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MULTI-OBJECTIVE TRAINING OF RBF NETWORKS FOR LARGE DATA SETS WITH LMI’S

ELIZABETH F. WANNER∗, GLADSTON J. P. MOREIRA†, EDUARDO G. CARRANO‡, RICARDO H. C.
TAKAHASHI §, LUIZ H. DUCZMAL¶

∗Departamento de Matemática
Universidade Federal de Ouro Preto

Ouro Preto, MG, Brasil

†Departamento de Ciências Exatas
Universidade Federal do Vale do Jequitinhonha e Mucuri

Teófilo Otoni, MG, Brasil

‡Centro Federal de Educação Tecnológica de Minas Gerais
Belo Horizonte, MG, Brasil

§Departamento de Matemática
Universidade Federal de Minas Gerais

Belo Horizonte, MG, Brasil

¶Departamento de Estatística
Universidade Federal de Minas Gerais

Belo Horizonte, MG, Brasil

Emails: efwanner@iceb.ufop.br, gladston@ufvjm.edu.br,
egcarrano@deii.cefetmg.br, taka@mat.ufmg.br, duczmal@est.ufmg.br

Abstract— This work presents a Linear Matrix Inequality based training procedure for RBF networks that allows dealing with
very large data sets. The proposed solution avoids a matrix inversion that is necessary in traditional approaches, thus increasing the
dimension of the problems that can be dealt. The multi-objective setting for dealing with the bias-variance problem can be directly
incorporated within the proposed methodology.
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Resumo— Este trabalho apresenta uma metodologia de treinamento para umarede RBF baseada em Desigualdades Lineares
Matriciais que permite lidar com conjuntos extensos de dados. A metodologia proposta evita uma operação de uma inversão de
matriz, necessária na metodologia tradicional, aumentando assim a dimensão dos problemas que podem ser resolvidos com a nova
metodologia. O tratamento multiobjetivo para lidar com o problema de bias e variância pode ser diretamente incorporado à nova
metodologia.

Keywords— Funções de Base Radiais, Desigualdade Linear Matricial, Otimização Multiobjetivo.

1 Introduction

Artificial Neural Networks (ANN) represent a technol-
ogy that is applied to many fields such as non-linear
phenomena modeling, time series analysis, signal pro-
cessing, pattern recognition, etc. An important prop-
erty is on the basis of such applicability: the ability
to learn and generalize from input data. This makes it
possible for ANN to solve complex problems that are
difficult to treat via other methodologies.

Most of the problems that have been dealt by ANN’s,
up to now, involve the learning over a set of training
data that is of moderate size: such sets have hardly
presented more than one thousand input-output pairs.
However, as the ANN’s find new applications in fields
such as on-line process control, on-line failure detec-
tion, and others, the size of training sets can grow eas-
ily, and the unavailability of training algorithms that are
able to deal with large data sets becomes an important
limitation that constrains the ultimate performance that
is reachable by an ANN.

The RBF networks are particularly suitable for being
trained with large data sets, since the training residues
are linear in relation to the parameters to be adjusted
(provided that the basis functions have already been
chosen). The training procedure, in this case, becomes
the resolution of a standard linear least-squares. The
numerical procedure for solving this problem involves
the inversion of a matrix that has dimensionN × N ,
whereN denotes the length of the data vector. Once
this inversion has been performed, the network weight
vector (that is the result of the training procedure) is
found via a matrix product. This procedure for RBF
training can deal with data sets that are substantially
larger than in the case, for instance, of the multi-
layer perceptron networks (MLP’s), since the training
of MLP’s involves a non-linear optimization procedure.
However, the training of RBF’s reaches its limit of data
set size when the matrix inversion procedure reaches
the computer memory limits. This note presents a re-
formulation of the least-squares procedure in terms of
a convex optimization with Linear Matrix Inequality
(LMI) constraints. This re-formulation states the same



Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN)
Ouro Preto 25-28 de Outubro de 2009 c© Sociedade Brasileira de Redes Neurais

problem in a framework that involves a smaller mem-
ory requirement, allowing larger data sets. Once in the
LMI format, the problem can be solved by any of the
LMI solvers that are available. In this note, the Se-
DuMi is employed. SeDuMi is one of the most effi-
cient LMI solvers that are available, being based on an
interior-point self-dual convex cone optimization ma-
chinery and, as noticed in (Sturm, 99), it allows prob-
lems with relatively large sizes to be solved. SeDuMi is
also publicly available, seehttp://sedumi.mcmaster.ca/.

