people counting or human-computer interaction. The goal of object tracking is
to determine the position of the object in images sequences in dynamic scenes
in a reliable way [1]. Visual tracking is a challenging task due to the presence,
among others, of ambiguities, background clutter, object deformation, partial
and full occlusions and illumination change.

The modeling and matching of the shape and appearance are critical and
interactional two components of object representation, of prime importance for
the success of a tracking algorithm [2]. To this end, the covariance matrix of
shapes and textures [3], or features [4] appears in several contexts as a powerful
model capable of retaining important properties of the represented entity. In
addition, covariance matrices are mathematical entities with similarity measures
based on established theories [5, 2].

On the other hand, model-based tracking requires a predictive model of ob-
ject movement. To this end, Gaussian Process (GP) regression and prediction [6]
has already been used successfully in trajectory prediction by capturing the trend
of motion with better fidelity than linear models [7-11]. And, unlike the ordinary
regression prediction whose prediction provides only one point, gaussian process
prediction makes a Bayesian prediction that delivers the probability density to
the predicted value. This is advantageous in contexts where, for example, it is
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necessary to calculate risks or propagate belief. In addition, Gaussian Process
(GP) modeling is a non-parametric approach for solving regression problems
which works by marginalizing distribution functions, providing an automatic
tradeoff between model complexity and data fitness.

In this work a Visual Tracking method combining Region Covariance Detec-
tion with Gaussian Process Prediction is described and evaluated. The following
sections of the paper are thus organized. In Section 2 the method is described in
detail. In Section 3 the results of the experiments and their discussion clarifies
about the strengths and weaknesses of the algorithm. The work is completed in
Section 4. Mathematical notation is given in the text when each symbol appears.
To the knowledge of the authors, the composition used in this implementation
was not previously proposed.

2 Methods

In this section introduction, a brief description of the tracking algorithm is given
in this paragraph. A detailed description is presented in the subsections.

The algorithm uses two memories of the sliding window type: a memory of
covariance matrices used to update the model and a memory of the trajectory
used to make the GP prediction. After an initialization phase, until the frame i
in which the memories are built, the algorithm executes a loop as shown in the
Algorithm 1.

In the current frame, the (i+1)-frame, a Gaussian process prediction of the
position of the object is performed using the positions estimated in a group of
previous frames. This position is used to define the center of the search region.
To make the detection [5], at each frame, we construct a feature image of the
search region. For a given object region, we compute the covariance matrix of the
features as the model of the region. In the current frame, we find the region that
has the minimum covariance distance from the model and assign it the estimated
location by detection. Finally, the position of the object in each frame is decided
by the fusion of two information: the detection by covariance and the Gaussian
process prediction. As done in [4], to update the model, we keep a set of previous
covariance matrices and extract an intrinsic mean using the Equation 6.

2.1 Region Covariance and Detection

Tracking by Detection based Visual Object Tracking is the composition of three
strongly correlated subproblems: object representation, measure of similarity,
and update of representation to account for object appearance changes. In this
section we will see how each of these subproblems is tackled in the region co-
variance framework.

Given a observed image I with height H and width W, we can extract an
image of features F', W x H x d-dimensional, from I, through a transformation
]

F(z,y) = &(x,y,1), (1)
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Algorithm 1 Tracking algorithm based on Region Covariance and Gaussian
Process Prediction.
Initialization(); */Until the processing of Frame = i.
repeat
Frame = Frame + 1;
Captures_the_next_frame();
Gaussian_Process_Prediction();
Feature_-Matching();
Fusion();
Model_Updating();
Memory_Updating();
Tracking_Output();
until Frame = N

where the function @ can be any mapping of the positions of the pixels and of
the image I in properties derived from image I. In this paper, given an object
image, we use pixel locations (z,y), color (RGB) values and the norm of the first
derivatives of the intensities with respect to x and y. Each pixel of the image is
converted to a d-dimensional feature vector, with d =7,

