1° Congresso Brasileiro de Redes Neurais

Escola Federal d2 Engennaria de ltajuba
lrajuba. 24 a 27 de outubro de 196+

HENNS: Heterogeneous Environment Neural Network Simulator ~

Wagner Meira Junior’

Departamento de Ciéncia da Computagao
- UFMG
Caixa Postal 702 — Belo Horizonte — MG -
Brazil — CEP 30.161-970
Tel; +55.31.443-4088 Fax:
+355.31.443-4352

Kev-Words: Neural Networks. Simulation.
Heterogeneous and parallel processing

Abstract

The simulation of artificial neural networks
(ANN) is a hard task due to two reasons: the
complexity of ANN specification and the compu-
tational cost associated. The first problem has
been addressed by some simulators by allowing
specification of ANNs. Paralle] processing has
been recognized as a solution for the second prob-
lem. This work presents a neural network simu-
lation strategv that runms in a heterogeneous en-
vironment. that combines different types of par-
allel processors and servers. This strategyv is im-
plemented in the HENNS, an environment that
aliows the user to describe and simulate various
peural network models in paraliel and heteroge-
neous environments. The results show that the
use of heterogeneity is better than the use of par-
allel architectures alone.

1 Introduction

Artificial neural networks are models based in the
human brain. which works via the interaction of
a great number of appropriately interconnected
computationally simpie nodes. which mimics the
behavior that is believed of the neurons. A neural

*This work was sponsored by FAPEMIG (proc. TEC
1113/901 and CNPq (proc. 502353/931-00NV)

i meiradecs.rochesier.edu

‘senna@dcc.uimg. br

‘mlbeddec.uime.br

André Luiz de Senna *

Marcio Luiz Bunte de Carvalho §

network stores its information on the weights asso-
ciated to the connections between pairs of nodes
and in the activation level of each node. Using
simple algorithms. neural systems are reliable and
capable of dealing with a great amounl of infor-
mation. However. their simulation shows to be 2
hard task mainly due to twg reasons: tne func-
tional complexity of the whole and its high com-
puiational cost.

The implementation of the models has been fa-
cilitated by the development of various general-use
neural network simulators. These tools allows the
simulation of neural networks providing model's
fiexibility and functioning abstraction.

On the other hand. more effictent neural net-
work simulators alternatives are found in the Lit-
erature. for example. using hardware implemen-
ration and/or parallelism. Hardware implemen-
tations are the jastest. but has smaller flexibil-
itv: parailel implementations are less efficient but
more fexible. a more suitable approach for sclen-
tific investigation.

This work presents HENNS. a software neural
network simulator intended to run on an heteroge-
neous and parallel environments. This svstem pro-
vides tools that enables the user define the neural
network model to be simulated and various param-
eters that specifv the simulation itsel{, From this
specification. the simulator generates an appropri-
ate C source-code. compiles and links it building
an executable code that performs the simulation.

This paper has six sections: this iz the first.
an introduction: the second reviews some previ-
ous work in sequential and parallel neural network
simulation: section three describes tne comput-
ing enviroment used: the fourth and fifth sections
presents HENNS and some results acnieved witt:
its utilization: the conclusions and future work are
presented in the last section.

~125-

Conselho Nacional de Redes Neurais

2 Neural Network Simulators

2.1 Sequential Simulators

The sequential neural network simulators in the
literature can be divided up into two classes. The
first simulators are batch-oriented; a neural modei
is completely specified and then all the simulation
is performed: in this case, the user can not in-
teract with the simulation in any way. PABLO
[Perkel, 1976] and BOSS [Wittie. 1978) are exam-
ples of these simulators.

