
Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN)
Ouro Preto 25-28 de Outubro de 2009 c© Sociedade Brasileira de Redes Neurais

PIPELINED ON-LINE BACK-PROPAGATION TRAINING OF AN ARTIFICIAL
NEURAL NETWORK ON A PARALLEL MULTIPROCESSOR SYSTEM

Tiago Mendonça da Silva∗, Antônio de Pádua Braga∗, Wilian Soares Lacerda†

∗Computational Intelligence Laboratory - LITC
Department of Electronic Engeneering

Federal University of Minas Gerais
Av. Antônio Carlos, 6627 - Belo Horizonte/MG - CEP 30.161-970 - Brazil

†Department of Computing Science
Federal University of Lavras

PO Box 3037 - Lavras/MG - CEP 37.200-000 - Brazil

Emails: mendona04@yahoo.com.br, apbraga@cpdee.ufmg.br, lacerda@ufla.br

Abstract— This work presents an on-chip learning of artificial neural networks in a FPGA multiprocessor
system, where each neuron is implemented in a soft-core processor. In order to take maximum advantage of
the distributed architecture, a pipelined version of the on-line back-propagation algorithm is used, providing
a high degree of parallelism between neuron layers and, hence, a higher speed-up in relation to a sequential
implementation.

Keywords— NIOS, FPGA, multiprocessors, backpropagation, pipeline, artificial neural networks.

1 Introduction

Hardware implementation of Artificial Neural Net-
works (ANNs) learning can be accomplished with
high degree of parallelism, since weights within the
same neuron layer can be updated independently.
In spite of most approaches to learning relying
on sequential software implementations, demand
resulted from recent higher dimensional problems,
such as those related to Bioinformatics and the
Internet, has motivated a new wave of interest
for high performance physical implementations in
the last decade (Zhu and Sutton, 2003; Pethick
et al., 2003). The well known back-propagation
algorithm (Rumelhart et al., 1986) has being
widely used for on-chip learning benchmarking,
since it allows exploring the inherent parallelism
of the neural network structure. One of the
possible approaches to parallel implementation is
to pipeline updates and information flow between
layers in the forward and backward phases (Gadea
and Mochoĺı, 1999; Gironés et al., 2005).

This work presents an FPGA implementation of
a multi-layer ANN on a multiprocessor architec-
ture where each neuron is implemented on a Nios
II soft-core processor (Altera, 2007) and shared
VHDL components yield communication and data
transfer among them. In order to take maxi-
mum advantage of the distributed architecture, the
Pipelined On-line Back-propagation (PBP) algo-
rithm (Gadea and Mochoĺı, 1999) is used in such
a way that all the neurons of the network work
simultaneously, what provides higher speed-up in
relation to a sequential implementation.

The algorithm : Without loss of generality, the
algorithm will be described for a network with
one output and one hidden layer. In order to
obtain parallelism among the layers, while the
“output-neuron” computes the outputs hi[t] —
provided by the “hidden-neurons” — the hidden-
neurons themselves process the next input sample
xk[t + 1]. In the beginning of each iteration t,
the output-neuron feeds back the errors δi[t − 1],
calculated in the recently completed iteration, and
also receives the outputs from the hidden neurons.
This exchange of data requires a synchronization
mechanism between layers. In Fig. 1, a sequential
diagram detailing the tasks of each layer during
the learning process is presented.

Figure 1: Sequential diagram of the tasks deve-
loped by each neuron during the training process.

According to the algorithm, the weights wik[t] of



Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN)
Ouro Preto 25-28 de Outubro de 2009 c© Sociedade Brasileira de Redes Neurais

the hidden-neurons are therefore updated with a
delay of one iteration:

δi[t] = e[t] ∗ f ′(uj [t]) ∗ wji[t] (1)

wik[t+1] = wik[t]+η∗f ′(ui[t−1])∗xk[t−1]∗δi[t−1]
(2)

where e is the error, f ′(·) is the derivative of the
activation function f(·), wji are the output-neuron
weights, η is the learning rate, and ui and uj are,
respectively, the linear outputs of the hidden and
output neurons.

2 The multiprocessor architecture

In order to show the performance of the pipelined
multiprocessed neural network, the classical
XOR problem was chosen. The selected network
structure has 2 inputs, 2 hidden neurons and one
output neuron. Fig. 2 shows a schematic view of
the implemented hardware system. Each neuron
is implemented on a Nios II embedded processor
(Altera, 2007) and, since they are soft-cores
processors, each one is duly configured to attend
the needs of the application.

In order to exchange data, the hidden-neurons
(CPU 1 and CPU 2) are connected, independently,
to the output-neuron (CPU 0) by means of shared
VHDL components (forward and backward “me-
mory components”), and semaphore techniques
allow the necessary mutual exclusion on their ac-
cess. An architecture counting on on-chip memory
blocks for transfer of data, protected by mutexes,
was also implemented, but this approach has
resulted on lower performance while demanding
more chip space. The shared components are
organized in pairs for each hidden-neuron in order
to distribute the flux of data among processors,
reducing transfer overhead. Only hidden-neurons
write data in forward memory components, and,
likewise, only the output neuron writes in back-
ward memory components.

