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Abstract: Faults  producing load disconnections or
emergency sitvations have to be localized as scon as
possible to start the electric network reconfiguration,
restoring normal encrgy supply. This paper proposes the use
of artilicial ncural nelworks (ANNs), of the associative
memery {ype. 1o solve the fault localization problem. The
main idea is lo siore measnrcment sets representing the
- nodal belunvior of the protection syslem inlo nssocintive
meniories. Alterwards, these memories are employed on-
line for fault location estimation from the protection system
caquipment status. The associative memories work correctly
even in case of malfunction of the protection system,
Although the ANNs are trained with single contingencies
only, their generalization capability allows a good
performance for muiliplc contingencics.

1 Introduction

In a power system substation, Gmls that produce lond
disconnections or emergency siluations have to be localized
as soon as possible. Fault localizalion is necessary Lo start
the substalion rcconfiguration for restoring norinal cnergy
supply. Howcver, the identification of the faulied points is
nol always an casy task, delaying the restoration procedures.
This usually occurs wlien the protection system does not
behave as expected.

Substations in commissioning phasc or cven (he oncs
alrcady in opcralion, but with complex constructive and
operational naturgs, can have high indices of protection
systewr failure, In these substations, fault localization can

lake a long time due 1o the great amount of information to
be analyzed. Even visual inspection can be required.

The difficully in identifying the falied points significantly
increases in non-conventional substations, as gas-insulated
(GIS) ones | 1].

This paper proposes the use of artificial neural nclworks
(ANNSs), ol the associative memory type. 1o soive the [l
localiznion problem in substations, The idea is to slore, into
associalive memories, measurement sels represenling circuit
bresker and relay status (normal behavior) corresponding (o
possible  single [ults,  Aflerwards, these  associalive
memories are used on-line 1o estimate faull locations
(equipmenl. phase and compartment), even in case of
misoperalion of the protection system. Although (he ANNs
are (rained with single contingencics only (stored cases),
their gencralization capability allows a good performance
for multiple {simultancous) faults.

2 Associntive Memory ANNy

Intellipent systems have been successfully applied to the
problem of fault diagnosis, Two approaches have been used
lo solve this problem: symbolic expert systems [2.3] and
ncural nelworks [4]. Expert systems have been crilicized for
requiring a great ellort to build (knowledge acquisition) and
maintain the knowledge base.

ANNs ofler a simple and more robust solulion lo the fault
diagnosis problem due to their noise suppression capacity,
training power and adaptability. The noise suppression
ability allows 1hem 1o correetly localize faults, even in cise
of protection syslem misoperation. The capability of training
using sampies of solved cases (supervised training) reduces
the devclopment time very much, Finally, the ANNs
adapiability makes the maintenance job trivial,

The proposed approach is an innovation compared with
rclerence [4] where the ANNs are used as pattern
recognizers, i.e., simple models arc desirable. In [4], the
ANNS triining process is based on normal and abnormal
operational conditions of the protection sysiem, and not on
the proteclion philosophy. As the numerous possibilitics
arec nol well defined, the limited number of
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cases used for training hardly produces good
generalization.

The new approach utilizes the ANNs as associalive
memories, where models with redundancy are desirable.
The novelty is related to the difference between the
learning (pattern recognizers) and memorization
(associative memories) concepts. The second concept is
more uscful when the population of interest is well
defined.

The general characteristics required from an associative

memory include the following abilities (5]:

- lo store many associated stimulus/response signal
pairs;

- to accomplish this storage through a self-organizing
PrOCess;

- to store this information in a distributed, robust (highly
redundant) manner;

- to generate the appropriate response signal on receipt
of the associated stimulus signal,

- to regencrate the correct response signal althougl the
input stimulus signal is distorted or incomplete; and

- 0 add to existing memory.

Associative memory models can be divided into two

categories [6,7]:

1) information processing models, which employ
programs for testing, comparing, analyzing,
manipulating and storing information: and

2) ANN models, which implement the basic functions
of a sclective associative mcmory using a collection
of reclatively simple clements connected o one
another.

Optimal Associative Memories

The optimal nonlinear associative memory (ONAM), an
ANN paradigm introduced by Kohonen [8], is sclected
because of its interpolative response, its least-squares
storage degradation, and its well-understood mapping.
The ANN models for associative slorage based on
feedback networks (9-11} are not suitable for the fault
localization problem. In addition 1o the low storage
capacity, their nearest-neighbor response (besides the
difficulty to control the "attractors”, which can generate
responses not rclated to the ncarcst-neighbor) does not
allow the lacalization of simultancous faulls without
explicitly storing them. The interpolative response of an
optimal associative memory allows that.

