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Abstract— Breast cancer is the second most frequent one, and the first one affecting the women. The standard treatments has
three main stages: a preoperative chemotherapy followed by a surgery operation, then an post-operatory chemotherapy. Because the
response to the preoperative chemotherapy is correlated to a good prognosis, and because the clinical and biological informations
do not yield to efficient predictions of the response, a lot of research effort is being devoted to the design of predictors relying on
the measurement of genes’ expression levels. In the present paper, we report our works for designing genomic predictors of the
response to the preoperative chemotherapy, making use of a semi-supervised machine learning approach. The method is based on
margin geometric information of patterns of low density areas, computed on a labeled dataset and on an unlabeled one.

Keywords— Transductive learning , Unlabeled data set , Semi-supervised learning.

Resumo— O câncer de mama é o segundo tipo mais freqüente, sendo o primeiro em mulheres. O tratamento padrão possui três
fases principais: uma quimeoterapia pré-operatória, seguida por cirúrgia e, em seguida, uma quimeoterapia pós-operatória. Porque
a resposta à quimeoterapia pré-operatória está correlacionada com um bom prognóstico, e porque a informação clínica e biológica
não levam à previsões eficientes desta resposta, uma grande esforço de investigação está sendo dedicado ao projeto de preditores
baseando-se nos níveis de expressão gênica. No presente trabalho, relatamos os nossos trabalhos para a concepção de preditores
genômicos da resposta à quimioterapia pré-operatória, fazendo uso de uma máquina de aprendisagem semi-supervisionada. O
método baseia-se na informação de margem geométrica dos padrões das áreas de baixa densidade, calculada sobre um conjunto de
dados rotulados e sobre outro não rotulado.

Keywords— Aprendizado transdutivo, Dados não rotulados, Aprendizado semi-supervisionado.

1 Introduction

Predicting the response of a patient to preoperative
chemotherapy from the measurement of genes expres-
sions is being a main issue in clinical cancer research
since DNA microarrays have become available, about
ten years ago. The importance of developing such pre-
dictors relies on the fact that only 30% of patients have
a positive response to the treatment and, in absence
of efficient predictors of the response, most of the pa-
tients are allocated to the standard treatment. A lot
of statistical and machine learning models have been
developed to address the problem (Cooper, n.d.; Glas
et al., n.d.; Ancona et al., n.d.; Michiels et al., n.d.), but
no genomic predictor is yet accurate enough to be used
in clinical routine. Among the main issues in the devel-
opment of such models are: (i) selecting relevant genes
to enter the predictors among thousands of genes whose
expression levels are measured by DNA microarrays
(the vast majority of them being not involved in the re-
sponse to the chemotherapy treatments), (ii) the small
number of cases compared to the numbers of features
(genes expressions), (iii) the representativeness of the
data. These difficulties are challenging for the develop-
ment and the validation of prediction models.

In the particular case of the application reported in this

article, the dataset is, for each patient case, the expres-
sions of a set of genes considered as relevant markers of
the response to the chemotherapy, and the outcome of
the treatment. The data themselves has been collected
in a clinical trial in which 133 patients were embedded.
The clinical trial was jointly conducted at the Institut
Gustave Roussy (Villejuif, France) where 51 patients
were cared, and at the MD Anderson Cancer Center
(Houston, USA), where 82 patients were cared. All the
patients were allocated to a preoperative chemotherapy
treatment, to which each of them revealed to be either
responder (Pathological Complete Response, i.e. the
result of the treatment was that tumor had vanished) or
non-responder (in the case of a residual disease). Be-
cause the data were collected in two far distant area
(France and USA), there may be some genetic bias in
the outcomes, suggesting that a semi-supervised learn-
ing (SSL) approach could be relevant for addressing the
problem (Chapelle et al., 2006; Zhu, 2008).

The main idea of SSL is to design the model not only
on the basis of a labeled data set (gene expressions and
known responses, usually called the training set), but
moreover by making use of a structural information
obtained from an additional unlabeled set, called the
working set. An approximation of the general sepa-
rating function of the two classes (responders and non
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responders) is induced from the training set and from
some assumptions about the working set. The basic
assumption of our work is that the separating surface
should have maximum margins in both the training and
working sets.