Ple) = [ Rl Gl Ble) |20 (@010

OI(z,y) ’ ‘31(:6, y)
where R, G, B are the RGB color values, and I is the intensity [5]. The image
derivatives are calculated through the filters [—1 0 1]7. Note that we construct
the feature vector using two types of mappings: spatial attributes that are ob-
tained from pixel coordinate values, and appearance attributes, such as color and
gradient. The covariance of a region is a 7x7 matrix. Thus, for a given M x N
rectangular window R C F, {fy, = F(z,y)};_, , is a d-dimensional feature
vectors inside R, with n = N x M. We represent an M x N rectangular region
R with a d x d covariance matrix Cg of the feature points as

1 NM
Cr= NI ;(fk — p1r)(f — pr)" (3)

where g is the vector of the means of the corresponding features for the points
within the region R. The covariance matrix is a symmetric matrix where its
diagonal entries represent the variance of each feature and the non-diagonal
entries represent their respective covariances.

To perform the tracking, besides representing the region of the object, we
need to find the region in the test image which is most similar to the given
object. Thus, we need to compute distances between the covariance matrices
corresponding to the target object window and the candidate regions. Caution
must be taken because the space of covariance matrices is not a vector space.
Even so, considering the fact that the covariance matrices are symmetric positive
definite matrices, several distance measures have already been proposed. In this
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work the measure defined in [4, 5] was used:

d
p(Ci,Cj) = (| D In?Ae (Ci, Cj) (4)

k=1
where { A\, (C;, C;)} are the generalized eigenvalues of C; and C}, computed from

)\kOiJCk _ijk :0, k= 1,...,d (5)
and xj are the generalized eigenvectors.

To complete a tracking by detection framework, note that the image of the
object in the video undergoes transformations in shape, size and appearance as
it moves. Thus, it is necessary to adapt the model to these variations. For this,
we compute the sample mean covariance matrix that blends all the previous T'
covariance matrices. In case all previously detected regions and the corresponding
features are stored, an aggregated covariance matrix C= {oi}v} can be obtained
whose entries are given by [4]

[

020 = s o O k) — )] [7) — (o) (6)

t=1 k

Il
-

and f} € R;. The mean pu is computed over all regions Ry, ..., Rp. This work
adopted, after tests, T = 6. This tracking by detection framework will be com-
bined with the object motion prediction algorithm described in the next subsec-
tion.

2.2 Gaussian Process Prediction

We treat the task of trajectory forecasting of the object as a regression problem.
Given a time series of values of the previous positions as the training set, we
aim to predict the object movement, extrapolating to the subsequent position.
We chose to use regression because it is computationally lighter than dynamic
model whereas tracking is a task to be performed online.

A Gaussian process (GP) is uniquely characterized by multivariate random
variables which follow a Gaussian distribution, where the covariance matrix is
given by a kernel matrix [6]. Given examples (x;,v;),_,  , where z; is element
of some space X and y; is a real value or vector, and a new point x* with
(unknown) y* € R, the conditional density function p(y1, ..., yn, y*|21, ..., TN, 2*)
is the Gaussian [12]

~2 TN T
N (91,...,9N,9*, [K ot k(xkx)D (7)

where 6; is the prior mean for y;, k a kernel on X, K is the matrix (k(z;,z;)),
k= (k(z*,z1),....,k(z*,zx)), IV is the N-dimensional identity matrix and &2 is
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the variance of the input noise. Marginalisation enables the inference of y* via
its density [12]:

p(y*“r*vxla"'aszyla"'vyN) =N (.u?UQ) where (8)
p=0"+k-(K+&*-1M)"1. (Y -0 (9)
o2 =k(z*,2*) — k- (K+&%- 1Y) 1. kT, (10)

where Y = (y1,...,yn)T and © = (01, ..., 0n).
To apply GP regression to time series prediction, we phrased time series
prediction as follows [12]: Assume that example time series zh, ..., zM are given,

