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Abstract

We introduce a simple generalization of
graded response formal neurons which
presents very complex behaviour. Phase
diagrams in full parameter space are
given, showing regions with fixed point,
periodic, quasiperiodic and chaotic be-
haviour. The diagrams also represent
the possible time series implementable by
the simplest feed-forward network, a two-
input single-layer perceptron.

1 Introduction

Although convergent dynamics (relaxation to
fixed points) has been a dominant theme in arti-
ficial neural networks studies [1], oscillatory be-
haviour in network models is receiving growing
atention. Oscillatory synchronized dynamics has
been observed at different biological functional
levels, for example in the visual cortex [2] and
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sensoriomotor cortex {3]. Such behaviour has at-
tracted great attention since it seens to be an im-
portant cue for soiving the feature-binding pro-
blem (how the brain links different perceptual
signals to the same object).

This has prompted some researchers, which
have previously worked with networks of for-
mal neurons (Hopfield attractor networks with
MacCulloch-Pitts or graded response elements},
to consider with renewed interest models of
coupled oscillators [4, 5, 6], since it has not
been clear how to extend the previous Hopfield
paradigm to collective synchronization phenom-
ena.

Qther researchers, from the dynamical sys-
tems community, have proposed coupled maps
lattices (CML) as an alternative paradigm
to consider synchronization, chaos and other
spatio-temporal phenomena in biological neural
networks [7]. The most studied models use as
basic element the logistic map, perhaps because
this map is simple and well known.

In this work we propose a new formal neu-
ron which is a n-dimensional map (then, net-
works of these elements lie in the coupled maps
paradigm). However, this map is a very nat-
ural extension of the graded response neurons
popularized by Hopfield [8]. We call this map
a dynamical perceptron (DP). A network of to-
tally connected DPs constitutes a globally cou-
pled maps (GCM) system [7] which is a simple
generalization of Hopfield networks of graded re-
sponse neurons [9, 10].

This is a very preliminar study where we ex-
plore some aspects of the model. In section 2 we
introduce the dynamical perceptron map and in
section 3 we present phase diagrams in parame-
ter space for the n = 2 case. Section 4 contains
our conclusions and cutlook.
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2 The model

Neuron models have two deal with to compet-
ing constraints: biological realism and mathe-
matical tractability. Some models (for exam-
ple, Hodgkin-Huxley neuron) stress the first one
and others (formal neurons) achieve the sec-
ond one only throught dramatic simplifications.
Hodgkin-Huxley neurons present a varied reper-
toire of dynamical behaviours depending on its
parameter values, but are not easy to study ana-
lytically or even computationally. On the other
hand formal neurons most considered in the li-
terature are structurally simple but have no in-
trinsic dynamics.

We adopt the physicist approach where, for
studing the necessary (in contrast with the suffi-
cient) requisites for the appearance of some col-
lective behaviour in networks, the simplest ele-
ments with the simplest interactions should be
first considered. But we want to propose a for-
mal neuron which, althought structurally sim-
ple, presents complex dynamical behaviour at
least quelitatively similar to real neurons. Un-
like other proposals, however, our model stays
within the formal neuron paradigm popularized
by Hopfield, since it is a simple generalization of
the graded response neuron widely used in the
literature.

The two most considered formal neurons are
the McCulloch-Pitts neuron (a binary variable
like an Ising spin) and the graded response neu-
ron [8]. The state variable of the graded response
neuron is devised to describe not the single ac-
tion potentials (which are all-or-none events) but
the average frequency of these spikes. This aver-
age frequency we will call the activity V'(¢) of the
neuron. The neuron activity response to exter-
nal inputs can be approximated by a sigmoidal
curve. This is one of the reasons behind the po-
pular choice of the hiperbolic tangent as the for-
mal neuron transfer function [1].

Consider a time series of this average firing
activity (how this time series can be obtained is
not our concern now). Qur task will be to find
a simple model which describes such time series.
A simple and general approach to this modelling
problem, which we will follow here, is to use a
feed-forward artificial neural network (FANN) to
emulate the system behaviour [1].
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Figure 1: a) single-layer perceptron; b) dynami-
cal perceptron with n = 2.

It is well known that FANNs with one layer
of hidden units can approximate any continu-
ous function. Then, we can in principle to train
a feed-forward net to reproduce the biological
neuron time series (a somewhat self-refferential
application of neural nets!). Once we find such
FANN (which will be a formal neuron model)
we can couple various of them to form a large
net of such formal neurons. At the end of this
process we will achieve a large, complicated and
theoretically intractable system.

Well, let's simplify our task. We ask for the
simplest feedforward net which gqualitatively mo-
dels the time series. By qualitatively we mean a
very weak requeriment: we want a formal neuron
which presents, like biological neurons, not only
graded response but also oscillatory behaviour in
certain circumstances.

