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Fundação Oswaldo Cruz, Brazil,

wluis@bahia.fiocruz.br

Abstract. This paper presents the current results in the detection of
segmental glomerulosclerosis by analyzing histological images of kidney
biopsies, stained using hematoxylin and eosin (H&E) or periodic acid-
Schiff (PAS) techniques. The work is part of the development of the
PathoSpotter-K system, which aims the detection of elemental lesions
in histological images of kidney. Currently, PathoSpotter-K accuracy for
detecting segmental glomerulosclerosis is 84.8% for H&E stained sam-
ples and 81.3% for PAS stained samples. Such rates are similar to that
reported for most of the analogous systems used for histological lesions
detection in other organs and diseases.

1 Introduction

The kidney diseases have a global incidence, affecting millions of people around
the world. A relevant fraction of these diseases affect the glomeruli (glomeru-
lopathies), extending throughout the nephron, which constitutes the functional
unit of the kidney. Often, glomerulopathies affect a considerable number of
glomeruli, leading to chronic renal failure.

Glomerular diseases are the third main cause of end stage renal disease in
Brazil[21], and are associated with 30%-60% of the cases of renal failure in Asia
and Oceania, and 10%-15% of the cases of renal failure in Europe and United
States of America [19].

Glomerulopathies are associated with a variety of structural changes in the
glomeruli. These changes, defined as lesion pattern, frequently combine different
elemental lesions.

A frequent type of lesion pattern is the segmental glomerulosclerosis, which
is characterized by an increase in the glomerular extra-cellular matrix, causing
the obliteration of the glomerular capillary lumen/lumina.



Segmental glomerulosclerosis is the morphological substrate of the two most
frequent glomerulopathies: Focal Segmental Glomerulosclerosis (FSGS) and IgA
Nephropathy. In both diseases, the glomerulosclerosis has a progressive behavior,
becoming global and leading to chronic renal failure [6, 1].

As in any medical diagnostic based on histological images, glomerulosclerosis
detection is strongly dependent on the pathologist’s expertise. Developments in
computational image analysis made computer-assisted diagnostic in pathology a
promising research field in medicine and computing [9, 4]. These systems became
of great interest in pathology since the beginning of histological image digitaliza-
tion and subsequent building of digital histological image libraries. Such context
made it possible to apply computer image analysis systems on searching for
histological lesions based on structural tissue patterns [9, 23]. Since then, the
computer-aided diagnosis systems have been envisaged as an important tool for
decision support and research in pathology [15].

Most of the literature on computer-aided diagnosis systems deals with cancer
related images [4] [23] [16]. There are few studies dedicated to renal histology,
such as Kato and colleagues [12], who proposed a new descriptor, referred as
Segmental Histogram of Oriented Gradients (Segmental HOG), for glomeruli
detection in kidney histopathological images, achieving a precision of 87,4%,
and Barros and colleagues [3] working on the PathoSpotter-K project, which
proposed a computational tool that achieves an accuracy of 88.3% +/- 3.6% for
automatic identification of proliferative glomerular lesions in histological images
from kidney biopsies.

In this paper, we present the current developments in the PathoSpotter-K
software, making it possible the computational detection of segmental glomerular
sclerosis in H&E- and PAS-stained kidney sections. The PathoSpotter-K system
is currently under development and aims to be a research and decision sup-
port tool for pathologists, enabling large-scale clinical-pathological associations
and training of young pathologists. PathoSpotter-K is the resulting work of an
interdisciplinary team, composed of pathologists and computer scientists.

2 Methodology

Our methodology used a classical image processing and pattern recognition ap-
proach to detect segmental glomerulosclerosis lesions in digital histological im-
ages of kidneys.



One glomerulus is characterized by some structures as shown in Fig. 1(a)
and Fig. 1(b).

(a) H&E stain (b) PAS stain

Fig. 1. Glomerular structure in a histological sections stained with (a) H&E and (b)
PAS.

Glomerulus with sclerosis is characterized by the increase of the glomeru-
lar extra-cellular matrix, causing the obliteration of the glomerular capillary
lumen/lumina, as shown in Fig. 2(a) and Fig. 2(b).

(a) H&E stain (b) PAS stain

Fig. 2. Glomerulosclerosis histological images stained in (a) H&E and (b) PAS tech-
niques

We started by applying the methods successfully used for analysing other
diseases, according to similar works, that used texture identification algorithms
to extract features such as those present in glomerulosclerosis. These methods
were:
– Haralick texture features [10, 7, 11, 14, 13, 15, 2];
– Gabor filter [7, 4, 26];
– Local Binary Pattern (LBP) [22, 25];
– First-order histogram statistics [4, 15, 16, 20].