The second class is the interactive simulators.
which enables the user to modify (and/or visu-
alize graphically) the simulation while it is being
performed. In these simulators. the network to be
simulated is specified via a description language.
which is either compiled or interpreted to perform
the simulation. In the case were graphical inter-
face environment is used, primitives that allows
changes and verification of the simulation events
are commonly provided. In this class we can cite
ISCON [Small et al.. 1983]. GENESIS, Asprin,
MIRRORS/II [D'Autrechy et al., 1988], SFINX
[Skrzypek and Mesrobian, 1992] and PLANET
[Miyata, 1991]. Although they work similarly,
these simulators differ from each other in the com-
plexity and flexibility in specifving the neural net-
work to be simulated; we find from analogical to
particular model simulators. However. all of them
have the common goal of joining abstraction with
flexibility of constructing neural networks. A more
complete reference on these simulators and their
features can be found in [Meira Jr., 1993b].

2.2 Parallel Simulations

The inherent parallelism of neural networks has
motivated their simulation on parallel machines.
MIMD and SIMD machines are the most popular
target architectures. In each of these architectures
we find different problems to be addressed. as it
will be shown below.

Parallel implementations explore the processing
independence of the neural networks nodes, i.e. all
nodes that has all its necessary inputs may start
its processing phase. The major problem in these
simulations is how establish efficient communica-
tion among the nodes.

In a MIMD architecture this problem is harder:
to achieve efficiency. we must also guarantee load

1° Congresso Brasileiro de Redes Neurais

balance amongst the processes and the correct
arrival sequence of the messages exchanged be-
tween the asynchronous processors. We find sev-
eral proposals in the literature. which have been
implemented in various architectures such Intel
iPSC Hypercube. BBN Butterfly. SBC and mainly
Transputers. We can conclude that the most im-
portant factor in a MIMD implementation is the
communication costs. i.e. the interconnection pat-
tern of the network to be simulated is more signi-
ficative than its local processing.

The use of SIMD architectures in neural net-
work simulation presents new variables. An
important one is the architectural restrictions
of these machines. Examining related works.
where implementations on machines such Zephyr.
DAP, CM-2 and Hughes SCAP are described.
we can conclude that SIMD implementations
are extremely machine dependent. in spite
of some general mapping strategy proposed
[Salles et al., 1992}.

A interesting proposal is given by Nordstron
[Nordstrén and Svensson. 1992], who affirms that
the MIMSIMD architectures are the most suitable
for neural network simulation. His proposal and
the- problems experienced during the simulation
of neural networks on conventional parallel archi-
tectures has motivated us to investigate the use
of heterogeneous architectures in the simulating
neural networks.

3 The Computing Environment

In order to verify the suitability of the neural
networks simulation in distributed and hetero-
geneous processing environments, we used two
groups of resources available at DCC-UFMG: (i} a
Sun workstation network with the PVM package:
(ii) the Zephyr Wavetracer SIMD machine: they
are described below:

PVM: PVM
(Parallel Virtual Machine)[Geist et al.. 1993]
is a software package that allows an heteroge-
neous network of parallel and serial comput-
ers to appear as a single concurrent computa-
tional resource. PVM consists of two parts: a
daemon process that any user can install on
a machine. and a user library that contains

~126-

Conselho Nacional de Redes Neurais

& paramali0s: # eniradas: f » saies: [slalus:

Figure 1: xHENNS initial screen

routines for initiating processes on other ma-
chines, for communicating between processes,
and changing the configuration of machines.

Zephyr-Wavetracer: the Zephyr Wavetracer
(WT) is a 8,192 1-bit processors SIMD ma-
chine. Each processor have two kinds of mem-
ory: (i) an internal cache memory of 236
bytes; (ii) an external one of 32 kbytes. An-
other interesting feature is that the number of
active processors is not limited to the quan-
tity of physical processors, because it is al-
jowed to create virtual processors. This ma-
chine works as a Sun co-processor and there
is an ANSI C language extension, the multiC,
to access and use it. So. the executable code
is executed sequentially in the host (a Sun
workstation) and, when a multiC instruction
is found, it is performed in the Wavetracer.