where 77 = (;vjl, s acJTJ) with #] € X. Then the task is to infer the successor 7,

from its history (gc{, ,xi ) for all j and ¢. Following the Markov assumption,

all but the last history entry become irrelevant. This leads to the regression
o j=1,..,.M
problem with input-output pairs { (mi, x] +1> } which can be modelled
t=1,...,Tj1

by GP regression, provided real vectors x{.lFor time series models, a natural
prior is to stay where you are, that is # := 2. This leads to the predictive mean
p=0+k-(K+o2-IN)"L (Y - X) with X = (2}, ...,ah 1,2}, ¥ )T
and Y = (21, ...,xlTl, ez ...,x%ﬂ)T and predictive variance (10).

GP can be seen as placing a probability distribution on a function space. This
is known as the function-space view described in [6]. The functional form of the
covariance function, or kernel, k, encodes assumptions about the smoothness
and generalization properties of a GP and their specific choice depends on the
application. The kernel function most widely used is the squared exponential, or
Gaussian, with additive noise [13]:

k (m7m/> — g—]%e_%(w—a: YW (z—z )T + 0-7215 (]_]_)

where UJ% denote the signal variance, the diagonal matrix W contains the length
scales of the process which reflect the relative smoothness of the process along
the different input dimensions and ¢ is the Dirac delta function. The parameter
is 02 controls the global noise of the process. The function in (11) is used in this
work with 0]% =1.0, 02 =0.01 and W = 5.0 - I.

Note that in the problem that we have at hand the input space X is one-
dimensional, its variable being the time frame, while the output space Y is
two-dimensional, the vector process Y (t) = (x(t),y(t)), which are the positions
recording the trajectory of the object. The processes x and y are considered
here as uncorrelated for simplicity. Predictions are made separately. A more
realistic model, considering x and y as correlated processes is left for future
implementation.

In its final stage the tracking algorithm has two information: the prediction of
the position by GP and the detection based on region covariance. The tracking
decision is obtained by merging these two information. In this work we have
adopted a simple form of fusion that consists of calculating the arithmetic mean
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between the position returned by the tracking by detection with the mean of the
Gaussian prediction given by Equation 9. There are a large number of proposals
for probabilistic information fusion [14]. We leave to a later work to test methods
of merging information in the context of the proposal of this article.

3 Results and Discussion

3.1 Evaluation and Data Set

For the tests we used 4 videos of the VOT2013 challenge [15], nominally cup,
jump, juice and singer, 1 video of the VOT2014 challenge [16], ball, and 1
video proprietary, denominated mandog, totaling 2196 frames. Ground truth for
the VOT sequences are available on the homepage and for the proprietary video
was done manually by the authors. These sequences contain several challenging
situations, for example, occlusion, confusing background, variation of illumina-
tion, motion and size changes and some maneuvers. Table 1 shows the video
proprieties of the used sequences. Note from this table the various combinations
of challenges that are presented to the tracking algorithm.

Following [16], we computed two performance metrics. The detection rate
is the ratio of the number of frames in which the object location is accurately
estimated to the total number of frames in the sequence. We consider the esti-
mated location accurate if the best match is within the 11x11 neighborhood of
the ground truth center object location. Note that detection rate is a measure
of accuracy being more demanding than the accuracy defined in [4].

The second metric was the robustness or fails rate, as defined in [16]. The
robustness measures how many times the tracker loses the target (fails) during
tracking. A failure is indicated when the overlap measure becomes zero.

The research environment is implemented using C ++ and the OpenCV
library on a personal computer with CPU Core 17, Clock = 2.4 GHz and MM
=4 GB.

motion| size |occlusion| ilum. clutter |camera|num. of

change|change change|backgroung|motion| Frames
ball + + - - - + 602
cup + - - - + - 303
jogging | + - + - + + 307
jump + + - - - + 228
singer + + - + + + 351
mandog| - - - + + - 305
Total 2196

Table 1. Video properties: + (-) indicates when the property is present (absent) in
the video.