The code was developed in Python 2.7 using the packages: scikit-image [24],
scikit-learn [18] and mahotas [5].

2.1 Dataset

The dataset was built by pathologists from the Gonçalo Moniz Institute from Os-
wald Cruz Foundation (FIOCRUZ/IGM) at Brazil, and consists of 499 glomeruli



images stained in H&E technique, being 267 with glomerulosclerosis and 232 of
normal glomeruli, and 248 glomeruli images stained in PAS technique, being 155
with glomerulosclerosis and 93 of normal glomeruli. All images have 1024x768
pixels, RGB color space, and represent a single glomerulus, as shown in Fig.1.

2.2 System Architecture

The system architecture follows the typical structure of a digital image process-
ing with pattern recognition system [8] and consists of three steps: preprocessing,
feature extraction and classification/validation (see Fig. 3).

Fig. 3. System architecture

Preprocessing In this step, the images were prepared to facilitate the feature
extraction process. Three operations were performed: conversion to numpy array
and to gray scale, and computing the image histogram.

The conversion to numpy array allows the representation of the pixels of the
image in a Python numpy array, to be processed and analyzed by the feature
extraction methods.

The conversion to gray scale facilitates the image processing, because it re-
duces the operations with the color channels from three (Red, Blue and Green)
to one (Gray). This operation is also important, because the Haralick texture fea-
tures are applied over the Gray-Level Co-Ocurrence Matrix (GLCM), preparing
the image for feature extraction.

The image histogram is computed to be calculated the first-order histogram
statistics in the next step.

Feature Extraction The feature extraction step consists of extracting four
features independently: Haralick texture features, Gabor filter, LBP and first-
order histogram statistics. The extracted features were stored in a numpy array,
to be used as input of the classifier in the next step. We explore the features
individually and combined to evaluate the combination that would yield the
minimum detection error.



Haralick features, proposed by Haralick, Shanmughan and Distein (1973)
[10], are a set of 28 textural features which can be extracted from each gray-
tone spatial-dependence matrices. There are 14 features, and each one of these
features are computed with one displacement vector in four directions ( 0◦,
45◦, 90◦ and 135◦), then are calculated the mean and the range, averaged over
these directions, comprising all the 28 set of features. The Haralick features are
calculated using the mahotas package implementation for Python[5].

Gabor filter analyzes whether there are any specific frequency content in the
image in specific orientations (theta). The images are filtered by a convolution
with the real parts of a Gabor filter kernel, and the mean and variance of the
filtered images are used as features for classification. The Gabor filter kernel is
a Gaussian kernel modulated by a complex harmonic function which has the
following parameters: a spatial frequency of the harmonic function, a theta ori-
entation of analysis, a bandwidth captured by the filter, a standard deviation for
x and y directions (sigma x and sigma y) of the Gaussian kernel, and a linear size
of the kernel defined in n stds standard deviations [24]. The method was com-
puted by the gabor kernel function implemented in scikit-image package [24].
In the tests, several combinations of frequency, bandwidth, theta orientation,
sigma x and sigma y, and n stds standard deviation were evaluated to find the
parameters which minimize the detection error. The frequency and bandwidth
ranged from 0.1 to 1 (steps of 0.1); the theta ranged from 0◦ to 360◦ (steps of
45◦); sigma x and sigma y from 1 to 5 (steps of 1) and the standard deviation
from 2 to 5 (steps of 1).

LBP is a method that computes the relationship between each pixel and
their neighborhood. Each pixel is referenced and a pattern is computed over the
relationship between the value of the referenced pixel and its neighbors (defined
by a radius in pixels and a number of points to consider) [17]. This method
was computed by the lbp function of the mahotas package [5]. In the tests, we
ranged the radius (in pixels) and the number of points taken into consideration.
The radius was ranged from 1 to 4 and the number of points to be taken into
consideration varied from 8 to 16 (both in steps of 1).

Finally, the first-order histogram statistics were computed using the iah2stat
function from Python collection ia636. This function computed eleven histogram
statistics: mean (in grayscale value), variance (in grayscale values), skewness,
kurtosis, entropy, mode (gray scale value with largest occurrence), percentile
1%, percentile 10%, percentile 50% (the median gray scale value), percentile
90% and percentile 99%.

