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Adetract. [n this report we describe 2 bybrid getwork trchnigue 1o geners & commutes wehitecare for u nme series predicoon case suidy.
The algonmm, here aamed Selecuve Multiple Precdiction Netwerk - SMP, consuts of three meps! & sysumanc psuties of me wpi
byperspace, & selective rmning of many aerxs g & flexible cembuung romegy. This alzoniten renermes potenuially wcorelmed aeents

whick may umprove the performance of e combiamion process The proposed mrchitechare s emniy exiended 1o the clzsy of pamero

clmsificanon probiems.

Koy words: Communs Architscure, Tean Predicaoe, Hybrid Archntectore

1. Introduction

System Identificabon and Lmear Predicoon are two
very mmportant topics n the field of Svstem Theory,
and are widely apphed to many diverse arsas such as
Signal Processing. Conaol, and Forecasmng. Svstem
Identificagon 15 tne process of esamaung an
unknown structure by the imowiedge of only 1ts
input / output paurs. Linear Pradicuon. on the other
hand, is the process of esnmaang a future system
response based only on the ¥nowiedge of 1ts present
and past responses. -
The emphasis on creanng a predictor rehes on the
identificaton of underiving patterns. and on the
estrmanon of the model parameters. Histoncal data
analysis and parern consisiency are respectvelv ths
mator resource and the Major UNGSTVING assumpoon
for the esnmauon of such parameters. It may bs
inufave the unasrstanding that mors complex the
problem the more difficult 15 the undetiving pattems
identificanon. and even meors difficult 15 the
esttmation of & single model that sansfactonly covers
the entire probiem.

The main idea here is that a large class of predicoon

problems can be better sdlved by decomposing e

onginal problem mto several subprobizms and then
combinung the muinpis sub-solunons. somettung itks
divide-and-conguer. Thus approach generally ieads to
sumpler mdividual nerworks and wso 10 3 nuener
accuracy than soiving the probiem wath a singis and
global predictor. Cur commuttes approach has 2
simple archutecrure 1fig. 1) composed of tnre disunet
modules: the selector, thal pertorms a patiem
classificanon; the predictor, that s a set of sumple
nerworks working i parailel; and tne combuner, that
generales the svslem outpul The SMP ouuung
algonthm consists bastcally of thres sieps as follows

. decomposinon of the onmnal problem o
several and ideallv disyoint supproblems;

. parallel esnmaton of the parameters for each
model] (agent), and

+  CcOmDIN2UonN swatemes.

The first step. parnuon of the ongnai problem. reites
on e appucaton of unsupervised methods such as
K-means and fuzzv locally semsiuve [ThoS3a}
clustening algonthms. For ume semes problems. for
example, 1t fums out to be necessary a pravious
mansiormaton to the onmnal tme dependent
sequence of pomnts generaung a set of state-space
vectors and then, spanal suniannes of these vectors
are exploed by the use of an unsupervised
clustening procedur:

In the second step, as many agents as the numbers of
parnoons are mamed in paralicl, on the subsets
created by the ciustenng procequrs, Lmked to eacn
cluster there 1s 2 comrespondmmg agent that can be
seen s an experl on @ parpcular view of the
underiving  soucmre. Uncomelated agents ars
expected to result from this raiung schems. Each
agent provides i1ts OWn predicnon, and the network or
commuttee final predicuon 15 then obtamned througn
the combinagon of the indiviaual conmbutons. Wz
propose here three different combining sTaleges.

2. Tbe Combining Paradigm

in a semmal papsr [Bat69]. Bates and Granger
showed that a sumple insur combinaton of disanct
pracicnons generaliv  ourperforms the wmndividue!
predictions, A stream of papers followed thus mute
work. Clemen and Winkier ICleR6} and Clemen
ICIe89] provide excelvnt summanes and exiensive
bibitograpnuc reterences

The’ fisld has so fur been domtnated bv works
stanisucal decision theory. with parocular emphasls
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on optumal lnear combination und on Bavesian
inference. However, cotnectonist researchers have
recently begun to show a strong interest in the
subject in the form of network committees, agent
teams, stacked generalizaton. and others [Lit91,
Bey93, Wol52, Sch89, Macy3, Zhad2].