A new SSL method for artificial neural networks
(ANN) learning, based on the geometrical computa-
tion of the separation margin is presented and applied to
the problem. The separation region is associated to the
lowest density region in the input space formed by both
data sets. A method to geometrically identify the sep-
aration region and to compute the margins is also pre-
sented. The final solution is then obtained by address-
ing the problem as a multi-objective learning problem
and by selecting the final model as the one which max-
imizes the separation margins in both datasets.

In this paper we will review the basic concepts that
are discussed or applied in our work, then we will de-
scribe the implemented semi-supervised method, we
will present the results that we have obtained and com-
pare them to those of other approaches for the same
data. Finally we will discuss the results and some is-
sues of this approach.

2 Review

2.1 Semi-Supervised Learning

In semi-supervised learning we are concerned by using
the information conveyed by the unlabeled data set, in
addition to that of the labeled (training) set. The use
of the unlabeled data together with a small amount of
labeled data can improve the efficiency of the learning
process. SSL can be of great value when labeled data
is difficult to obtain (Zhu, 2008). In contrast, the acqui-
sition of unlabeled data can be of lesser cost.

In SSL, a supervisor can compare the outpouts of the
network with the known labels of the learning dataset,
and make the necessary adjustments of the network’s
weights. But the supervisor is of no use for the unla-
beled data.

2.2 Sliding Mode of Control for Multi-Objective Neu-
ral Networks (SMC-MOBJ).

A multi-objective algorithm (Costa et al., 2007) aims
at reaching a balance between the bias and variance of
a neural network, by selecting Pareto solutions in the
objectives space defined by the vector norm ||w|| of the
network’s weights, and the classification error, e, on
the training set. The sliding mode algorithm is capa-
ble of generating arbitrary trajectories in the space of
the objectives and reaching any solution (ek, ‖wk‖) in
the space of the objectives defined by the sum of the
quadratic error ek and the weights vector norm ‖wk‖.

This multiobjective algorithm minimizes two sliding
modes surfaces that are defined by Sv = (e− ek) and
by S‖w‖ =

(
‖w‖2 − ‖wk‖2

)
(Costa et al., 2007).

2.3 Margin

The margin is defined as the distance between the sep-
aration hyperplane and the closest points of the data set
(Haykin, 2001). For support vector machines (SVM)
these points are called support vectors. The optimal
separation hyperplane is the one equidistant to both
classes. Figure 1 is an example of the concept of opti-
mal hyperplane and margin, denoted by ρ in the figure.
The equations to compute the margin ρ are given by
equation (1), (2), and (3) (Shawe-taylor and Cristian-
ini, n.d.) :

ρ =
m∑

i=1

yidi (1)

di (w, b, x) =
(w · xi + b)
‖w‖

(2)

ρ (w, b) =
2
‖w‖

(3)

where m is the number of selected patterns for com-
puting the margin, and d is the distance between the
pattern i and the separation hyperplane (computed ac-
cording to equation 2.) In general, the margin is com-
puted for the support vectors because they are in each
class, the points which are the closest to the separation
hyperplane. These points synthesize all the information
about the classes that define the separation hyperplane.
In other words, training the network with all the input
patterns is equivalent to training it with the only support
vectors. The optimal hyperplane is found by maximiz-
ing the margin ρ (w, b) subject to yi [(w · xi) + b] ≥ 1,
(Gunn, 1997), which takes the form of equation 3.

Maximizing the separation margin is equivalent to min-
imizing the weight vectors of the network (w) (Haykin,

Figure 1: Illustration of an optimal hyperplane for lin-
early separable patterns.
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(a) The two moons problem

(b) Solution grid in the objectives space

Figure 2: The two moons problem and its solution grid

2001). Given a set of solutions we can compute geo-
metrically the distance between the separation hyper-
plane and a given data point, then select the solution of
maximum margin.

3 Description of the new method

Given a set of solutions (fig. 2(b)) obtained from a
training dataset generated by the SMC-MOBJ method
(Costa et al., 2007), we take into consideration the dis-
tribution of both patterns of the labeled and unlabeled
sets in order to select the solution of best generaliza-
tion.