A single-layer perceptron (a feedforward net
without hidden units) can do this and has the
advantage of being a very well studied system
(see figure 1a). The perceptron learns the time
series {S(t)} by using ezamples, that is, input-
output pairs (X;,Y:). The desired output is the
value of the time series at time ¢, ¥; = S(¢). The
input may be the previous n values of the time
series X; = {S(t — 1),...,5(t = n)}. Then, the
examples are generated simply by slipping a win-
dow of lenght n over the data. The perceptron
output will be given by (1]

140) g(W.X;-96)

g (Z W,S(t - 1) —9) oo
r=1

where W = {W1,...,W,} is the weight vector
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which defines the perceptron, the constant 4 is
the so called dias term and g(z) is a non-linear
continuous sigmoidal function.

After the trainning over a time series (remem-
ber that no perfect reprodution is required) we
can create a dynamical model from the percep-
tron so obtained (we will call this system a dy-
namical perceptron, see figure 1b). To do this we
simply send the perceptron output to the last in-
put node and transfer the value present at each
input node to its left neighbour (the extreme left
value being discarded). That is, the dynamical
perceptron output will be given by the following
n-order recurrence equation

V(t)=g (f: W,V (t—1)— e) (2)

=1

We will specialize the transfer functions g(z)
to the family of sigmoidal functions
g(z) = ¢1 + c2 tanh(yz) (3)
where ¢y and cp are constants. The usual sigmoid
with image in the [0, 1] interval is obtained with
¢1 = ¢z = 1/2. The hiperbolic tangent, of course,
is given by ¢; = 0 and ¢; = 1. All these maps are
topologicaly conjugated to the tanh one throught
a change of variables V/ = (V — ¢1)/co giving

n
V/(t) = tanh [7’ (Z wWVi(t—71) - 9')] (4)
=1
with the transformed variables
¥ = ez,

We will concentrate our attention in the sim-
plest non-trivial dynamical perceptron, that is,
the one with n = 2. We also note that a dynam-
ical perceptron with n = 1 has been proposed as
a formal neuron by Pasemann [11]. However, the
n = 1 model has very poor behaviour, exhibit-
ing only fixed points or two-cycle as attractors.
Networks of such neurons have been considered
by statistical physiscists {9].

The 2-D map, instead, presents very rich be-
haviour (fixed points, limit cycles, quasiperiodic
and chaotic attractors, coexisting attractors etc.)
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which can be used to mimic some known be-
haviours of real neurons. It also allows the mod-
elling of time-dependent neuron responses (ha-
bituation, sensitization) because the internal pa-
rameters W, and not only the external synapses,

can suffer a learning process.

We write the recurrence equation for the 2-
dimensional DP as

V(t)ztm[V(t—l)—ng(t—m+H] (6)
where
1 _ =W T
_T'WI, Wl’ H_'I 91 (7)

where we have allowed the possibility of an ex-
ternal input I and v/ and & are given by eq. (5).
This is the simplest neural network model of a
dynamical system and the full phase diagram in
the variables (T, &, H) gives all the possible time
series implementable by this architecture.

The choice of these variables is motivated by
convenience in the visualization of the phase di-
agram as well to connect the 2-D dynamical per-
ceptron with previous literature. This map (for
H = 0) has been studied in the contex of statisti-
cal mechanics models of magnetically modulated
materials by Yokoi, Oliveira and Salinas [12],
where V(t) describes the magnetization on the
tth layer of an Ising model with competing inter-
actions in a Bethe lattice. Recently, Yokoi and,
one of us (MHRT') have studied the map for con-
stant and non-zero H [13].

3 DPhase Diagrams

The first diagram (fig. 2, 3) refers to the dyna-
mical behaviours in the plane T vs & for g(z) =
tanh(z). The main periodic phases are shown
and their labels ¢/27 = P/Q denote their peri-
ods @ (the number of points after which the se-
ries repeats) and the number of crests P within
a period (g is the ‘modulated phase wave num-
ber’). Quasiperiodic phases have ¢/27 irrational.
In the region 0 there are only trivial fixed points.
In the region 1 two fixed points coexist for all
values of T and &, and the neuron states are the
solutions of V = tanh((1 ~ «)V/T"). The conver-
gence to each fixed point depends on the initial
conditions V(¢ = 0) and V(¢ = 1). Phase 1/2 is
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Figure 2: Global phase diagram in the (T «,0)
plane.

20 ] T T
o Vs
vr ars 7
16
T 40 v k787
14
110
Q5 1 -
10 o
%
Qo P ;
Qo as 10 15 20
K

Figure 3: Main periodic phases in the first quad-
rant. The diagram on the third quadrant is sym-
metric to this one, with a serie (Vy, V2, V3, Vs...)
being changed to (V1, —V2, V3, —V4,...).

a two-cycles and the more complicated phase 2/9
is depicted as an example (fig. 4). Quasiperiodic
phases and other periodic phases lie between the
grey regions. Details concerning the determina-
tion of these lines are given in [13].

In the regions 1 + 1/2 a fixed point and
a two-cycle coexists. More interesting is
the modulated-fixed point coexistence region
(1+MOD) where periodic, quasiperiodic and
chaotic attractors coexists {12, 13]. The same
occurs at the coexistence region 1/24MOD.

