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Abstract— This paper deals with the problem of detecting the occurrence of a car accident in an urban
environment. For this purpose, machine learning techniques are trained with the traffic flow measurements
considering both the normal and the situation in which the accident caused a partial closure of the lanes. Several
machine learning techniques results are presented to several car breaking scenarios.
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1 Introduction

The land transportation system is an important
resource for the country economy and population
well-being, thus, when this system does not work
well, several sectors are affected. Considering, for
instance, the urban transit system of a Brazilian
large city, such as São Paulo or Belo Horizonte,
this problem can be even more serious. In these
cities the most common problem is related to con-
gestion. Congestion can be generated when the
number of vehicles is greater than the capacity of
the road or for any momentary interruption (acci-
dents or maintenance of the road). Therefore, it
is necessary to develop tools that can detect the
moment and place these problems occur. Hence, a
corrective action can be taken in order to returns
the flow to its normal state. The objective of this
paper is to conduct a comparative study of different
classifiers in order to detect congestion in an urban
traffic. For this study it was built a simulator of
Urban Traffic flow using Cellular Automata (CA),
called Cellular Automata for Urban Traffic Simula-
tion (CAUTS). This model considers the presence
of cars, trucks, traffic lights, buses and bus stops.

CA is, in short, the mathematical model discrete
in time, space and states. Its fundamental unit
is called cell. This kind of model is based on
two simple components: local rules and neighbor-
hood. Local rules are responsible for calculating
the next state of the cell, based on the influence
of its neighborhood. Only with those components
CA can reproduce (simulate) dynamic complex sys-
tems, ranging from biology to chemical reactions
(Wolfram, 1983-1986). CAUTS has resources ca-
pable of simulating most of the features of an ur-
ban traffic as main roads, secondary roads, traf-
fic lights and bus stop. Moreover, it is possible
to generate events that cause traffic jams, such as
stopped vehicles and accidents, which is the main

focus of this work. The database was test with
different methods of classification, so that it can
detect which part of the model and at what time
an incident occurred. The classifiers used were: (i)
Näıve Bayes (NB), (ii) Decision-Tree (DT), (iii) K-
Nearest Neighbor (K-NN), (iv) Multi-layer Percep-
trons (MLPs), (v) Support Vector Machine (SVM),
(vi) Adaptive Neuro-Fuzzy Inference Systems (AN-
FIS). The paper is organized as follows. Sections
2 and 3 show the basic concepts employed in the
construction of CAUTS model. Then, Section 4
contains the results obtained, considering several
different scenarios. Finally, the conclusion and fu-
ture works are in Section 5.

2 Simulator Features

Among several methods to traffic flow simula-
tions, the ones based on the use of Cellular Au-
tomata (CA) have received an especial attention
of researchers. Some papers from the 1990’s pre-
sented the bases concerning the use of CA for
traffic flow (Blue et al., 1996)(Nagel and Schreck-
enberg, 1992)(Schadschneider and Schreckenberg,
1993)(Villar and de Souza, 1994)(Nagel, 1996).
These results considered the basic acceleration, de-
celeration, velocity randomization and velocity up-
date rules. A review considering road traffic flow
can be found in(Maerivoet and Moor, 2005). It
shows that most of the concerns are related to ac-
celeration, deceleration and lane changes for free-
ways. Makowiec and Miklaszewski (Makowiec and
Miklaszewski, 2006) added supplementary rules to
the traditional model such a way to increase the
mean velocity. It is expected that most of drivers
want to travel as close as possible to the maximum
allowed speed. The CA is a very useful and efficient
method, and can be applied to online simulation of
traffic flow, as presented in (Wahle et al., 2001). In
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(Boccara and Fuks, 2000) it was derived the criti-
cal behavior of a CA traffic flow model by means of
an order parameter breaking the symmetry of the
jam-free phase. Fuks (Fukś, 1999) considered a de-
terministic CA model and derived a rigorous flow
at arbitrary time. Other important aspect, is the
jamming caused by the reduction of the number
of lanes. This reduction can be due to repairing,
accidents and even because it is part of the road
design. Studying the road capacity, Nassab et. al.
(Nassab et al., 2006) considered a road partial re-
duction from two lanes to one lane. The blockage
of one lane, caused by an accident car, was recently
studied in (Zhu et al., 2009). This paper consid-
ers the study of a car accident in an urban envi-
ronment. By urban environment it is required to
consider: (i) multi-lane traffic flow; (ii) crossroads;
(iii) traffic lights; (iv) trucks; (v) buses and; (vi)
bus stops. The presence of buses and bus stops re-
quires specific rules. These rules are important to
the traffic flow in urban areas.