This solution is located between the classes, in the cen-
ter of the area of patterns lower density, considering
that such an area exists. This optimal separation solu-
tion has maximum margins, and we can compute it ge-
ometrically in relation to the patterns that deleneate the
lower density area between the classes in all its exten-
sions (Coelho, 2009). in this section we will illustrate
the method on a well known two dimensional problem,
the two moons problem (figure 2(a)). The figure 2(a)
depicts the patterns belonging to the labeled (training)
and unlabeled sets.

(a) Slicing method applied to the two moons problem

(b) Patterns selected in all simulation (100%)

Figure 3: MILFAT method

3.1 First proposition: Method for Identifying the Bor-
ders by Slicing - MILFAT

The method for identifying the limits by slicing (MIL-
FAT) is based on a grouping method (Fuzzy c-means
clustering – FCM) (Bezdec, 1981). We have applied
the FCM method to the unlabeled data set for any fi-
nal number of partitions c. In a second stage, for each
axis of the input space, we have separated the data
into bands and later we have determined the borders
between the regions of the FCM partition, ‘walking’
along the sorted data values of the others axis (fig.
3(a)). Most of these borders were real frontiers between
classes. However, some meaningless borders (artifacts)
were also present. This process was iterated for each
axis.

To discard the artifact borders, the FCM algorithm was
run for an additional iteration on the unlabeled set, with
a number of partitions different from the one used in
the first execution of the algorithm. We have com-
pared the borders found in the two simulations of the
FCM and we have checked them against the one that
had been selected in all the simulations. Those of the
patterns that were next to the regions of lower density
between classes tended to be selected in all the simula-
tions with different partitions, while the artifacts (those
which were on the borders between partitions but in the
same class) tended to be differ from one execution to
another (cf. fig. 3(b)).
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3.2 Second proposition: Method for Identifying the
Borders by Probabilities - MILP

In this method, at the end of the FCM simulation, in-
stead of slicing we have used the information of the
FCM resultant probability matrix, taking as the borders
the n patterns of lowest probability among all of those
that had been clustered in one partition c (and this, for
each partition). Iterating this process for different num-
bers of FCM partitions, we have marked as border pat-
terns those chosen in all the simulations.

3.3 The Geometric Margin Computation

For computing the margins, we need to go back to
equation 1. Our proposition is to compute the dis-
tance between the separation hyperplane and the se-
lected input patterns through all the borders between
the classes in the hidden layer of the network. For
reasons that are discussed in (Coelho, 2009) we have
defined three different ways to compute the geomet-
ric margin (ρS = ρ1 + ρ2 , ρM = ρ1 ∗ ρ2 and
ρD = min (ρ1, ρ2) /max (ρ1, ρ2)) to evaluate which
of them was the best one. In these expressions, ρ1 is
the sum of the distances of the limit patterns of class -1
to the hyperplane, weighed by the network output, and
ρ2 is the same for class +1, as in equation 1.

3.4 Selection of the Best Solution

We have generated a solution set in the objectives space
by training the network with the inductive set (fig.
2(b)) using a sliding mode MOBJ algorithm (Costa
et al., 2007). For each solution we have summed the
computed geometric margin for the inductive set with
the one computed for the unlabeled set, then we have
chosen the solution that had the largest total margin.
We have chosen the grid solution G : (e∗,w∗) that
maximized the total geometric margin ρtot explicited
in (4). The values ρlabeled and ρunlabeled are the results
defined in section 3.3 for labeled and unlabeled sets re-
spectively.

ρtot = ρlabeled + ρunlabeled (4)

4 Applying the Method to Genomic Datasets

The data of this application of the method to the pre-
diction of the response to preoperative chemotherapy
for breast cancer are, on the one hand, the expression
levels of a set of genes measured on tumor tissues for
133 patients. The patients with no residual disease at
the time of surgery were responders to the treatment
(pathological complete response – PCR –), while those

with residual disease were non responders (NOPCR pa-
tient cases). Our goal was to design a model relying on
the gene expression levels for predicting the outcome
of the treatment (for patient cases that were not mem-
ber of the learning set).