4 HENNS

HENNS [Meirg Jr., 1993b. Meira Jr., 1993a), de-
veloped at DCC-UFMG 1, is a neural network sim-
ulator in which the user can define topologies and
neural network models arbitrarilyy. HENNS pro-
vide also means of specifving simulation parame-
ters, such as the computing environment: sequen-
tial, distributed and vectorized. In the sequen-
tial form, all of the network parts are combined
in a single executable program. In the distributed
and vectorized executions. the network and each

'ENNS is available via enonymous ftp at dec.ufmg.br

1° Congresso Brasileiro de Redes Neurais

of its components that must be simulated by itself
corresponds to a PVM process. The vectorized
programs uses the Zephyr-Wavetracer primitives.
In the distributed manner if operation, each of
its sequential processes are implemented as PVM
processes.

The development of neural applications using
HENNS can be divided into two phases: applica-
tion and neural network. The application works
as a front-end of the network and can be freely
modified by the user. The network can be seen as
a “black—box” which receives inputs and param-
eters and returns outputs and parameters. The
protocol between application and network is sim-
ple and implemented via PVM messages.

Included in the HENNS package there are
two examples of application software. the first
one. called cHENNS, is a ascii based interface to
HENNS generated neural networks; the second.
XHENNS has the same functionality of the former
with a xWindows interface. The initial screen of
the later can be seen in the Figure 1.

The neural network implementation using
HENNS, can be divided in three steps: (i) def-
initions of the neural architecture and its simula-
tion using the description language of HENNS:
(ii) run HENNS to read the definitions and gen-
erate a C code that performs the simulation; (iiii
compile and execute this code.

Following. each of these steps will be described
in details:

4.1 Neural Architecture Definition

In this step. the user specifies his simulation using
HENNS’ description language. This specification
is made in two levels:

Structural: in the HENNS, a neural network is
defined as an hierarchical structure of three
Jevels: (i) Network: represents the neural
network as a processing unit for the exter-

nal tasks and serves as basis of the var-
jous cluster’s functioning; (ii) Cluster: it
is an abstraction that join similar nodes.
which have the same input and output con-
nections and work similarly. In the back-
propagation [Rumelhart et al., 1986] neural
network model. for example. each level of the
network may be seen as a cluster: (1ii) Node:

-127-

Conselho Nacional de Redes Neurais

it's the smallest functional unit of a neural
network, the neuron.

To completely define the structure, one needs
also to define the connections between the
network parts. In HENNS. these connections
can be between the network and some cluster
or between clusters. It is not permitted intra-
clusters connections due to efficiency and par-
allelization considerations. Because cluster
is a abstraction proposed by HENNS, this
should not cause any problem.

Functional: the definition of the simulation be-
havior is made in a procedural way. The neu-
ral network (and the other hierarchy parts)
may work based on various operation modes,
each defined as a list of commands drawn
from a set of primitives that deal with var-
ious aspects, some of them are:

o Protocol: they implement easy exchange
of information between the network hier-
archical parts, independently of the ar-
chitecture and machine under use;

o Control Flow: these are commands that
control the execution flow: while e
if, that makes the procedural language
more powerful and flexible;

o User-defined functions: any function re-
lated to the specific internal behavior
of each network part in the various op-
eration modes are defined by the user.
This definition is made using a target
machine language, to access HENNS
hierarchical data structures and library
functions.

4.2 Source-code Generation

In this step. based on the specification files. vari-
ous information are generated:

Definition: constants and other network specifi-
cation definitions;

Initialization: functions that performs network
components data and protocol initializations:

Operation: functions that implement the net-
work work:

1° Congresso Brasileiro de Redes Neurais

Compilation: specifications and compilation de-
pendencies of the network and its compo-
nents, described using the syntax of a Unix
program called make;

Simulation: a Unix shell script with the steps
necessary for the execution: daemons instan-
tiation, compilation and the execution of the
simulation.