Combining is theoretically no worse than any of the

individual agents. which can be shown as follows:
Let Ay and Ap be two distinct agents

working on information sets lq and I, and let f]

and f/ be their corresponding predictions for time

stepn

If the predictions are opumal with respect to thetr

respective information sets they.can be writtzn in
terms of posterior expected values, i.e.

Je =E{Xn/la}, 1)
and
Js =E{Xn/lp}. @

The optimal prediction, based on all possible
information is then known to be
rr=elx, ) =101 @
This complete estimation problem is normally very
complex and computationally expensive. A
particular subset of {Ir} that can be considered for
- example, is a linear combination of the individual
- predictions
] Cl = firanfy . @
It is expected that a] or ¢? should go to zero
whenever 77 or f; is optimal with respect to the

global information set {Ir}. If neither one is optimal
then a] and @ are cxpected to be different from
zero. In general, C™ and /" are not equal, which
clearly indicates that the combination will not be
optimal too, although a superior resuit to each of the
original predictions is expected.

Although showing potential for performance
improvement, combining techniques present some
weak points. The combined performance is highly
dependent on the estimation error cross-correlaton,
serial correlation, and bias. The most effective
combinatons are achieved with no positve ¢ross-
comelation between individual model errors. When
negative correlation occurs, which is qute rare, the
gains can be spectacular. However. with high
positive -cross-correlation 1t is often difficult to
achieve even a small improvement. Moreover, if an
unstable optimization technique s used. the results
may be even worse than those of using equal weizhts
or of selecting the apparently best model. Therefore,
the kevstane for any combimng scheme redies on the
generation of as less correlated agents as possible,
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3. The Selective Multiple Prediction Network

Training agents over distinct subsets of the fuil
tralmng set 15 not a new wes. Wolpert {Wol92] uses
arbitranly selected partitions to train the first layer of
generalizers, Schapire [Sch8vw] adopts a residual
scheme in which every new agent is trained only on
those vectors which previous agents have disagresd
on. Ersoy’s parallel self-organizng. hierarchical
neural networks [Ers89, Hong®1), can also be seen as
a kind of residusl pumition where new agents are
trained on transformed versions of those samples
rejected by previous agents. In SMP a difterent
scheme 1o partition the input data set and to perform
the prediction task is used. First of all a clustering
algorithm is adopted to subdivide the onginal
problem into sets of more homogeneous and easier
subproblems, which may eventually lead to leamning
and prediction improvements. and later, many agents
are used in parallel to provide the network output.

The Selective Muitiple Pradiction Network (fig. 1)
involves three distinet processing steps and a number
of distinct agents working in parallel. These agents
can form a hvbrid or a homogeneous structure
depending on how they differ from one another. In
our studies we only considered homogeneous
systems in which each agent is a neural back-
propagation network.

3.1 Processing Steps

Pattern matching, function approximation, and a
combining strategy are the most unportant
components of the selective multiple prediction task.
Pattern matching involves feature selecdon and
unsupervised leaming;, funcuon approximation
imvolves selective supervised learning, where each
neural network is trained to bscome an expert on
specific views of the entire environment. and the
combining strategy generates the final predictbon.
Figure 2 shows a block diagram of these steps,

The selection of relevant features is the first and one
of the most important steps. In univanate time series
problems this selection process can be thought of' in
terms of defining different embedding dimensions, '
i.e., the number of past values to be used in the
model. Feature selection {ThesY, Hsu¥3, Lap80] is
generally u very tme consuming and complex task.
Here we fuvored the wse of i spreud rutio measure £y
{eqn 6) to select those possible embeddings leading
to a4 more conststent unsupervised patition ol the
mput space. The maodel for o tme senes 18 generaliy.
axpressed s

Y flY )4y, (5)

where
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N[N XD X(-20) . X(m-1)]T is a vector