3 Model Definition

The model of urban traffic flow is implemented
based on a two-dimensional Stochastic Cellular Au-
tomata, called Cellular Automata for Urban Traffic
Simulation - CAUTS. CAUTS has resources capa-
ble of simulating the features of an urban traffic as
main roads, secondary roads, traffic lights and bus
stop. Moreover, it is possible to generate events
that cause traffic jams, such as stopped vehicles
and accidents. The sub sections below will detail
the proposed model.

3.1 Maps definitions

The cell of the model can assume one of two states:
0 - empty, 1 - occupied. All cells of the model
are square with side equal to 5.5 meters. This
measure represents the average sized car in the
Brazil, taking into account the distance between
cars. The properties of cells are defined as a triple:
ci,j = {pd, sd, vmax}, where: (i) pd is the predom-
inant direction; (ii)sd is the secondary direction;
(iii) vmax is the speed limit. For predominant di-
rection, means, the direction in which the vehicle
will stay longer; and, by secondary direction the
change route or direction, such as lane-changing
or street change. The speed limit determines how
many cells can be advanced forward, at most, per
iteration. Each direction d has a code, and their
respective sift in the axis x and y, as can be il-
lustrated in the Figure 1. Moreover, it allows a
vehicle to move forward up to 3 cells. To indicate
that a cell is not available for transit and the end
of road (cell where vehicle is removed from model),

two triples, {0, 0, 0} and {9, 9, 9}, are used, respec-
tively.

3.2 Environmental rules

These are the rules that change a set of cells to
implement some desired characteristics. One of
the most important feature in urban traffic is the
presence of traffic lights. Consider the comple-
mentary set of traffic lights T1 and T2, where the
cells affected by these sets are defined as T1 =
{(x1, y1) , (x2, y2) , . . . , (xn, yn)}. Similarly, con-
sider T2, where, for example, T1 is the set of traffic
lights in the main road and T2 in the secondary
road. The complementarity, then, is defined by:
T1(Green) ⇒ T2(Red), T1(Y ellow) ⇒ T2(Red),
T2(Green) ⇒ T1(Red), T2(Y ellow) ⇒ T1(Red).
The Equation 1 shows how the traffic lights can be
modeled.

(RT ) :

 T (Red) ⇒ vmaxT = 0
T (Y ellow) ⇒ vmaxT = 1
T (Green) ⇒ vmaxT = vmax

(1)

∀(x, y) ∈ T .

As mentioned, the model contains features that
may cause breaks in some regions, is broken by
vehicles or accidents. Consider the set A =
{(x1, y1) , (x2, y2) , . . . , (xn, yn)} as the location of
the cells where the incident occurs, at time t0
with k iterations long. Additionally, consider
cod(A, t0−1) = cod(A, t0−1) as the cell triple code
before the incident. Since the cells not available
for transit is represented using {0, 0, 0}, then, the
presence of stopped vehicle is modeled as:

(RA) :
{
cod(A,t) = 000, if t ≤ t0 + k
cod(A,t) = cod(A,t0−1), otherwise

.

(2)

Figure 1: Code and respective dislocation (in x and
y axis).
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At the beginning and the end of each road there
is one sensor. These sensors are responsible for
capturing the statistics, such as, number of vehicles
(flow) and their speeds.