In figures 5, 6 and 7 we show diagrams in the
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Figure 4: Example of a 2/9 phase. The series

repeat each interval of 9 points, but there are 2

oscillations in the interval. The ‘average wave
lenght’ is A = 9/2.
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plane T vs H, which are the most interesting for
our neuron modelling purpose since they give the
neuron response to external (constant) input I
The stability lines for the O0-phase are given by

HE = (p—- )MZ + Ttanh ' ME  (8)
with
N T
ME = H41- , (p<1/2) (9)
l—x
+ T
ME = ®1-=, (#>1/2) (10

Five general types of behaviour are encoun-
tered in these diagrams. For example, a neuron
with sigmoid transfer function (c1 = ¢2 = 1/2)
and delayed self-coupling x = 0.7 (fig.6), with
gain and threshold situated at point A will repre-
sent a formal neuron with resting near zero activ-
ity which, under external input, will show graded
response. Neuron B shows, at intermediate ex-
ternal input level, oscillatory behaviour. Neuron
C is a natural oscillator, a pacemaker with pe-
riodic or quasiperiodic behaviour even without
external input. Neuron D has a very interest-
ing ‘bistable’ behaviour. It has two coexisting
attractors, one with low activity and other with
high activity. An external instantaneous pertur-
bation can put the neuron in the active state
(figure 8). Neuron E is bistable at intermediate
levels of external input I. Behaviours of type B
and D remember some findings on thalamic neu-
rons [14].

Detailed diagrams for the modulated regions
with different values of x are given in ref. [13].
As an example of the complex nature of these re-
gions we show the diagram for x = 1 (figure 9).
In the coexistence region 0+MOD (inferior re-
gion of the bubble) we can also find chaotic at-
tractors like the presented in figure 10.

4 Outlook and Conclusions

How does a network of DPs relates to the attrac-
tor (Hopfield-like) networks studied by the sta-
tistical physicists? Well, the most studied net-
work [9, 10] is a fully connected set of N for-
mal neurons without self-couplings and thresh-
olds, with the (parallel) neuron dynamics given
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Figure 5: Stability limits for the 0 phase for x =
0.3. In the region 1 coexists a phase parallel to
H and other with smaller amplitude antiparallel

to H.
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Figure 6: & = 0.7: Modulated phases appear in-
side the bubble. A, B, C, D and E represent neu-
ron models with qualitatively different dynami-
cal responses.
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Figure 71 & = 1.5. Modulated phases appear
inside the bubble. There is no phase 1 for k > 1.

_24_

1° Congresso Brasileiro de Redes Neurais

10 T T 1
H IR
. Q
10 R
AV
Vit
0.5}
0.0 i |
0 100 200
Time

Figure 8: Plots of the activity V(¢) and external
input I(2) for a neuron of type D.
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Figure 10: Strange attractor with largest Lya-
punov exponent A1 = 0.12 found at the point
(T'=0.15,x=1,H = (0.235).
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by

N
Vi(#) = taah ['rz JiVi(t ~ 1)} (11)

=1

with J; = 0. A phase diagram showing the re-
cuperation (content-adressable memory), para-
magnetic and spin glass phases has been ob-
tained by Shiino e Fukai [10] using the replica
method. This phase diagram is very similar to
the obtained by Amit et. al. [1] for the Hopfield
network composed of McCulloch-Pitts neurons.
The network presents only fixed points to be in-
dentified with stored mermories.

A network with self-couplings J;; = Wy has
also been considered, the neuron dynamics given
by

Vi(t)

N
tanh I:'y ( Z JijVi(t—1)
oLy

+  WuVi(t - 1))] (12)

A condition of stability for the fixed point
phase was determined by Marcus and Wester-
velt [9]. If this condition is not satisfied a limit
cycle of period two appear. :

A network of 2-D dynamical perceptrons will
have the dynamics given by

Vi(t)

tanh

N
¥ ( Y JyVi-1)
J=1,554
+  WyuVi(t - 1)+ Wy Vi(t - 2))}13)

This network cannot be analysed by the usual
statistical mechanics approach, being a globally
coupled maps system of the type studied (al-
most numerically) by the dynamical systems co-
munity. The ‘easy’ ferromagnetic case with all
Jij = J > 0 should be studied first, where
global synchronization phenomena may appear.
It seems also interesting to study a system with
well chosen couplings (say Hebb synapses) de-
signed to store various synchronized attractors.
The analysis of such systems is a future enter-
prise. ‘

In conclusion, the phase diagrams in the
(T, k, H)-space represent all the time series im-
plementable by a two input single-layer percep-
tron. We think that the richness of dynamical
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behaviours encountered has pedagogical value
since gives us some feeling about the much more
varied time series implementable by more com-
plex networks. To our knowledge these are the
first phase diagrams in coupling space for the be-
haviour of a feedforward neural network turned
a dynamical system.

Our proposal is to represent neurons by these
two-parameter dynamical perceptrons. By this
slight extension of the graded response formal
neuron we can model qualitatively various dy-
namical behaviours of biological neurons. Net-
works of such discret oscillator neurons enables
the study of collective synchronization phenom-
ena, which will be reported elsewhere.
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