Lecture Notes in Computer Science: Authors’ Instructions 7

3.2 Results

The tracking in each video was performed 11 times: Once with the initial position
given by the ground truth and 10 times at random positions provided by a
Gaussian distribution with standard deviation equal to 5 pixels around the initial
position of the ground truth. Qualitative results are shown in Figure 1 and
quantitative results are shown in Table 2. Only the videos in which the tracking
with the initial position given by the ground truth worked were included.

Note, in Figure 1, that video ball includes a maneuver by which one could
expect a predicted algorithm to fail. However, Cov + GPP did not present a
failure rate lower than tracking-by-detection algorithms such as Cov. On the
other hand, for the video with the greatest combination of obstacles to tracking
that is the video singer, the comparison shows similar performance between TLD
and Cov-GPP, both superior to the other two.

The quantitative evaluation was done by comparing the results of our im-
plementation (Cov+GPP) with a tracking-by-detection implementation using
Region Covariance Tracking (Cov), as well as two other state-of-the-art algo-
rithms whose implementations are available in OpenCV.

Median Flow, proposed in [17], is a robust visual tracking algorithm based
on the spatio-temporal constraints which tracking a single target using optical
flow trajectories together with median filtering.

The Tracking-Learning-Detection (TLD) framework, firstly proposed in [18],
explicitly decomposed long-term tracking task into tracking, learning and detec-
tion components. For the tracking they used forward-backward errors (Median
Flow) to detect tracking failures automatically [17] which is based on Lucas
Kanades feature tracker [19]. For the learning component they proposed a itera-
tive procedure, the so-called P-N learning framework which consists of Positive-
expert and Negative-expert. For the detection they used cascaded nearest neigh-
bor classifier in order to speed up.

MedianFlow TLD Cov Cov+GPP
accuracy [robustness|accuracy |robustness|accuracy |robustness|accuracy|robustness

ball 914 .044 .926 .061 919 .066 .928 .074
cup .926 .062 .934 .051 912 .055 941 .055
jogging .882 .116 .924 .046 918 .062 .922 .054
jump .964 .031 .965 .028 .964 .022 .983 .018
singer 913 .066 .932 .046 915 .084 .932 .061
mandog| .972 .026 .985 .010 .962 .024 .984 .012

Table 2. Average accuracy and robustness of the tracking implementation.

Table 2 gives us two results for the tests performed:

1. that the combination of Gaussian process prediction with region covariance
substantially improves the performance of the region covariance tracking;
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Fig. 1. Qualitative results of the tracking from top to bottom: Jogging (1, 66, 87, 178),
Ball (1, 69, 100, 120), ManDog (1, 44, 116, 191), Cup (1, 59, 100, 165), Jump (1, 47,
111, 207), Singer (1, 43, 115, 183).
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2. And that Cov+GPP is competitive both in accuracy and robustness. Note
that although favorable results prevail for the TLD algorithm, in some cases
the performance of Cov+GPP in robustness is better than that of TLD even
when TLD is higher in accuracy.

These results can not be considered conclusive. A large-scale evaluation needs
to be carried out for a firm conclusion. However, they show a promising combi-
nation.

4 Conclusion

A combination of region covariance detection with Gaussian process prediction
was implemented for visual tracking. The concern was only with the accuracy
of the tracking, no effort was made to reduce the computational cost in this
implementation. This will be one of the focuses in the continuation of this work.

The videos used in the tests present several necessary properties in the evalu-
ation of visual tracking, such as occlusion, abrupt change of lighting and abrupt
change to confused background. The combination tested proved to be promising
in the initial tests performed. In the next step of this work we will submit the
algorithm to large scale systematic tests comparing its performance with that of
state of the art algorithms.