.ofmxd,

Y= x(t+T) is a scalar value,
T is the sampling penod,
m is the embedding size,
T is the predicton horizon (lead time).
The spread ratio measure is defined as

ry = mean(rér}) (6)
where - .

mean(O.J )
L :
r,= o ,
o

measures the data consistency,

o’ * is the outcome vanance for the
input vectors beionging to clustery

o is the outcome variance for the
whole training vectors, and
i
; mean(‘dw)
re.=
' M

mean{; djg ) ’ _
is the Fisher descriminator term, which measures the
ratio within (d,,) X between (dp) cluster distances

A

dl =% % HXJ-—V,-H , ‘L“fj/XJ- €Clusteri}
i J=1 :
, 1 . 1 2
I
e—1 j=i Joh
where V; represents the center of mass of the ith
cluster. .
Once the embedding m is determined, the time series
can be rewritten as a collection of nput vectors X,
also known as state vectors, and their comresponding
outcome VY. This performs a tansformaton from
time to spatial domain where the ume dependence is
respected within ecach vector but ignored among
different vectors; the regression problem can then be
viewed as a case of pattern association of pairs of
vectors as follows

b

X X12 e Xin

X Xaz en Xop

Xmt  Xm2 T e N .
i Y2 o e ¥n

This transformation is the key to instance-based
methods [Aka9l. Hsu93} m which the owtecome
predictzon for the current state vector 1s based on the
outcomes of a number of pust state vectors found
using a look-up scarch and a kind of Kk neurest
neighhor aprroeach ‘
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Here, in the SMP algorithm. a similar transformatien
is applied to the tune series with the objechve to
subdivide the ongnul problem uno & »set of more
homogeneous subproblems, An cinbedding size 15
selected and the ongmal tune senes 15 then
transformed into a set of state vectors of that chosen
dimension. To'sclect the optimal embedding we used
the fuzzy locally sensiive clustering, descrbed in
[Tho93a], and also a K-means algonthm. The
previously mentioned performance criterion (egn 6)
was then applied to identify those embeddings
resuling in mere consistent and better shaped
partiions, The cluster centroids of the best partition
were then assuned to be the cluss representatives for
the patten matching and  selective  funclion
approximation phases of the SMP algonthm.

Each cluster defines an associated agent that is
trained only on those samples that are classified to
the corresponding partition. Three stratemes for
learning and combining the individual predictions to
form the committee pradicoon were evaluated. The
first and simplest one. named winner-take-all,
selects a singie agent at every tme step to perform
the prediction. The selected agent 1s the one whose
cormresponding cluster centroid is closest to the
current inptit vector, The second approach, called Al
commutiee, is at the other extreme. whers all agents
are taken into consideration. Each agent contributes
and.is trained on a percentage of the final prediction
error. The percentages or weights add up to one and
direct correspond to the degree of membership of the
current input vector with respect to each cluster. The
third approach. called windowed-committee, 15 in
between the two others, since it takes into
consideration a subset of the available agents. A
temporal window is used as a selection cnterion to
induce time continuity or time similarity as well as |
spatial similarity. The combination of spatial and
temporal stmilanties has special appeal 1n tme senes
applications.

4.2 - Learning Procedures

The Quickprop algorithm [Fah88] with adaptive
region of nonlinearity, as described in [Tho93b], was
used in all experiments. All training data sels were
1500 or more sampies long, and the agents
(backpropagation networks) were trained in parallel .
accordingly to =2ach combining strategy. Batch
training with a [fxed number of epochs upper
bounded at 1000, was used. All procedures assume a
previous unsupervised purtiion step wilere clusters
representing the underlying pultermns arv genzrted.

case i) Winner-taka-ai o crdure

] Forevery stute vector i i tramine <1
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step 1- classify current input vector with
respect to the existung clusters,

step 2- select wnning agent (closest one to
" the current mput vector);

step 3- estimate desired outcome; and

step 4- train selected agent through error
backpropagation.
2. If desired accuracy is achieved stop else go back to
L.