Classification and Validation In this step, numpy arrays with the extracted
features from the previous step were used as input to four classifiers. We tested
the four classifiers (and their parameterizations) to verify which of them would
have the minimum detection error solving our problem.

The parameterization of a classifier (also known as model selection) is a task
that requires an empirical analysis through several tests to choose the parameters
that minimize the detection error. There are different methods that help in this



choice, among them, the grid search (an exhaustive and brute force parameter
search) and the randomized search (that implements a randomized search over
parameters) [18]. We have chosen to do a brute force search, with parameter
ranges based on scikit-learn’s documentation and references [18].

We tested the classifiers K-nearest neighbors (KNN), Support Vector Ma-
chine (SVM), Neural Network (NN) and the Gaussian Naive Bayes. The vali-
dation was made using the K-fold cross validation method. All methods were
implemented using the scikit-learn package [18].

The KNN method find a predefined number of training samples closest in
distance and predict the label from these [18]. The KNN classifier parameteriza-
tion was made adjusting the number of neighbors, the weights and the distance
metric. On the scikit-learn implementation, the best algorithm to compute the
nearest neighbor is chosen automatically between ball tree, kd tree or brute force
algorithms. The number of neighbors was chosen after tests ranging from 3 to
100. The weights were tested between uniform and distance (weight points by
the inverse of their distance). Finally, the distance metric was tested with the
Manhattan distance, Euclidean distance and Minkowski distance.

The SVM classifier represents the samples as points in space, mapped so that
the samples of different categories are divided by a clear gap that is as wide as
possible. The parameterization of this classifier was made with changes in the
penalty parameter (from 0.1 to 5), gamma (from 0.0005 to 3), the kernel (poly,
rbf, linear or sigmoid) and the independent term in kernel function (for poly
and sigmoid function, ranging 0 to 1 in steps of 0.1). The stop tolerance was
maintained in 0.0000005 and the class weight was selected as balanced.

The Neural Network used was a multilayer perceptron with the solver al-
gorithm limited Broyden–Fletcher–Goldfarb–Shanno (lbfgs). This algorithm is
indicated by scikit-learn documentation as faster and best performing for small
datasets (without thousands of training samples or more) [18]. In the tests, the
Neural Network was parameterized ranging the maximum number of iterations
from 100 to 1000, the learning rate from 0.1 to 5, the penalty from 0.000002 to
0.05, and the hidden layers from 1 to 2, with the first layer ranging from 3 to
100 neurons and when using a second layer, it ranged from 2 to 60.

For the Gaussian Naive Bayes no parameterization was needed since there
are no specific parameters for this method. The Gaussian Naive Bayes apply
the Bayes’ theorem with the “naive” assumption of independence between every
pair of features [18]. The algorithm assumes the likelihood of the features as
Gaussian, and the parameters are estimated using maximum likelihood.

All classifiers were validated using the K-fold cross validation method. We
used k equals to 10, what means a dataset divided in ten subsets and each subset
used as a validation set in one of the ten evaluation processes, while the remaining
subsets are used as a training set in the same process. This method results in
ten evaluations with each one of the ten subsets being used as a validation set
in some moment, and the final performance is measured by the average of the
values computed in the evaluations.

The final classifiers parameterization will be presented in the next section.



2.3 Ethical Considerations

This work was conducted in accordance with resolution No. 466/12 of the Brazil-
ian National Health Council. To preserve confidentiality, the images (including
those shown in the paper) were separated from other patient’s data. No data
presented herein allows patient identification. All the procedures were approved
by the Ethics Committee for Research Involving Human Subjects of the Gonçalo
Moniz Institute from the Oswaldo Cruz Foundation (CPqGM/FIOCRUZ), Pro-
tocols No. 188/09 and No. 1817574.

3 Results

The H&E and PAS stain techniques yield some different characteristics for the
glomerulosclerosis problem. In H&E images only the increased glomerular extra-
cellular matrix is highlighted (see Fig.2(a)), while the PAS images present the
increased glomerular extra-cellular matrix with a strong reaction (stronger color)
in the sclerosed region (see Fig. 2(b)). Because of such differences, we made one
pipeline for each staining technique.

Except for the combination between the Haralick and first-order histogram
features, no improvement was found in the combination of the other extraction
methods presented with respect to the final detection accuracy. The other com-
binations either generated the same results or generated worse results than the
other features used individually.