The purpose of an optimal associative memory is 10
obtain optimal transformations such that, with respect to
a wanted input-output transfer relation, the effect of
noise or other imperfections on the input signals would
be minimized. As the ONAM is a simple extension of
the optimal linear associative memory, the latter is
described first,
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The Upumal Lurear Associative Memory

Let x1=(x.Xp .. . X)b Xg, .o . X, be an ensemble of
input signals (status of circuit breakers and protection
relays) in a representation space R™ | and y,=(v,.¥3. ... .
yn)l. Y. ... . ¥ their associated output signais (fault
location) in W™, The signals are assumed to be linearly
transformed by the following transfer relation (recall
procedure):

Y=XW ()

where X=1{x, % ... 5I'. Y= [y ¥ .. yl'and Wis
an m X n matrix. The components of W, w-.j's . represent
the interconnection weights leading from clement "i" (0
element "j* in the corresponding two-layer feed-fonwvard
ANN (Figure 1).

z | ta—>

Figure 1 - ANN of the optimal associative memory type.
where [{(z) = z.

The following analysis is developed considering an
autoassociative recall (Y=X). The vectors x|, x4, ... . X, €
M span a4 subspace L < UM, An arbitrary vector x & W
™ is winguely described as the sum of two vectors x ¢ £,
i.c. the orthogonal projections of x on L and on the
orthagonal complement of L, respectively. Therefore, ©
is the best linear combination of the input signals
x,(k=1. .., r) that approximates x in the scnse of least-
SUUILICS

Ouliogonal projection operations have the property of
correcting noisy and/or incomplete input signals towards
the siored ones, If an input signal is a noisy version of
oune of the stored signals x,, x=x T &, where g is a
raudom crror, then in general. f is a beuer
approsination of x;. 1t can be shown that for the case in
which ¢ has a symmetrical multivariable Gaussian radial
distiibution in ™M, its orthogonal projection on L. & .
has 2 distnibution with the following standard deviation:

U= SENREICLYER SN 2)

The wput signal noise is attenuated by the orthogonal
projection 1f » < . Although the analysis above is
related 10 an autoassocialive memory. the same noisc
anenuation factor, (#/m)}2 | can be applicd to Lhe output
vectors ol a heteroassociative memory (Y = X) [3].

With regard o Eq.l, the opumal least-squarcs
corrclation of X and Y (iraining procedure) is defined as
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W=XY (3)
where
i) Xr= X! (4)
if m =r and X is nonsingular,
Xr=X(Xxy! (%)

if the rank of X is equal to r, i.e., the input signals to be
memoarized are linearly independent {r < m), and
HX'=(XX»x (6)
if the rank of X is equal to m, i.e., the input channels are
linearly independent (m < 1).

When exact solutions to Eq.3 exist, i.e.,, Eqs. 4 and §,
then W is the particular solution that supplies the

Al-500kV

@@@@’9@@@@@@
05AIl2

{¢ Congresso Brasileiro de Redes Neurais

The selected nonlinear transformation is a polynomial
oune, Polynomial transforms belong 10 a class ol lcasl-
squires problems that are lincar in the paramelers and
nonlinear with respect to the input vectors. The chosen
polynomial transform is as foliow:
— t
..x..k - (xlixz -'-'!xm) -
=P, =X, X, XX, XX, X, X,
3
X\ Xy Xy, Xy 2 X, X, )
o

The name ONAM does not imply that the nonlincar
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Figure 2 - 500 kV Gas-lnsulated Substation.

associative mapping with the best error tolerance. When
exact solutions do not exist, Eq.6, W is the best
approximate solution in the least-squares sense.

With this encoding scheme, the strong condition of
orthogonality among stored signals is not required to get
perfect recall (when an exact solution is possible), as
would be the case for an encoding scheme based on he
Hebb's ruie [12].

The Optimal Nonlinear Associative Memory

For linear associative mappings, a necessary condition
for an exact soiution to exist is the {inear independence
of the signals to be memorized (rows of X(x,' 's)). When
the number of signals is greater than their
dimensionality, this condition is necessarily violated and
no exact solution exists. It is possible to overcome this
limitation by using nonlinear transformations to enhance
the original input signal representation. With a
nonlinear preprocessing transformation, the
dimensionality of the x, 's is increased. consequently, the
probability for the transformed vectors to become
linearly independent (distinguishable) also increases.
Another desirable effect produced by an enlargement of
the dimensionality of the signals is the improvement of
the noise attenuation factor (r/m)"/3,

transformation is optimal in an absolute sense. The
optimality criterium is applied to estimate the
parameters, given a certain nonlinear transformation.