case b) Full-committee procedure
1. For every state vector in the traming set:

step 1- compute degree of membership for
current input vector

o - - (x-1) )
£ o -l 1) (x-7))

Hi =

i=

step 2- estimate the outcome for all agents
in parallel

5‘l=f(X,FV‘)., i=1_....,c

step 3- generate the committes prediction
by combining the individual outcomes '

- c -~

y= '_§l My _

step 4- train each agent by backpropagating
its contribution to the overall emor -

er =Yg~ ¥, and

e = f‘ieT; i=1,..,c.
2. If desired accuracy is achieved stop else go back to

1. ‘
case ¢) windowed-committee procedure

1. For every staté vector in the training set:
step |- classify current input vector

step 2- select winning agent (closest one to
. the current vector)

step 3- insert the winner vector at the head
of the time-window queue (FIFQO)} and eliminate the
oldest entry .

FD = [Xt Xy Xt—k+l]’

window of.size k
where X, means the winner vector at time instant t.

step 4- estimate the output tor each agent
belonging to the ime-window gqueue

Fp= SUWD ), i Lk
where WD, is the il cohunn veetor und W i 15 the
coresponding set ol weight parameters.

step S- combine individul outcomies
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1° Congresso Brasileiro de Redes Neurais

- k -~
y= S ;‘j-vj .
i=1
where
}li = %‘ , O0<pfsl
z
=l
and
k B
.._‘",1 A= L is the time weight decav
1=

step 6- rawn each agent by buckpropagating
its contribution to the overall emmor

€T = _Vd ""j; aﬂd . e,— = /.,eT
2. If desired accuracy is achieved stop else go back 10
1 ‘

4.3 - SMP Properties and Drawbacks

SMP provides a powerful urchitecture to deal with
complex real world problems. A set ol specialized
networks are used. rather than o singie one which
must accommodate all aspects and underlying
dynamics of the probiem. Specializabon. team
cooperation, and truly parallel operauon are the key
issues in SMP. Robustess, complexaty and learning
effort reduction. and predichon accuracy
mmprovermnent are the major goals.

Major properties:

. transforms complex problems into 2 set of more

homogeneous and easily treated subproblems:

. uses smaller mdividual networks which reduces
dimensionality problems and improves leaming tme.
. exploits spatial and temporal sumiianty of the input
vector which is intuitive and appealing for many real
world time series applicanons:

. combines instance based with parametric
approaches without the memory and recall time
overhead of the former;

» adopts either hybrid or homogeneous structure,
with a flexible combining strategy;

. generates potentially distinct agents by training
them on different partitions of the training set.

Drawbacks:

» fequires large training sets to avoid situations where
an agent is trained on a very small number of
patterns: '

. requires frequent full retraining and input space
partitioning if applied to nen-stationary hme senes:

. since each agent has s own disbnet tranng set.

‘which mav hsve different sizes and degrees of

complexity. the algonthm mav present overfitung
problems if the number of trurinz cpochs is st
equal for all agents and
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5. Empirical Results

The Mackey-Glass chactic ime series wus chosen
for thus benchunark due to its common use among
connectionist researchers. The purpose behind the
use of Mackey-Glass time series was not to show
improvermnents of curfent estimates that are already at
practical lumuts. Further improvement is of little
practical value. Rather. our purpose was to use a
chaotic svstem defined by a continuous orbit, which
by nature does not have clearly detinable closters in
the state spaca. If a reasonable predicthon can be
attaned with this thecntgue. functions that are cleurly

‘decomposable into multiple mappings can therefore,

more easily be dealt with.

The Mackey-Glass equation was first proposed as a
model of white blood cell production [Mac77] and
subsequently populanized in the nonlinear field due
to its richness in struchure [FarB2). Tt is a time-
delayed ditferential equation stated as follows:

i:ﬂL_b,(,) ™

a [1 +x(e- A)J
Which in discrete time domain can be rewritten as:
' atlt-4)
[l +x(e-A)1
In Mackey-Glass benchmarks, it is- commonty
avoided to draw conclusions based solely on direct

numerical comparisons with other published results.
This is because of the differences that can arise from

x(t+l)=

‘the-use of different integrators, initia] conditions,

sampling rate, and transient eclimination. In our
study, all results are reported in terms of Nrmse.