The 82 patient data from the MD Anderson Cancer
Center (Texas, USA) were the training dataset, and the
51 patient data from the Institut Gustave Roussy (Ville-
juif, France) were the unlabeled dataset. The works
of Horta (Horta, 2008), Hess (K.R. Hess and Pusz-
tai., 2006), Natowicz (Rene Natowicz and Rouzier.,
march 2008) and Braga (R. Natowicz and Costa, 2008)
(Braga et al., n.d.), have made use of these data to
select relevant probes for prediction. Among them,
we have selected three probes sets for our applica-
tion of our semi-supervised learning method : the 30
probes set selected by Natowicz (Rene Natowicz and
Rouzier., march 2008), the 18 probes set and the 11
probes set selected by Horta (Horta, 2008)

The results (table 1) found by the SSL method based on
geometric margin are very interesting, because the re-
sults obtained at works like Horta’s one (Horta, 2008),
(table 2), were achieved considering all training data
as labeled ones. The SSL method consider labeled
data and uses aditional information from unlabeled
data distribution. In tables FP, FN, Ac, Se and Sp
means, respectively, false positive results, false nega-
tive, acuracy (%), sensitivity (%) and specificity (%)
for both training and validation sets. Model A refers
to set of 18 probes with MILP/MILFAT methods for
ρS /ρM /ρD methods calculation, model B is 11 probes
with MILP/MILFAT for ρS /ρM /ρD, model C is 30
probes with MILP for ρS /ρM , model D is 30 probes
with MILP for ρD, model E is 30 probes with MILFAT
for ρS /ρM and model F is 30 probes with MILFAT for
ρD. In table 2 model G is 18 probes with SVM RBF,
model H is 32 probes with SVM RBF and model I is
18 probes with LASSO.

Table 1: MSMG’s results
Training Validation

Models FP FN Ac Se Sp FP FN Ac Se Sp
A 2 3 93,9 85,7 96,7 7 2 82,4 84,6 81,6
B 3 3 92,7 85,7 95,1 8 2 80,4 84,6 78,9
C 11 2 84,1 90,5 82,0 9 1 80,4 92,3 76,3
D 9 3 85,4 85,7 85,2 10 1 78,4 92,3 73,7
E 13 3 80,5 85,7 78,7 8 1 82,4 92,3 78,9
F 12 3 81,7 85,7 80,3 8 1 82,4 92,3 78,9

Table 2: Horta’s results
Training Validation

Modelo FP FN Ac Se Sp FP FN Ac Se Sp
G 1 3 95,1 85,7 98,4 5 2 86,3 84,6 86,8
H 2 3 93,9 85,7 96,7 6 1 86,3 92,3 84,2
I 2 4 92,7 81,0 96,7 4 3 86,3 76,9 89,5

The best SSL method results are comparable to best re-
sults achieved in (R. Natowicz, 2009) that used a SVM
with linear kernels (See table 4 of (R. Natowicz, 2009)).
Note that we achieved acuracy values for training and
validation a little smaller than the best result on Horta’s
work, however, it is still a good result. We get the same
sensibilities values and ours specificities were slightly
worse compared to the best result in table 2.
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5 Discussion

The semi-supervised method based on geometric mar-
gin was applied to the problem of predicting the re-
sponse to preoperative chemotherapy in the treatment
of breast cancer. The results obtained with 18 and 11
probes are comparable to the best results achieved by
Horta (Horta, 2008). The results are balanced, stable,
with low error rate. The results obtained by comput-
ing the geometric margins in different ways were very
close for the same probes set (defining the best way
to compute it is an important issue for the SSL model
(Coelho, 2009)). MILFAT method supposes to define a
number of slices for searching and, as the algorithm has
high computational cost, this factor is of extreme im-
portance: more slices, higher will be processing time.
In MILP, one has to set a cutoff point of the probability
of a pattern belonging to the limit of the partition. The
number of times the FCM has to be run in both meth-
ods and the number of partitions on each of them can
also influence the outcome. However these parameters
appeared to have a lesser influence on the performances
of the predictor.
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