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Abstract

This paper describes the implementation of
a genetic algorithm system able to compute
the inverse kinematics of a generic manipu-
lator (robot). Given its geometric descrip-
tion and an homogeneous transformation
describing the goal to be reached by its
end-effector, the system computes the joint
angle/displacement values with the desired

precision. The method presented good per-
formance in the case of a 6 degree of free-
dom manipulator. with a fast convergence
to the specified values. An application to
the case of redundant manipulators is also
presented, where analytical solution by tra-
ditional methods would be of high complex-
1ty.

1 Introduction

The inverse kinematics problem can be
stated as. given a position and an orien-
tation in the workspace of a manipulator.
find the set of joint values that will accom-
plish them. This problem is complex due
to the multiplicity of solutions and to the
difficulty to obtain. in the generic case. an-
alyvtical solutions to the non-linear equation
systems for six or more degrees of freedom
manipulators [11.

The approach to non-linear equation sys-
tem is. in general. a high-complexity prob-
lem. For this reason alternative method-
ologies have been widelyv researched in the
field of Artificial Intelligence. Particularly
Genetic Algorithms (GA) [2-7] have show
to be an useful tool for some complex appli-
cations such as optimization and machine
learning.

It 1s described here a syvstem which has
developed to generate the joint vajues.
given the description of a manipulator in
terms of its geometrical parameters and a
final position and orientation of the end-
effector. The values to be assumed for the
joint variable parameters are computed so
that the manipulator reaches the goal (or a
transformation) specified by the user. with
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a given precision

2 The Genetic

rit_hm

Algo-

2.1 Mapping Between Indi-
viduals and Solutions

In the GA solution for the inverse kinemat-
ics problem, individuals are sets of joint val-
ues. As strings of 1's an 0's. each of those
sets is represented by the concatenation of
substrings of equal length. each of them
corresponding to a joint value: each sub-
string is interpreted as a Gray Code num-

ber 1; the value V of a given joint is ob-
tained from
M
V=t +]
"N

where n is the integer number represented
by the substring, M is the length of the
range where the joint value can vary, N
is the greatest number representable by a
substring and I is the lower joint limit. For
example, imagine a very simple manipula-
tor composed of only three revolute joints.
each of them able to rotate from 0° to 130
Suppose that four bits are used to represent
each joint and we want to find out to which
configuration corresponds the individual

0010 1110 0101.

The first substring (from left to righti
of four bits (0010) corresponds to the first
joint, the second substring to the second
and so on. Making the conversion for the
second joint using the formula above and
taking as parameters n = 3 (0010 in Gray
Code), M = 180°, N = 15 (the largest
number represented with four bits) and 7 =
0°, we find that V = 36°. Computing V for
the other joints and using the geometrical
notation suggested by Denavit-Hartenberg
[1], we find that individual corresponds to

91 = 36°. 92 =132%¢ 93 = 729,

1Gray code was selected to avoid disruptive mu-
tations, as suggested in [2].
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2.2 Fitness Evaluation

A fitness function is chosen such that the
precision criterion selected is met. It 1s
the following: let be A the homogeneous
transformation describing the end-effector
of a manipulator M under its frame 0 when
the joints assume the values with respect
to an individual xr: let B be the homo-
geneous transformation that is desired to
be assumed by the end-effector under the
frame 0; making C = A — B and calling ¢
and j the coordinates of the C element with
the greatest absolute value among all. its is
said that « satisfv a precision p if |ei ;i < p.
Keeping in mind this definition. we use the
fitness function:

1

|C1.Ji

fla)=

2.3 About the Reproduction
and the Population

Individuals with the best fitness have a
greater probability to reproduce in GA. In
order to satisfy this paradigm. we choose
the foliowing distribution. Imagine a pop-
ulation with .V individuals in decreasing or-
der of hiness. that is, f(n — 1) = f(n) =

fin - i To select an individual to repro-
diee among the population members. we
use tie tunction

ci=rmod (rmod N +1)+1

= I\ is a random number. Let S,
wvent of the individual n to be se-
ro reproduce {that is. s(r) returns
ro o toliows that

wiere
H

'
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(_fJ
I|

1
i

= I

The probability distribution is shown in
Figure | for N = 65.

It should be pointed out that two indi-
viduals are alwayvs selected to mate. The

"first individual is straightforwardly chosen

by s(r). But.

when selecting the second.
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Figure 1: Probability distribution (vertical
axis) versus individuals in decreasing order
of fitness (horizontal axis).

it must avoided selecting the first individ-
ual. So, the first individual is skipped dur-

ing the second selection, which implies that
" s(r) works with a population smaller by one
unit.

When mating two individuals, the two
offspring generated by a crossover are
placed in the next generation. Each off-
spring still experiences a mutation, which Is
implemented by the complement of a ran-
domly selected bit.

The new generation grows until its size
becomes equal to the size of the current
generation, hence, the population held con-
stant.

Finally, we choose to follow the elitist
model as in [5]: the best fitness individ-
ual is cloned; a copy of it is always placed
in the next generation. Thus, it is ensured
that, in the running the GA. a “retreat”
never occurs in the search for a satisfactory
solution.

2.4 The Crossover Operator

When the character subsets. that are
interchanged among two individuals by
crossover, are equal. the offspring gener-
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ated are only copies of their parents. To
avoid this, the crossover operator used here
first determines what can be called an use-
ful crossover region: which delimited by the
leftmost and rightmost different bits com-
paring two strings selected for reproduc-
tion. For example. consider the pair of in-
dividuals below. where the useful crossover
region is shown underlined:

100110010010
and
1001101010%0.