According to Takens, a chaotic time series x(1) can
be predicted 7 time steps in the future by using only
m number of equally spaced past samples of the
time series itself. The prediction value is then
obtained as follows:

x(e+T) = F{a(e)x(e= 0)oerrs(t=(m=-1)9}

where F, under suitable assumptions, is a nonlinear

-continuous function. The choice of an embedding

scheme for a benchmark means the determination of
the three parameters T, m and 1 for the time senes. In
our expetiments we adopted the most widelv used
values, i.e. m=6, t= 6 and,T= 6 and 83.

Using the above parameters, many distinet partitions
of a training set with 700 samples were evaluated. A
K-means clustering algorithm was used for several
vadues of ¢ tnumber of clusters), and the
performance cnoenon fy (egn o) was evaluated for
each resudung partinon. The results midwated a
VSIEnate partiion anprovenent o the namber of
clisters mwrcase. Uthier wbscivaion was bt ihe
quadiy ot the partition deteniorates as the lead e 1

——(b-1)xl1). (&)
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gocs further in the future. This s beciuse of the
chaotic nature of the series.

Winner-take-all, full-commuttee and windowed-
committee schemes were evaluated on different
partition sizes for lead imes of 6 and 85. Fuch model
{neural network structure) was defined with « single
hidden layer (5 umts tor the T-6 case and ~ nnuts {or
the T=85 case) and one output umt. hvperbolc
tangent with ARON was adeprad for alf anits. Tablos
I and 2 show some of the obtained results.

The architecture of SMP provides the fexibility o
custormze and individually tune cach Agent
Therefore, in this experiment for example, Agents
with poor trairung pertormance coild. in the WTA
scheme, be selected for individual reramung and final
accuracy may eventuaily improve.

Table 3 and figure 3 show the comminze pradiction
results for a partinon size ot 23 clusters. Obsarve that
the prediction prownided by the WTA scheme shows
very good performance on turming pomts, with
almest no lag, which may be of grear mterast for
some real world applicatons.

-

6. Conclusion

The Selective Multiple Prediction Network provides a
very flexible and powerful architecture to -handle

. those more complex problems, where a single and

giobal model is very uniikely to exast. Decomposing
the onginal problem into more homogeneous
subproblems leads to potentaly uncorrelated and
simpler Agents. Less demanding training effort, and
customized tuning according 10 the requirements of
each subproblem are some of the charactenstics of
this approach. This proposed architecture van also be
seen as a structure to combine newal networks
(prediction module) with more sophisticated
schemes of expert systems (selection module)
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Committee Num. Clusters | T=o ‘ T=83
WTA 0% 1962 4309
WTA 23 0773 .3403

Windowed 09 1904 4233

Windowed 23 0728 3194

Full-Committee - 23 i 1221 ! 3752

Table 2 - Mackey-Glass Committee Training Performancs in Nrnse

Cls

No ' Ns , CIs No Ns Cls Moo PUNS
0l 1182 § 1117, 09 2285, 2742 17 1551 | 2677
02 5304 | .3842 10 6202 | 6R07 18 3656 | 3061
03 2167 | 2912 11 0660 | 0712 | 19 5488 | 6979
04 7403 | .6l4 | 12 7220 | 6555 20 3548 | 4264
05 1727 | 1478 | 13 2010 | 2206 1 21 5200 | 4234
06 3123 | 1949 14 2516 ¢ 1834 | X2 2752 | 2823
07 3374 | .3378 15 3698 © 3582 ' 23 5284 | .3387
08 2821 i 2876 ¢ 16 1447 . 1548 | WTA [ 3403 | .3694

Table 3 - Mackey-Glass WTA-Committee Training/Predicton for T=85 {Cls - cluster number, No - cluster
truining Nonse. Ns - cluster testng Nomse: parion size ol 23 clusters)

Tubie
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Figure 1 - SMP Network architecture
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