It should be noticed that the proposed re-formulation
directly allows the multi-objective training, as pro-
posed in (Teixeira et al., 2000). The multi-objective
training is performed in order to deal with noisy data,
avoiding both data underfitting and data overfitting.
The multi-objective training algorithms perform the
balance between bias and variance by tradding-off the
sum of the squared training error and the norm of the
weight vector, see (Teixeira et al., 2000). This multi-
objective training is directly performed within the LMI
formulation, by simply adding a constraint in the opti-
mization problem.

2 Radial Basis Function Network and the
Multi-objective Approach

Radial basis functions are simple functions which de-
crease (or increase) monotonically with the distance
from a central point, and that can be scaled and moved
in order to form families of linearly independent func-
tions. These functions can be used in order to build
a basis for spaces of functions (for instance, theC∞
space). A finite number of basis functions defines a
finite-dimensional subspace of the function space. The
trained RBF network can be considered as a projection
of a function onto such finite-dimensional subspace.

A typical radial basis function that is used in RBF net-
works is the Gaussian function:

h(x) = exp

(

−
(x − c)′(x − c)

r2

)

. (1)

The function parameters are the centerc and the radius
r.

In principle, radial functions could be employed in any
sort of model (linear and nonlinear) and any sort of
network (single-layer or multi-layer). However, since
Broomhead and Lowe’s seminal paper (Broomhead and
Lowe, 1988), RBF networks have traditionally been as-
sociated with radial functions in a single-layer network.
A RBF network is nonlinear if the basis function can
move or change size or if there is more than one hidden
layer. Here we foccus on single-layer RBF networks
with functions which are fixed in position and size.

In this way, if the linear model is

f(x) =

m
∑

j=1

wjhj(x) (2)

and the training set is{(xi, ŷi)}
p
i=1

, f(x)i ∈ R, for all
i, we need to minimize the sum of squared errors

S =

p
∑

i=1

(ŷi − f(xi))
2 (3)

with respect to the weights of the model. The mini-
mization of the norm of the vectorw = [w1, . . . , wm]′

is also necessary, in order to avoid the model overfit-
ting.

In a matrix form, the multi-objective problem can be
described as

w
∗ = min

w







f1 = (Ŷ − Hw)′(Ŷ − Hw)

f2 = ‖w‖
(4)

whereŶ ∈ Rp×1 is a column matrix containg(ŷi)
p
i=1

,
H ∈ Rp×m is the design matrix given by

H =











h1(x1) h2(x1) . . . hm(x1)
h1(x2) h2(x2) . . . hm(x2)

...
...

. ..
...

h1(xp) h2(xp) . . . hm(xp)











(5)

andw ∈ Rm×1 is the vector of network weights.

The first step when using multi-objective optimiza-
tion is to obtain the Pareto-optimal set (Ehrgott, 2000),
which contains the set of efficient solutions of the
multi-objective problem. The next step selects the
most appropriate solution within the Pareto-optimal set.
There are several methods for handling multi-objective
optimization problems (Ehrgott, 2000). In this work,
the ǫ-constraint method was adopted (Haimes et al.,
1971), since it can be directly accomodated within the
LMI formulation.