3 The Proposed Approach
The proposed scheme was idealized for the 500 kV, 30

Hz, Itaipui gas-insulated substation, which used to
present dilficulties in fault localization due to ils large

-number of compartments (321). This substation is

represented in Figure 2, where there are Y generation
units, 4 transmission lines, 4 buses, | auxiliary
transformer and 26 circuit breakers. The protection
syslem has 66 relays. There are 18 generator dillercntial
relays, 8 bus differential relays, 2 transformer
differential relays. 8 distance relays, and 30 circuit
breaker failure relays.

The stalus of circuit breakers and protection relays can
be used to localize faulls in a subsiation. The status of
these equipment can be represented by binary signals in
which the "0" characterizes a closed circuit breaker or a
non-operating relav, while "1 characterizes an
open/tripped circuit breaker or an operating relay. A
typical training set 1s presented in Table 1. The 26 first
input channels represent the circuit breaker status, while
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the other 40 channels represemt the relay status. For
example, in case of a fault in bus B2, the value "1" for
channels 14, 22, 23, 24, 25 and 26 shows that the circuit
breakers 85B12, 8SLIL, 85U06, 85LI12, 85U08 aud
$5U09A have opened. The value "1" for channels 33, 34
and 38 shows that the relays 87B2/P, 87B2/A and BF/B2
have operated. The value "0" for the other channels
represents closed circuit breakers and relays that have
not operated. The output channels indicate a single fault
in bus B2. The number of output channels is the same as
the number of equipment. In this example, the output
signal generated by the ANN that identifics the fauited
equipment activates the ANN responsible for bus B2,
which is utilized to localize the faulted phase and
compartment.

In this way, the fault localization problem is decomposed
as shown in Figure 3. Based on the states of relays and
circuit breakers, 66 and 92 input binary channels feed
the EQUIP and CB's ANNSs, respectively. CB's is
responsible for detecting defective circuit  breakers.
EQUIP and CB's form the ANNs main group. These
ANNs input channeis contain information about which
equipment are defective and the post-fault substation
topology. No information is supplicd regarding the
faulted phase and compartment. A second group of
ANNs is used for that. The input channels for this new
group contain information of distance relays situated in
the GIS (24 = 4 lines x 3 phases x 2 (double primary
protection system)) and in a neighbor substation (12 = 2
lines x 3 phases x 2), of bus differential relays of the GIS
(12 = 4 x 3), and of pressure drop relays (107 =321/3,
only one alarm for the three phases) also situaled in the
GI1S. Therefore, there are 155 inputs to the second group
of ANNs. The number of input channels for each of
these ANNs, and the number of ANNSs for each type of
- equipment, including circuit breakers, are shown in
Figure 3.
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All the ANNs are trained considering normal operation
of the primary protection system. The basic idea behind
the problem decomposition is to reduce the number of
cascs that should be memorized if a single ANN were
employed. With the reduction on the number of cases to
be memorized by each ANN of the proposed approach,
smaller ANN architectures can be used for the same
noisc altenuation Mctor (significantly reducing the
training time).

4 Tests ,
The ANNs performance is verified using 21 historical
cases. There are 17 single contingencies and 4 multiple
contingencies.  Relay  and/or  circuit  breaker
misopcrations occur in the 21 fauits. All historical cascs
are correctly solved by the ONAMs (Kohonen nets).

Figure 4 is related to the behavior of the EQUIP ANN
with respect to the number of auxiliary input variables
(gencrated by the nonlinear transformation defined by
Eq.7). The graph verical axis shows the difference
between the largest and the second largest value of the
output channels of the trained ANN. The reliability of a
certain output signal is as large as this difference is
closer 1o 1. Figure 4 is built based on the average result
for 6 (randomiy chosen) of the 17 single faults
mentioned before. The best performance happens when
the number of auxiliary input variables is equal to 2000.
From now on, all the results from EQUIP are obtained
using 66 original input channels plus 2000 auxiliary
channels (in=2066).

MAIN ANNs
tpwt_ = —— 3 FAULTED
66 BNN ] 4 EQUIP
1 ANN > '
G |L2H CB's 3 FAULTED
1 ANN| ANN {26 CB
I |Secondary ANNs 21 [TINE 19 y LINE
4aNN| ANN COMP.
S 1 BUS B — Comp
4 ANN L JONIT 2 s UNIT.
o AnLANN 6 VATl
— 7 M > Comp
1 ANN CB U8, CB -
24 1 ANN COMP.