3.3 Vehicles definitions

The model implemented has three types of vehi-
cles: small vehicles, like cars, and large vehicles,
such as buses and trucks. Small vehicles occupy
only one cell, while large vehicles occupy three cells
in length and the width of one cell. Currently,
the model considers that large vehicles can only
move in the main roads and can not switch lanes or
routes. Buses and trucks differ, themselves, by the
fact that buses have to stop at bus stops. The vehi-
cle models have the following structure: (i) kind of
vehicle: 1 − car, 2 − bus or 3 −truck; (ii) vehicle
location (x, y); (iii) lane change indicator (t1); (iv)
vehicle current speed (veli); (v) time of the vehicle
last stopped (t2); (vi) sensor identifier (sid). The
feature (iii) is applied only when the vehicle is a car
and indicates how many iterations from the vehicle
changed lane for the last time. This serves to pre-
vent the car change its lane by consecutive times.
Because of this, the model does not allow a vehicle
leaving right lane and go to left lane, whereas there
is a central lane, instantly. Consider a vehicle vi

in the set V = {v1, v2, . . . vi, . . . vn} at the moment
t. The location of the vehicle may be recovered by
the expression:

loci =


[x1, y1] = posi(vi), if vi = car x1 y1
x2 y2
x3 y3

 = posi(vi), otherwise
.

(3)

Consider the location of all vehicles as LOC =
posi(V ). The function diri = direc(vi), where
diri = [xd1, yd1] for small cars, indicates the vehi-
cle moving, according to the Figure 1. For instance,
a vehicle is moving to the east, the function direc(.)
will be [xd, yd] = [1, 0] and [xd, yd] = [−1, 1] for
northwest moving. The current speed of the vehi-
cle veli is accessed through the function speed(vi).
The maximum speed that a vehicle can achieve de-
pends on its type and its location at time t, as small
cars tend to be faster than large vehicles in urban
traffic. The speed is computed as cells/iteration,
of c/i. The speed limit is calculated by the func-
tion vmaxi = velocmax(vi, loci). The Equation 4
defines the rule for local acceleration. This rule
represents the intention of the driver to speed up
as possible, i.e., the speed limit of the road will be
respected.

(R1) : vel(i,R1) = min
(
vel(i,t) + 1, vmaxi

)
(4)

However, we know that drivers may, so seemingly
random, reduce vehicle speed. Consider alpha as
the probability of a slowing down, then the local
rule for this event is given by 5.

if rand < αi,
(R2) : vel(i,R2) = max

(
vel(i,R1) − 1, 0

) . (5)

The previous local rule is a representation of a
natural factor in the urban transit system and, in
some way, can contribute to the rise in congestion.
Another condition for the deceleration of the vehi-
cle is the existence of obstacles on the road. The
nfreei = gap(vi) function is responsible for iden-
tifying the maximum number of free cells in which
the vehicle can move in a given direction d, accord-
ing to the Figure 1. The local rule for the downturn
by obstacles is given by Equation 6.

(R3) : vel(i,R3) = min
(
vel(i,R2), nfreei

)
(6)

The rule R3 simulates, to some extent, the vi-
sion of the driver, it means, the maximum that
he can move is a combination of factors: the
road speed limit, maximum speed that the ve-
hicle can reach and the next obstacle. Further-
more, it is defined in the model rules for local
buses to consider the bus stops. Consider S =
{(x1, y1) , (x2, y2) , . . . , (xn, yn)} the set of cells lo-
cated in a bus stop. For a bus vi, consider t0 the
moment where loci ∈ S and k the stop duration,
with a probability ϕi, defines de rules RS, as shown
in Eq. 7.

(RS) :
If loci ∈ S, rand < ϕi, t < t0 + k and vi = bus

vel(i,t+1) = 0,
otherwise

vel(i,t+1) = vel(i,R3)

.

(7)

Finally, the movement of the vehicle vi given the
direction d of displacement diri can be calculated
by:

(R4) : loci,t+1 = loci + veli,t+1 ∗ diri . (8)
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4 Simulations and Results

4.1 Environment

The Figure 2 illustrates the layout of the imple-
mented map to the simulator. It consists of 1 main
(horizontal) and 3 via secondary (vertical) roads.

Figure 2: Layout of implemented map of CAUTS

The main routes are composed of 3 lanes and its
maximum speed allowed is 60 km/h (or 3 cells per
iteration); furthermore, the secondary roads have
only 2 lanes and maximum speed allowed is 40
km/h (or 2 cells per iteration). The entry of ve-
hicles in the model is given in the following way:

1. West-east Main roads: Probability of at least
10% of a vehicle entering the model outside the
time of greatest movement. This probability
increases linearly up to 70% between the hours
of 7:00 a.m. to 8:00 a.m.. And, 50% between
the hours of 12:00 to 1:00 p.m.