4.3 Source-code Compilation and Exe-

cution

In order to compile the generated application. the
Unix program make is invoked and evervthing is
performed automatically: the initialization and
operation source-codes generated are compiled
and linked to the HENNS library. If the simula-
tion is to be performed sequentially. only one exe-
cutable code is generated. If a network with three
clusters should be performed distributed, four ex-
ecutable codes are generated: one for the network
and omne for each cluster. If there are vectorized
processing, the multiC compiler is used and an exe-
cutable is generated as it is done in the distributed
way. :

The simulation is the execution of the network
code. When the simulation is distributed. the net-
work program initiates the others, performing all
the initialization and termination control of the
“child" processes.

5 Results

The results presented next are part of an investi-
gation of the most suitable architecture for neural
network simulation in the DCC-UFMG hardware
environment. In order to perform the measures,
a back-propagation neural network was specified
and his topological characteristics changed during
the various tests. '

5.1 Test Environment

The tests presented below were performed in the
Sun network of the DCC: the SIMD machine
Zephyr-Wavetracer was attached to a Sun Sparc
Station 2 also connected to the DCC network. To
perform the tests presented below. we used a back-
propagation neural network with three levels as
described in [Hertz et al.. 1991]. Concerning to

-128-

Conselho Nacional de Redes Neurais

Sequential X Distributed
Variating Cluster Size

T IR T b I |
1A184 R Sey
i Lhsi
8152
4096
s
T 2048
1024
512 e
56 P H Pl
100000 TG T 1H0600000

“Tsme (rIcToseCOnds |

Figure 2: Sequential x Distributed

machine configurations we have used the follow-
ing:

Sequential: the simulation was performed in
only one workstation. It was used two models
of SUNs: Sparc Station 2 and Sparc Statio
SLC, -

Distributed: The clusters or parts of clusters are
executed in SLC machines, one per machine:

Vectorized: It was performed by two processes
in the WT host machine: (i) the vectorized
cluster to be simulated: (ii) an executable
that performs the remaining parts of the net-
work sequentiallv. This differentiation was
necessary due to the fact that the programing
language used in vectorized implementation
{multiC) is different from the one used by the
sequential;

Heterogeneous(distributed/vectorized):
in these simulations, it was used three kinds
of executable code-machine pair: (i) the net-
work program executed in a Sparc 2; (ii) the
vectorized cluster performed in the WT host:
(iii) the other clusters performed in SLC ma-
chines. one per machine.

Below. we will present a comparison among the
various machine configurations, varving some of
the topological parameters of the network simu-
lated. A more complete set of tests can be seen
in {Meira Jr.. 1993b]. Although. we won’t present
any result using a pure vectorized configuration.
it is described for completeness purpose.

1° Congresso Brasileiro de Redes Neurais

Heterogeneous X Distributed
Variating Cluster Size

A Punice Sure

Time |microscconds)

" Figure 3: Heterogeneous x Distributed

5.2 Distributed x Sequential

In this test we verify the suitability of distributed
processing to simulate clusters with various num-
ber of nodes. So we create neural networks where
the input and output levels have always the same
number and variate the length of the hidden level.
Both the simulations, sequential and distributed.
are performed in Suns SLC.

The plot of Figure 2 shows the results for clus-
ters that varies from 256 to 16384 nodes. The
distributed executions were clearly better than the
sequential ones. The speedup varies from 10% (for
the smallest cluster) to 70% (for the biggest clus-
ter). this can be explained by the overhead of the
communication between the processes.

5.3 Distributed x Heterogeneous

After we verified that the distributed and vec-
torized simulations are better than the sequential
ones. we investigates the gain due to the using of
both solutions simultaneously. The WT host ma-
chine is used as a node in a distributed simulation.
configuring an heterogeneous environment.

In the graph of Figure 3 we can see the perfor-
mance of the heterogeneous and distributed simu-
lation. The heterogeneous simulations was alwavs
better with the speedup varving from 20 1o 80%
with the size of the hidden cluster.

6 Conclusion and Future Work

This works has presented a strategy for simulating
neural networks in heterogeneous environments

~-129-

Conselho Nacional de Redes Neurais

and an ANN simulator that adopted this strategy,
HENNS.