Table 1 shows the best results for H&E stained images in each classifier used.
The Haralick features and the first-order histogram statistics are shown together
because these features presented better results combined than individually.

Methods KNN SVM NN
Naive
Bayes

Haral.+Hist. 77.8% 76.8% 79.4% 73.0%

Gabor 83.8% 83.6% 84.8% 67.3%

LBP 79.6% 78.8% 82.6% 80.2%
Table 1. Detection results for H&E stained images

As shown in table 1, the best result for the samples stained in H&E was 84.8%
using a neural network as classifier and the Gabor filter as feature extractor.

The Gabor filter used a frequency of 0.4 and a bandwidth of 0.8. The other
parameters used the standard scikit-image settings.

The classifiers were used with the following parameters:

– SVM: penalty = 0.5, kernel = Radial basis function kernel (RBF), kernel
coefficient (gamma) = 0.0025, tolerance for stopping criterion = 0.0000005
and class weight = balanced.

– KNN: 11 neighbors, weights = uniform and Manhattan distance.
– Neural Network: Multilayer perceptron with two hidden layers, the first with

thirteen neurons and the second with six neurons. Activation function for the



hidden layer = rectified linear unit function (relu), solver = lbfgs, regular-
ization term = 0.06, maximum number of iterations = 400, seed for random
number generator = 2 and tolerance = 0.0000001.

– Naive Bayes: No parameters.
In the results using Haralick features and first-order histogram statistics have

been chosen the mode, percentile 90% and percentile 99% from the first-order
histogram statistics. The Haralick features were used together with the first-
order histogram statistics and alone, but there were no improvements in the
results. The classifiers that received these features as input were parameterized
so:
– SVM: penalty = 0.5, kernel = Radial basis function kernel (RBF), kernel

coefficient (gamma) = 0.0025, tolerance for stopping criterion = 0.0000005
and class weight = balanced.

– KNN: 9 neighbors, weights = uniform and Minkowski distance.
– Neural Network: Multilayer perceptron with two hidden layers, the first with

five neurons and the second with six neurons. Activation function for the hid-
den layer = rectified linear unit function (relu), solver = lbfgs, regularization
term = 0.06, maximum number of iterations = 400, seed for random number
generator = 2 and tolerance = 0.0000001.

– Naive Bayes: No parameters.
The LBP method was set with radius in pixels = 1 and number of points to

consider = 8 on mahotas package. The classifiers that received the features as
input were parameterized so:
– SVM: penalty = 1, kernel = linear, kernel coefficient (gamma) = 0.0025 and

class weight = balanced.
– KNN: 9 neighbors, weights = uniform and Manhattan distance.
– Neural Network: Multilayer perceptron with two hidden layers, the first with

forty eight neurons and the second with four neurons. Activation function
for the hidden layer = rectified linear unit function (relu), solver = lbfgs,
regularization term = 0.06, maximum number of iterations = 400, seed for
random number generator = 2 and tolerance = 0.0000001.

– Naive Bayes: No parameters.
Table 2 shows the best results of the analyzed features for the samples stained

with PAS technique in each used classifier. The Haralick features and the first-
order histogram statistics features are shown together because the combination
of these features presented better results than they separated.

Methods KNN SVM NN
Naive
Bayes

Haral.+Hist. 77.2% 73.3% 81.3% 68.5%

Gabor 75.7% 70.8% 79.4% 73.7%

LBP 73.8% 65.9% 76.6% 74.6%
Table 2. Detection results for PAS stained samples

As shown in table 2, the best result for the samples stained in PAS was 81.3%
using a neural network with Haralick features and first-order histogram statistics



as feature extractors. For the results of each method and classifier shown in the
table, the following settings were used:

The Gabor filter was set with a frequency of 0.4 and a bandwidth of 0.8. The
other parameters were used in the standard scikit-image settings. The classifiers
that received the features as input were parameterized so:

– SVM: penalty = 0.5, kernel = Radial basis function kernel (RBF), kernel
coefficient (gamma) = 0.0025, tolerance for stopping criterion = 0.0000005
and class weight = balanced.

– KNN: 27 neighbors, weights = uniform and Manhattan distance.
– Neural Network: Multilayer perceptron with two hidden layers, the first with

twenty two neurons and the second with twenty one neurons. Activation
function for the hidden layer = rectified linear unit function (relu), solver
= lbfgs, regularization term = 0.06, maximum number of iterations = 400,
seed for random number generator = 2 and tolerance = 0.0000001.