5 ANN

Figure 3 - Decomposition of the Fault Localization Probiem.
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Table 1 - Training Set for Identifying Fauited
Equipment.
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Figure 4 « EQUIP Performance wilh respect
to the Number of Input Variables.

For comparison, Figures 5(a) and 5(b) present lhe
performance of an associative memory based on the
Hamming distance with the same objective of EQUIP.
The faults are identified by the smallest Hamming
distances  (nearest-neighbors) belween the vector
representing the current states of circuit breakers and
relays, and the 19 stored vectors. There is one stored
vector for cach of the 18 equipment of inlerest. plus one
vector associated to the condition of non activation of the
protection syslem.

The vertical axes of the graphics show the Hanuning
distances from historical contingencies to cach stored
case, represented in the horizontal axes. In Figure 5(a),
curves rclated to 4 single contingencies (fault in bus 2,
fault in line 3, Tauit in line 4, and fault in generalor 8)
arc shown. The minimum Hamming distance correctly
indicates the faulted equipment for the 4 cases, and
consequently the number of relays and circuit breakers,
among those that serve as input to EQUIP. that have not
operated as expected.
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Figure 5 - Associative Memory based on the Hamming
Distance

A graph analogous to 5(a) is displayed in Figure 5(b).
This time, the curves are related to multiple
contingencies. Once more, the ! smallest Hamming
distances, where ! is the contingency order are correctly
associated to the faulted equipment. For example, for the
multiple contingency A2+U7+U8 the points 2, 15 and 16
represent the corresponding equipment. However, the
difference between the forth and the third smallest
Hamming distance does not appropriatcly characierize
the contingency order (previously unknown).
Analogously, in Figure 5(a) the difference between the
sccond smailest and the minimum Hamming distance
does not characterize single faults. For example, the
single fault in the generation unit 8 (Figure 5(b)} has
value 4 for this difference, while the multiple fault
Al+L3+U5+AT has value 5 for the same dilference
(sccond smallest minus mininum),
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Kohonen Distance
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Figure 6 - Kohonen Net (ONAM) Results.

The same conclusions are reached with the Euclidean
distance instead of the Hamming distance. Figures 6(a)
and 6(b) show graphics analogous to the ones presented
in Figures 5(a) and 5(b), employing the Kohonen nct
this time.

It can be observed that the contingency order is much
better defined by the Kohonen net. This becomes clear in
Figure 7. where the dispersion that characterizes the
contingency order is displayed in a normalized scale for
6 randomly sclected historical cases. As the dispersion
value 1 is the best characicrization of the contingeney
order. it is clear that the Kohonen net has a supcrior
performance  compared with  the nearest-neighbor
associative memorics based on Lhe Hamming and
Euclidean distances. '
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Figure 7 - Dispersion Factor for the Three Associalive
Memories.

Finally, Figure 8 exhibits results from one of the ANNs
belonging to the sccond group. After EQUIP has
identified bus Bl as the defective equipment. the fault
location, i.e. the defective compartment, is indicated by
the ANN responsible for Bl (bus Bl has 30
companments; 10 compartmenis/phase). Once more the
results are excellent. The training process of each ANN

lakes a few seconds in a 486-DX2 66 MHz
microcomputer.
Kohonen Distance
1,4

PoaPod "‘

A
QL "M

1 & 9 13 LA 25 2%
Theoreticai Casas - Single Contingency

—O—a0t! —{ A0 —fe 813 —D—01 !
03 4G 104 0

10 #A

»B oA

Figure 8 - Results of the ANN responsible lor Bus 31,

5 Conclusions

A new approach 1o the fault localization problem is
introduced. In a previous project the authors participated
in the development of an expert system 1o solve the same
problem for the Itaipd system [13]. The advantages of
the ANN approach are the following:

- The development time of the fault localization system
based on ANNs is about 10 times less than one required
by the expert sysiem approach. The expert sysiem
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mainienance takes more time also, because of the
nccessity of knowledge base consistency checking.

- In general. the great disadvantages of an ANN
compared with an expert system is the mapping
"opacily" of the ANN. However, for the fault localization
problem, the expert system explanation capability does
not supply relevant information that cannot be obtained
from ANNGs, too. This is because solution justification is
more useful when the protection system does not behave
as expected. In these situations, besides Tfault
localization, it is impontant that the operator be aware of
which relays and/or circuit breakers have not correctly
operated. This information can also be obtained via
ANNs, comparing the current input signal with the
stored input signal corresponding to the current output
signal.

- Nevertheless, the ANNs have been more robust than

the expert system in situations of protection system
misoperation.

Although the proposed approach has been used for 2
GIS, il can be applied to power systcm operalion cenlcrs.
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