Processors and shared components are embedded
on a Cyclone II 2C35 Altera’s FPGA. However,
instructions, data, stack and heap of each CPU are
stored in off-chip memories. With the objective
of improving parallelism, whereas hidden-neurons
share a DDR SDRAM memory, a SSRAM chip
— faster — is dedicated to CPU 0, since this
last processor has a higher processing overload.
Instructions and data on-chip caches (icache and
dcache, respectively) are also introduced in each
processor in order to minimize access time to the

Figure 2: Architecture of a multiprocessor system
to process a 2-2-1 neural network:

—— on-chip connections,
· · · · · off-chip connections,
– – – flux of data during training.

referred external memories, also reducing conflicts
among hidden neurons.

System code and configuration settings are down-
loaded from a host computer to the FPGA and
memory chips — located in a Nios II Development
Kit (Altera, 2007) — by means of a JTAG UART
connection. Soon after training is finished, the
same channel is used to save the final weights
and network error history — mean square error
per epoch — on the host computer, so that the
performance of the system can be evaluated.

3 Results

The PBP implementation was compared with a
standard sequential back-propagation (SBP) run-
ning on CPU 0 — the most powerful among the
three CPUs. In order to obtain a comparison be-
tween the pipelined and the sequential implemen-
tations, two different metrics were used. The first
of them is the convergence speed Cs, that is given
by the number of epochs completed per time unit,
or Cs = ne

t . The second metric is related to the
parallelism degree Pd of the implementation and is
given by the amount of time a hidden neuron is on
hold, within one iteration, waiting for the output
neuron at the synchronization point, or:

Pd = 100(1− th
t

)% (3)

where th is the time on hold and t is the total time
of the epoch. All the metric results presented were
averaged over 10 trials.



Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN)
Ouro Preto 25-28 de Outubro de 2009 c© Sociedade Brasileira de Redes Neurais

The best speed-up — rate between convergence
speeds of distributed and sequential implementa-
tions — measured was obtained for a system run-
ning at 100 MHz (demanding 16210 logic elements
and 34560 RAM blocks bytes), wherein CPU 0 dif-
fers from the others only by the dcache size (2x
larger). The degree of parallelism obtained was
Pd = 0.75 ± 0.01%, what indicates that only in
25% of the time the hidden neurons were on hold.
This degree of parallelism resulted on a speed-up:

Sup =
Cs(PBP )

Cs(SBP )
(4)

of 2.03 ± 0.03, i.e. the PBP (presenting a con-
vergence speed of 180.16 ± 1.74 epochs/sec) was
about 2x faster then the SBP for the current
problem. Sup is, of course, expected to rise as the
number of neurons in the hidden layer increases for
solving higher complexity problems. Convergence
behaviour can be observed for both PBP and
SBP in Fig. 3. Although the delay between
updates, given by equation (2), has caused a
non-smooth error curve, it has not affected the
overall convergence performance.

Figure 3: Network error behavior during training:

a - Sequential implementation (SBP),
b - Pipelined multiprocessed implementation
(PBP).

4 Conclusions

The implementation presented provides an alterna-
tive co-design topology to embed adaptive neural-
based systems. A multiprocessor architecture al-
lows better distribution of tasks and an efficient
implementation of the PBP algorithm. In addi-
tion, when working with soft-cores, system descrip-
tion becomes easier and faster. Providing on-chip

learning, the solution is useful for adaptive control
and system modeling for real-time applications.
Performance and parallelism can be yet improved
by distributing the output-neuron tasks among co-
processors as more hidden-neurons are eventually
necessary. The flexibility of the Nios II architecture
and the built-in facilities to deal with concurrent
processes paves the way for further more complex
solutions as more chip space is available.

Acknowledgment

The authors would like to thank the support from
Fundação de Amparo à Pesquisa de Minas Gerais
- FAPEMIG.

References

Altera (2007). Nios II Processor Reference
Handbook, Altera Corporation, 101 Innova-
tion Drive, San Jose, CA 95134, San Jose,
USA. Access in November, 2008. Available
at: <http://www.altera.com/literature/lit-
nio2.jsp>.

Gadea, R. and Mochoĺı, A. (1999). Forward-
backward parallelism in on-line backpropaga-
tion, International Work Conference on Arti-
ficial and Natural Neural Networks pp. 157–
165.

Gironés, R. G., Palero, R. C., Boluda, J. C.
and Cortés, A. S. (2005). FPGA imple-
mentation of a pipelined on-line backpropaga-
tion, Journal VLSI Signal Processing Systems
40(2): 189–213. ISSN 0922-5773.

Pethick, M., Liddle, M., Weretein, P. and Huang,
Z. (2003). Parallelization of a backpropaga-
tion neural network on a cluster computer,
Fifteenth IASTED International Conference
on Parallel and Distributed Computing and
Systems pp. 574–582.

Rumelhart, D. E., Hinton, G. E. and Williams,
R. J. (1986). Learning internal representations
by error backpropagation, Parallel Distributed
Processing 1: 318–362.

Zhu, J. and Sutton, P. (2003). FPGA implementa-
tions of neural networks: A survey of a decade
of progress, Lecture Notes in Computer Sci-
ence pp. 1062–1066.