– Naive Bayes: No parameters.

In the Haralick features and first-order histogram statistics have been chosen
the mean and percentile 50% from the first-order histogram statistics, and con-
trast, sum average and difference entropy from Haralick features. The classifiers
that received these features as input were parameterized so:

– SVM: penalty = 0.5, kernel = Radial basis function kernel (RBF), kernel
coefficient (gamma) = 0.0025, tolerance for stopping criterion = 0.0000005
and class weight = balanced.

– KNN: 23 neighbors, weights = uniform and Manhattan distance.
– Neural Network: Multilayer perceptron with two hidden layers, the first with

twenty one neurons and the second with fifty one neurons. Activation func-
tion for the hidden layer = rectified linear unit function (relu), solver = lbfgs,
regularization term = 0.06, maximum number of iterations = 400, seed for
random number generator = 2 and tolerance = 0.0000001.

– Naive Bayes: No parameters.

The LBP method was set with radius in pixels = 1 and number of points to
consider = 8 on mahotas package. The classifiers that received the features as
input were parameterized so:

– SVM: penalty = 0.8, kernel = linear, kernel coefficient (gamma) = 0.0025
and class weight = balanced.

– KNN: 38 neighbors, weights = uniform and Manhattan distance.
– Neural Network: Multilayer perceptron with two hidden layers, the first with

ten neurons and the second with one neuron. Activation function for the hid-
den layer = rectified linear unit function (relu), solver = lbfgs, regularization
term = 0.06, maximum number of iterations = 400, seed for random number
generator = 2 and tolerance = 0.0000001.

– Naive Bayes: No parameters.

At the end, the best results presented were chosen to be part of the PathoSpotter-
K system: 84.8% for H&E stained samples and 81.3% for PAS stained samples.
The accuracy of PathoSpotter-K is similar to equivalent works applied on differ-
ent organs and diseases using the same methods, as shown in Table 3. However,



Pathospotter-K was the only dedicated work to detect glomerular lesions that
was found.

Authors Methods Results Problem
Image Dataset (stain

technique)

Doyle at al.[7] textural features
84%, 83%
and 76%

Prostate cancer
100 with lowest,
intermediate and

highest levels (H&E)

Irshad, Roux
and Racoceanu

[11]

textural, statistical
and morphological

features
70%

Mitosis in
Breast Cancer

326 (H&E)

Kothari et
al.[14]

shape and textural
features

77%
Renal cell
carcinoma

103 (H&E)

Tashk et al.[22] textural features
70.9% and

70.1%
Mitosis in

Breast Cancer
326 (H&E)

Kim et al.[13] textural features
75%, 100%,
66.6% and

72.7%

Renal cell
carcinoma

8, 23, 13, 22
respectively (H&E)

McCarthy,
O’Hurley and
Cunningham

[15]

textural and
morphological

features
77.5%

Prostate
Carcinoma

20 (H&E)

Zheng et al.[26]
texture features

and pLSA models
94.4% Breast Cancer

600 from 5 categories
(H&E)

Barker et al.[2]
shape and textural

features
93.1% Brain tumor 604 (H&E)

Sengar et al.[20] textural features 81%
Colorectal

cancer
165 (H&E)

Wan et al.[25]
textural and
architectural

features

92%, 77%,
76% and

overall 69%
Breast Cancer

106; 24 low grade, 62
intermediate grade
and 20 high grade

(H&E)

Our method textural features
84.8% and

81.3%
Glomerular

lesions
499 (H&E) and 248
(PAS), respectively

Table 3. Comparison between similar works

4 Conclusion

In this paper, we presented the current developments in the PathoSpotter-K
software to automatically detects segmental glomerular sclerosis lesions on H&E-
and PAS-stained kidney sections.

We used a combination of classical image processing and pattern recognition
methods to create a pattern detection system that is part of a wider system in
development to be used by students and pathologists to learn and research about
glomerular lesions. The current results achieves an accuracy of 84.8% for H&E
and 81.3% for PAS stained samples. Such performance is equivalent to other
similar computer-aided diagnosis systems in pathology.



As future works, we intend to improve the accuracy with additional classifica-
tion algorithms and to increase the number of samples in the dataset to improve
the robustness with more training images. A web service of the PathoSpotter-K
software is been developed to be tested and used by pathologists and computer
scientists that may help to improve the system.
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