Using the ǫ-constraint method, the multi-objective
problem is redefined as a mono-objective problem of
minimization of one of the objectives with a constraint
ǫ in the other objective:

w
∗ = min

w

(Ŷ − HW )′(Ŷ − HW )

s.t:‖w‖ ≤ ǫ

(6)

Different Pareto-optimal solutions can be found by us-
ing different values of the constraintǫ. In the next sec-
tion we present the re-formulation of (6) as the opti-
mization of a linear function with LMI constraints.
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3 Linear Matrix Inequality

Linear Matrix Inequalities (LMIs) (Boyd et al., 1997)
have emerged as powerful tools in areas such as con-
trol engineering, systems identification and structural
design. A wide variety of problem can be formulated
using LMIs and, once stated in such terms, the problem
can be solvedexactlyby efficient convex optimization
algorithms (LMIs solvers) based on interior-point algo-
rithms. These solvers are significantly faster than clas-
sical non-linear optimization algorithms, and can deal
with problems with larger sizes.

We will employ the following lemma to derive our
methodology:

Lemma 1 (Schur’s Lemma) The statements (7) and
(8) bellow are equivalent

[

Q S

S′ R

]

> 0 (7)

{

R > 0
Q − SR−1S′ > 0

(8)

in whichR andQ are symmetric matrices,S is a matrix
with compatible dimensions, and(·) > 0 denotes that
the matrix argument is positive definite.

Proof: The proof of Schur’s Lemma can be found in
(Boyd et al., 1997). 2

A direct result, based on the Schur’s Lemma, is stated
as:

Lemma 2 Consider the following optimization prob-
lem with a quadratic objective function and a quadratic
constraint:

~x∗ = arg min (~x − ~x0)
′Q(~x − ~x0)

s.t.
{

(~x − ~x1)
′H(~x − ~x1) − 1 ≤ 0

(9)

The optimization problem (9) can be re-stated as:

~x∗ = arg~x min
~x,ǫ

ǫ

s.t.























[

ǫ (~x − ~x0)
′

~x − ~x0 Q−1

]

> 0

[

C1 (~x − ~x1)
′

~x − ~x1 H−1

]

> 0

(10)

Proof: Replace:

min (~x − ~x0)
′Q(~x − ~x0)

by:
min ǫ

s.t. (~x − ~x0)
′Q(~x − ~x0) < ǫ

The remainder operations are direct applications of
Schur’s Lemma to the quadratic inequality. 2

Using Schur’s Lemma, the mono-objective problem (6)
can be re-written as

w
∗ = arg

w
min
w,γ

γ

s.t.























[

γ (Ŷ − Hw)′

(Ŷ − Hw) Ip

]

> 0

[

ǫ w
′

w Im

]

> 0

(11)

where Ip and Im are identity matrix inRp×p and
Rm×m respectively.

The optimization problem (11) can be efficiently solved
with any LMI solver based on interior point methods.
In this work, we used SeDuMi (Sturm, 99) to solve this
problem.

It is worthwhile to notice that the application of the
weighted sum method (Ehrgott, 2000) to the problem
(4) leads to a general Tikhonov regularization func-
tionalL(w) = f1 + λf2. It is a convex combination of
the objective functions andλ is the regularization pa-
rameter. For linear models, the unimodality ofL(w) is
assured and all the Pareto optimal solution can be gen-
erated using proper values forλ. This property holds
in this case if the basis functions are considered to be
fixed, since the functional becomes convex in relation
to the weight variablew.

4 Examples

4.1 Function Approximation

In this example, the function

y(x) = (1 + x − 2x2) exp(−x2) + γ (12)

in which γ is normally distributed zero mean and0.2
standard deviation was approximated. A30 RBFs was
used and the training and validation sets were gener-
ated, respectively, by selecting100 and 50 samples
of y in the interval[−4, 4]. The centroids of the ra-
dial basis layer were determined from the training set
using the well-known k-means clustering algorithm
(MacQueen, 1967). The final solution was the one with
a minimal error in the validation set. Figure 1 shows
the chosen solution regarding this additional criterion.
Figure 2 shows the Pareto set obtained via the multi-
objective approach for solving the proposed RBF-LMI.
The red dot represents the selected RBF which was the
one with a minimal error in the validation set. Fig-
ure 3 shows all the obtained Pareto front approxima-
tions. It is possible to say that the proposed methodol-
ogy presents a good generalization without overfitting.
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Figure 1: Function approximation given by the cho-
sen RBF-LMI. The training and validation sets are also
shown.
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Figure 2: Pareto set obtained using the multi-objective
approach for solving the RBF-LMI.
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Figure 3: All the Pareto optimal solutions obtained via
the multi-objective RBF-LMI approach.