Then, a crossover is made by selecting
a point between the bits belonging to the
useful crossover region, ensuring that the
offspring will be different from its parents,
as in

100110101010
e
100110010010.

The useful crossover concept helped us
to think what to do when the two individ-
uals that are about to reproduce are equal
or different only by one bit. in which case
there is no useful crossover point. To avoid
this situation one of the individuals will be
forced to undergo 1 or 2 mutations. depend-
ing if they differ by 1 or 0 bits, respectively.
Then. a useful crossover is made.

3 Results

3.1 Case Stﬁdy I

In this section the speed of the current GA
is analyzed statistically for the problem of
the inverse kinematics of a manipulator.

A single manipulator is used. composed
by three prismatic joints (perpendicular
among them and responsible for the posi-
tioning of the manipulator) and three fi-
nal revolute joints {responsible for the ori-
entation of the end effector. with coin-
cident origins and perpendicular rotation
axes).The Denavit-Hartenberg parameters
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Figure 2: Number of occurrences {vertical
axis) versus generations number (horizon-
tal axis).

for the mentioned manipulator are shown
in the table below:

1] @pmy | @ica | di | O
1 0° 0 di|l O
21 90° 0 do | 90°
3| —90° 0 dat 0
4 0° 0 0| 0,
5 —90° 0 0| 85
6| 90° 0 01 8

For simplicity, it was assumed that pris-
matic joints can vary their values continu-
ously from 0 to 1 and revolute joints have
no rotation limits. Finally, the transfor-
mation that describes the end-effector with
reference to the frame of the last link is the
identity matrix.

Wishing only to evaluate the speed of the
algorithm, we work with a little precision
of 0.1, and 6 bits were designated to rep-
resent each joint value. Therefore. our in-
dividuals were strings with length 36 over
the alphabet {0.1}. Population size was
arbitrarily assigned to 65 individuals (1 in-
dividual cloned and 32 pairs generated by
reproduction).

Each test was made executing the follow-
~ ing steps:
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Fitness X Generation
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Figure 3: Best individual fitness (vertical
axis) versus generation (horizontal axis) for
the discovery of a solution to a six degree
of freedom manipulator.

1. Random values. within the variation -

bounds specified in manipulator de-
scription. are generated to the joints.

[S)

Using the direct kinematics [1]. a

transformation A. describing the end-.

effector with reference to the frame 0
when joints assume the values gener-
ated in Step 1. is obtained. There-
fore. A surely is in the manipulator
workspace.

3. It is asked to the algorithm to supply
the joint values that reach 4 with the
specified precision.

1. The result of the test is the number g
of generations spent by the algorithm
to reach the solution.

Data from executing 1000 tests is ob-
tained. Figure 2 shows the histogram with
the frequency distribution for each test re-
sult. The average number of generations
was 19. with 3 and 193 as the minimum
and the maximum. respectively. In order
to give a notion of the real time spent.
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each test took, in average. about one hun-
dredth of a second of CPU time running on
a SPARC?2 workstation.

Figure 3 shows the fitness evolution
through generations in one test.

3.2 Case Study II: a Manip-
ulator with Redundant
Degrees of Freedom

The greater the number of joints of a ma-
nipulator, the more difficult and laborious
it is to obtain its inverse Kinematics equa-
tions. Manipulators normally have only six
joints, each one corresponding to a degree
of freedom, which is the minimum needed
to ensure a non-zero dextrous workspace.
When a manipulator has more than six de-
grees of freedom, it is called redundant. be-
cause there are redundant degrees of free-
"dom.

Even though it is hard to obtain analyti-
cally, the inverse kinematics of a redundant
manipulator can be obtained automatically
by the method presented here. That gives
manipulator independent solutions for this
problem.

In order to test this generality, it was
defined a manipulator much more complex
than the one of the previous section. hav-
ing 10 degrees of freedom and only revolute
joints. We assume that the odd link joints
do not have bounds restricting its rotations
and the even link joints can rotate in the
range of 0° to 180°. The transformation
that describes the end effector in relation to
last link frame is the identity matrix. The
manipulator is described below according
to Denavit-Hartenberg notation:
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Figure 4: Best individual fitness (vertical
axis) versus generation {horizontal axis) for
the redundant manipulator.

i Q-1 &1 d,‘ 9,‘
1 0 0 |04 6
210-90°| 0 0| 6
3190 0 |04] 6
4|1 -9, 0 0 | 84
51 —=90°| 0 |04 6
6 | =9°| 0 0 | 06
T(1=90°| 0 ;04| 6
8 1-90"| 0 0 | Os
91 —=90°| 0 {04 &
100 -90°1 0 0 | 6o

The GA worked with a precision of 0.01
and used 10 bits to represent each joint
value. A population of 63 individuals was
used. The manipulator reaches the identity
matrix, which means that the end-effector
frame reached the position and orientation
of the base frame swithin the required pre-
cision. The matrix below was produced as
the solution

1.000 —0.004¢ 0.005 0.005
0.004 1.000 0.008 0.010
—0.005 —0.008 1.000 0.009
0.000 0.000 0.000 1.000

in 179 generations. The fitness evolution
of the best individual during generations is
shown in Figure 4.
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4 Conclusions

The method presented here worked for the
tested cases, functioning as a generic eval-
nator of inverse kinematics. Although. we
consider the tests very simple and. hoping
to know more about the behavior of this
GA, it would be convenient pursue the fol-
lowing directions: verification of bit con-
vergence, variation of population size, vari-
ation of crossover rate, variation of muta-
tion rate, a study of the relations between
the bit number per joint and precision and
the use of other probability distributions
related to individual selection for reproduc-
tion.
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