2. East-West Main roads: Probability of at least
10% of a vehicle entering the model outside the
time of greatest movement. This probability
increases linearly up to 50% between the hours
of 12:00 a.m. to 1:00 p.m.. And, 70% between
the hours of 4:00 p.m. to 5:00 p.m.

3. Secondary streets: Probability of at least 10%
of a vehicle entering the model outside the
time of greatest movement. Increasing 30%
in the hours between 7:00 a.m. and 8:00 a.m.,
12:00 and 1:00 p.m., and, 4:00 p.m. and 5:00
p.m..

For all scenarios are carried out 30% of large vehi-
cles (between bus and trucks), and, all simulated
accidents occurred on the central lane of the west-
east main road, but in different blocks.

4.2 Parameters and scenarios

The parameters used for the classifier are:

1. DT: was implemented using the C4.5 method,
maximum depth=5;

2. K-NN: k = 17 and d = Euclidean distance;

3. ANN: MLP neural network with four layers,
being [2, 25, 25, 2] the number of neurons in
each layer;

4. Fuzzy: Sugeno ANFIS using has 5 member-
ship functions (Gaussian) for each entry;

5. SVM: ξ = 0.5;

We simulated 5 different scenarios (08:00 to 09:00)
with situations: (i) without incidents; (ii) incident
in the first block, (iii) incident in the second block,
(iv) incident in the third block and, (v) incident
in the fourth block, according to Fig. 2. The
techniques were trained with the same parameters
for all considered the scenarios. The networks are
trained to detect between the situations without
and with accidents, therefore, they always consider
situation (i) as reference.

4.3 Results

Tables 1-4 present the results in descending or-
der accuracy for all tested topologies, ranging
from 99% to 85%. For each scenario there are
400 records, of which 80% were used for train-
ing and 20% for validation. Accuracy is the aver-
age of 35 runs for each classifier (using validation
data). For each simulation the training and vali-
dation set are randomly split. The results for all
tested topologies presented good accuracy. This
is mainly due to the fact that a consistent (big
enough) dataset can be arbitrary generated us-
ing the CAUTS model.Moreover, it appears that
a breakdown in the first blocks is harder to detect
than in the last ones. As it is well known, traffic
jams propagates backwards, therefore, the informa-
tion of the first sensor are richer than in the last
ones. Indeed, more information is got when the
accident takes place in last blocks. This empirical
expectation is observed in Tables 1-4.

Classifiers Performance
Method Accuracy

MLP 96.50%
SVM 95.17%
DT 92.46%

KNN 92.02 %
NB 86.12%

ANFIS 85.68%

Table 1: Performance of classifiers considering the
scenarios (i) x (ii).
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Classifiers Performance
Method Accuracy

DT 96.66%
SVM 92.21 %

ANFIS 90.95%
MLP 88.78%
NB 88.13%

KNN 87.48%

Table 2: Performance of classifiers considering the
scenarios (i) x (iii).

Classifiers Performance
Method Accuracy

MLP 99.87%
NB 94.38%
DT 94.37%

KNN 92.64%
ANFIS 90.39%
SVM 89.14 %

Table 3: Performance of classifiers considering the
scenarios (i) x (iv).

5 Final Considerations and Future Works

This paper has studied the use of machine learning
techniques to detect car breakdowns in an urban
environment. Measurements of traffic flow in sev-
eral points in the main road are used to train the
techniques. These measurements were simulated
in our model called CAUTS. Using this simulator
it is possible to generate several scenarios with low
cost. Combining the tested methods in a voting
machine will be explored in a future work. Addi-
tionally, this technique, which is based solely in the
traffic flow, can be also combined with other ones,
as ones based on computer vision. Indeed, detect-
ing the traffic jams is one important aspect in the
traffic flow control. Based on this detection, the
traffic lights can be adjusted such a way to decrease
the harsh caused by the breakdown. This is one of
the future aspects to be explored in this work. In
fact, it is important to improve both, the CAUTS
model and the machine learning techniques.
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