Using the Sun network of DCC-UFMG and the
SIMD machine Zephyr-Wavetracer. we verified the
suitability of distributed and vectorized simula-
tions in that computing environment, followed by
the analvsis of our strategy. In this analysis, we
noted that the proposed strategy allows perfor-
mance enhancements proportional to the size of
the network simulated. This can be explained by
communication costs associated to these imple-
mentations. Quantitatively, the distributed sim-
ulation time was 80% greater than the heteroge-
neous time in the best case. If we consider se-
quential and heterogeneous time. this difference
increases up to an order of magnitude.

Future work includes simulation of other ANNs
models and the extension of HENNS for different
computing environments. The enhancement of the
application tools is also a goal. allowing the user
not only simulates his neural network. but also
visualize and tune the executions on the fly.

References

[D’Autrechy et al., 1988] D’Autrechy, C. L.. Reg-
gia, J. A.. Sutton, G. C.. and Goodall. 5. M.
(1988). A general-purpose simulation environ-
ment for developing connectionist models. Sim-
ulation, 31(1).

[Geist et al., 1993} Geist, A., Benguelim, A..
Dongarra, J.. Jiang, W.. Manchek. R., and
Sunderam. V. (1993). PVM 3.0 User’s Guide
and Reference Manual, ORNL/TM-12187 Oak
Ridge National Laboratory.

[Hertz et al.. 1991) Hertz, J.. Krogh. A.. and
Palmer. R. G. (1991). Introduction to the The-
ory of Neural Computation, volume 1 of Com-

putation and neural systems series. Allan M.
Wylde.

[Meira Jr.. 1993a] Meira Jr.. W. (1993a). Guia
do usuario e manual de referéncia do HENNS.
Technical Report RT013/93. DCC-UFMG.

[Meira Jr.. 1993b] Meira Jr.. W. {1993b}. Im-
plementacio de redes neuronais em ambientes
paralelos. Master’s thesis. Departamento de

1° Congresso Brasileiro de Redes Neurais

Ciéncia da Computagao - UFMG. Belo Hori-

zonte, MG.

[Mivata, 1991] Mivata. Y. {1991). A ['ser’s Guide
to PlaNet Version 5.6. University of Colorado
at Boulder.

[Nordstrén and Svensson, 1992]
Nordstrén, T. and Svensson, B. (1992). Using
and designing massively parallel computers for
artificial neural networks. Journal of Parallel
and Distributed Computing. (14):260 — 285.

[Perkel, 1976] Perkel, D. H. (1976). A computer
program for simulating a network of interacting
neurons. Computers and Biomedical Research.
(9):31 - 43.

[Rumelhart et al.. 1986] Rumelhart. D. E.., Hin-
ton, G. E., and Williams. R. J. (1980). Parallel
Distributed Processing: Ezplorations in the Mi-
crostructure of Cognition. volume 1. MIT Press,
Cambridge, MA. N

[Salles et al.. 1992]
Salles. J., Vieira. M., Meira Jr.. W.. and Car-
valho, M. L. B. (1992). Implementacéo de redes
neuronais em maquinas simd. In 1" Simpdsio
Brasileiro de Arquiteturas de Computadores ¢
Processamento de Alto Desempenho. pages 347
- 361.

[Skrzypek and Mesrobian. 1992]
Skrzypek. J. and Mesrobian. E. (1992). UCLA-
SFINX - Simulating Structure and Function in
Neural Connections. Machine Perception Lab..
UCLA.

(Small et al., 1983) Small. S. L.. Shastri. L.
Brucks. M. L.. lkaufman. S.. Cottrell. G. W..
and Addanki. S. (1983). Iscon: A network con-
struction aid and simulator for connectionist
models. Technicali Report TR 109. University
of Rochester.

[Wittie. 1978] Wittie, .. D. (1978). Large-scale
simulation of brain corticies. Simulation. 3(31).

-130-