4.2 Delineating Spatial Clusters

A problem of 2-D function approximation is presented
now. Multiple or irregularly shaped spatial clusters are
often found in disease or syndromic surveillance maps.
We show a method to delineate the contours of spatial
clusters, especially when there is not a clearly dominat-
ing primary cluster, through the methodology presented
above. The method may be applied either for maps di-
vided into regions or point data set maps. The spatial
scan statistic (Kulldorff, 1997) is the usual measure of
the strength of a cluster.

The methodology presented, using RBF and LMI, is
trained as a function that approximates the spatial scan
statistic for the whole map domain. The solution de-
lineates regions of the map belonging to distinct level
curves values, and those constitute the estimates of
the primary and the several possible secondary clus-
ters. For maps divided intom regions, the scan statistic
is evaluated for each region taken individually, where
each region is identified by the geographic coordinates
of its centroid. We start defining a RBF + LIM artifi-
cial neural network with training set sizem. The ge-
ographic coordinates and the scan values are, respec-
tively, the net input and the desired output. A RBF +
LMI, with 50 radial basis functions, is trained. Fol-
lowing the training phase, the scan function evaluation
is extended for the whole domain of geographic coor-
dinates. The areas lying inside the level curves above
a certain threshold value are thus considered the most
likely clusters. The balance between bias (rigidity) and
variance (flexibility) of the net is obtained by means
of its sizing (Teixeira et al., 2000). Larger topologies
structures allow more flexibility but less bias. A simi-
lar approach is used for point data set maps.

The proposed algorithm deals with multi-objective op-
timization. The approximation for the function is con-
structed through minimization of a bi-objective prob-
lem: mean squared error and norm of weight vector.
Using this methodology, the algorithm looks, in the
RBF solution space, for balanced solution between bias
and variance, that means between overfitting and un-
derfitting.

Figure 4: Northeast US counties map with incidence of
female breast cancer in 1995 (age adjusted).
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For obtaining the Pareto set of the problem (4), we
use 20 values ofǫ in the formulation (6), whereǫ ∈
[0.01 3.5]. We draw the scan function level curves for
breast cancer incidence in the Northeast United States
in 1988-1992 (Kulldorff et al., 1997), see figure 4. Fig-
ures 5 and 6 show the scan function level curves, for
ǫ = 0.01 andǫ = 3.5 respectively. We obtain smoother
clusters in Figure 5, when less variance and more bias
are allowed. In Figure 6 we obtain otherwise sharply
delineated, more irregularly shaped clusters, indicating
less bias, due to the larger variance allowed.

Figure 5: Level curve for Pareto point that correspond-
ing to ǫ = 0.01.

Figure 6: Level curve for Pareto point that correspond-
ing toǫ = 3.5. For this value, this is the network which
gives the small error on the validation set.

5 Conclusions

A new learning algorithm for improving generaliza-
tion of RBF networks, which is based on multi-
objective optimization, was presented. The multi-
objective problem, which aims to minimize both the
sum of squared error and the norm of weight vectors,
is transformed into a mono-objective problem usingǫ-
constrait method. The mono-objective problem is a
quadratic one and can be solve via linear matrix inequ-
liaty formulation.

We show that the RBF method presented is a fast and
flexible algorithm for spatial cluster delineation. The
irregularity of the cluster shapes can be adjusted vary-
ing the parameters of the neural network.
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