References

[1] W. Hu, T. Tan, L. Wang, S. Maybank, A survey on visual surveillance of object
motion and behaviors, IEEE Trans. Syst. Man Cyber.-C, 34(3), pp. 334-352, (2004).

[2] J.-M. Odobez, D. Gatica-Perez, D. Ba, O. Sileye, Embedding motion in model-
based stochastic tracking, IEEE Transactions on Image Processing, 15(11), pp.
3514-3530, (2006).

[3] T.F.Cootes, G.J. Edwards, C. J. Taylor, Active appearance models, IEEE Trans-
actions on pattern analysis and machine intelligence, 23(6), pp. 681-685, (2001).

[4] Oncel Tuzel, Fatih Porikli, Peter Meer, Region covariance: A fast descriptor for
detection and classification, Computer Vision-ECCV 2006, pp. 589-600, (2006).

[5] Fatih Porikli, Oncel Tuzel, Peter Meer, Covariance tracking using model update
based on lie algebra, Computer Vision and Pattern Recognition, 2006 IEEE Com-
puter Society Conference on. Vol. 1. IEEE, (2006).

[6] C.E.Rasmussen, C. Williams, Gaussian processes for machine learning, MIT press,
Cambridge, (2006).

[7] Tim D. Barfoot, Chi Hay Tong, Simo Sarkka, Batch Continuous-Time Trajectory
Estimation as Exactly Sparse Gaussian Process Regression, Robotics: Science and
Systems, (2014).

[8] Hongwei Li, Yi Wu, Hanqging Lu, Visual tracking using particle filters with gaus-
sian process regression, Pacific-Rim Symposium on Image and Video Technology.
Springer, Berlin, Heidelberg, (2009).

[9] Yao Sui, Li Zhang, Visual tracking via locally structured Gaussian process regres-
sion, IEEE Signal Processing Letters 22.9, pp. 1331-1335, (2015).



10 Lecture Notes in Computer Science: Authors’ Instructions

[10] Kihwan Kim, Dongryeol Lee, Irfan Essa, Gaussian process regression flow for
analysis of motion trajectories, Computer vision (ICCV), 2011 IEEE international
conference on. IEEE, (2011).

[11] M. Tiger, Fredrik Heintz, Online sparse Gaussian process regression for trajectory
modeling, Information Fusion (Fusion), 18th International Conference on. IEEE,
pp. 782-791, (2015).

[12] B. Paassen, C. Gopfert, B. Hammer, Gaussian process prediction for time series
of structured data, In: Proceedings of the ESANN, 24th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning,
(2016).

[13] J. Ko, D. Fox, GP-BayesFilters: Bayesian filtering using Gaussian process predic-
tion and observation models, Autonomous Robots, v. 27, n. 1, p. 75-90, (2009).

[14] J. Kang, I. Cohen, G. Medioni, Continuous tracking within and across camera
streams, In: Computer Vision and Pattern Recognition, 2003. Proceedings. 2003
IEEE Computer Society Conference on. IEEE, (2003).

[15] M. Kristan, et al., The vot2013 challenge: overview and additional results, (2014).

[16] M. Kristan, et al., The visual object tracking vot2014 challenge results, (2014).

[17] Z. Kalal, K. MIKOLAJCZYK, J. MATAS, Tracking-learning-detection, IEEE
transactions on pattern analysis and machine intelligence, v. 34, n. 7, pp. 1409-
1422, (2012).

[18] Z. Kalal, K. MIKOLAJCZYK, J. MATAS, Forward-backward error: Automatic
detection of tracking failures, In: Pattern recognition (ICPR), 2010 20th interna-
tional conference on. IEEE, pp. 2756-2759, (2010).

[19] B. Lucas and T. Kanade, An iterative image registration technique with an appli-
cation to stereo vision, IJCAI, 81:674679, (1981).



