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Abstract. In this paper. it is extended the Judd’s resuits with respect to learning computational com-

plexity of weighted neural models o include the weightless neural modeis,

It is shown. for exampls.

that also is NP-complete any algorithm that aims to {cad any performable training set in any col-
ceivable weightless neural network. It is also conjectured that a specific architecture class. pyramadai
architectures (for the weightless models). may be a way (o overcome the NP-completeness of iearning.

1 Introduction

One of the mast important features of neural networks*
is their ability to generalize to new situations. Once
trained. a network will compute an input/output map-
ping which. if the training data was representauve ¢-
nough. will closely match the unknown rule which pro-
duced the original data.

The work in this paper deals with basic theoretical
questions regarding learning by neural networks, it was
inspired by Judd ({7]) who shows the following problem
to be NP-complete:

“Given a neural network and a set of train-
ing examples. does there exist a set of edge
weights for the network so that the network
produces the correct output for all training
examples?”

this problem is called the loading problem.

Judd developed his work based on McCulloch-
Pitis (MPC) neurons ([10]}. MCP peurons are im-
plemented by threshold logic gates. where variabie in-
put weights play a role analogous to that of synapses
in natural neurons. The modeis used in this paper s
based on a different model called the weightless neu-
ron model ([1i). The weightiess model is based on
the simple operations of look-up table which is best
implemented by random access memory [RAM and
where knowledge is directly “stored” in the memc-
ty (the iook-up tables: of the nodes during learming.
Some aavantages of this model are: (111t 1s straighi-
forward 10 tmplement in hardware: (2) learming ts not

}in thus paper. the term “neuralnetwork” aiwavs means feed-
forward onss wnich nave binary inputs/outputs and the jeamuns
paradigm analyzed i Lhe supervised iearmng.

unreasonably slow and {31 error-correctlon requires on-
Iy global success signal ([9]).

It is tmportant to point out that there is no study
on learning complexity of weightiess models. being this
paper the first effort towards putting these modeis in
the context of learning computational complexity, An-
other question is that this kind of study can heip to
design neural networks. because it identifies underly-
ing problems in learning and tries to find ways to avoid
tnem. Thus. these can vield rechniques to neural net-
work design.

Some background on computational complexiry
is necessary for a better understanding of this work.
Herz. whenever it is said polynomial time 1t 1s meant
poivnomial tume in the length of any binary encoding
of tne input and probiems approached here are aiways
decision problems ([3}i.

A problem is in class P when there is 2 polvnomial
time algorithm which solves tne problem. A probiem
is 1n NP when a “guessed” solution for tne probiem
can be verified in poiynomial time. A problem iset} H
1¢ NP-hard iff for each problem tset} Q in NP. there
15 a polvnomial time transformation fg from Q to H.
such that given any instance 1 of Q. 1 £ Q iff folll
Z H. Then. a probiem is NP-complete iff it is poth
NP and NP-hard. Examples of NP-complete probien=
are: tne Booiean satisfability problem. the traveiing
salesperson probleni. the set-spiitting problen:.

The remainder of this paper is divided into tores
sections. Section ¥ presents the weightless neurai moti-
eis and their main characterisucs. Tne main section of
this work is Section 3. which puts the weightiess mod-
eis 10 the context of computational complexii; and
Judd's work 1s used as base to discussion (7 . U
al1so studieq issues regarding loading pyramidai arciy-
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tectures, and it is made a parallel between theoretical
and empirical results in complexity of learning. To de-
velop this parallel are the backpropagation (weighted
models) and pyramidal (weightless models) architec-
tures used. Finally. the last section summarize the
discussion in support to our conjecture.

2 Weightless Neural Models

Definition 1 A RAM Neural Network is an arrange-
ment of a finite number of neurons in any number of
layers, in which the neurons are RAM {Random Ac-
cess Memory) nodes. A RAM node is represented in
the Figure 1.
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Figure 1: RAM node

The input to each neuron may be external input
or outputs of neurons from another layer. The data
out may be 0 or 1. The set of connections is fixed and
there are no weights in such nets. Instead. the function
performed by the neuron is determined by the contents
of the RAM - its output is the value contained at the
activated memory location. There are 92" different
functions which can be performed on N address lines
and these correspond exactly to the 9N states that the
RAM can be in. that is, a single RAM can compute
any Boolean function of its inputs.

Seeing a RAM node as truth table (look-up table)
the output of the RAM node is described by Equation

(1) below:
[0 dfchl=0 (U
=11 ifclpl=t

where C[p] is the contents of the address position as-
soclated with the input pattern p.
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Definition 2 A PLN Neural Network is an ar-
rangement of a finite number of neurons in any number
of layers, in which the neurons are PLN (Probabilistic
Logic Node) nodes.

A PLN node differs from a RAM node in the sense
that a 2-bit number (rather than a single bit) is now
stored at the addressed memory location. The con-
tents of this location (C[p]) can be 0, 1, or # , and it
represents one of three possibilities (0, 1, 0.5, respec-
tively) of firing (i.e. generating a 1) at the output.
The output of the PLN nodes described by Equation
{2) below:

0 if Clpl=0
r=¢ 1 if Clpl=1 (2)
random(0,1) if Clpl=1u

where Clp] is the contents of address position associ-
ated with the input pattern p and random({0,1) is a
random function that generates zeros and ones with
the same probability.

Besides the RAM and PLN nodes there are many
variations and extensions of the RAM node {e.g., MPLN
([11]), cut-point ((9]), GSN ([4]), called RAM-based n-
odes.

Front
Layer

Input Sutput

Figure 2: Example of a pyramidal architecture. The
shaded and outlined area surrounding output nodes X
and Y encompass all the nodes in each support cone.
Note that each support cone correspond to an individ-
ual pyramid in the architecture.

Although there are several kinds of RAM-based n-
odes. the architecture used in most experiments devel-
oped is the pyramidal one (Figure 2). In this topology.
neurons are arranged in hierarchical non-overlapping
pyramids (trees), where each pyramid culminates in a
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single output line. Therefore. if more than one out-
put is associated with the problem. there will be one
pyramid for each. As it has already mentioned, the
number in the storage locations of RAM-based net-
works increases exponentially (2 per node, where N
is the size of the node input) with the size of the input
problem. then the use of pyramidal architecture allows
a decrease in this number.

3 Weightless Models and Complexity of Learn-
ing

Judd's work ([7]) was pioneer in the field of learning
computational complexity of artificial neural network-
s. Before his work there was no characterization of
learnability in terms of its computational complexity.
Notwithstanding, the weightless models still lack this
kind of characterization.

3.1 Judd’s work in the context of Weightless

Models

Judd studies several classes of architectures and shows
each one of them to be NP-complete with respect to
the loading problem. He does that by producing for
each architecture, in its respective class. training ex-
amples such that any algorithm performs pootly on
some networks and training set in that class (any in-
stance of 3-Satisfiability problem can be transformed
into polynomial time to some architecture and train-
ing set in this class). The more general case studied
precludes only the most ambitious interpretation of the
goal in connectionist learning. That is. the connection-
ist belief of finding an algorithm that is guaranteed to
load any performable task in any conceivable network.

The results achieved are negative. because in that
more general case (as in almost all subcases analyzed)
the loading problem stays NP-complete. The only
tractable case studied is, however. trivial, for it is a
class of architectures (with support cone interaction
graph having limited armwidth [7. 12]) which seems
useless to practical activities. Nevertheless, the NP-
completeness results define only the upper bound of
the loading probiem. Thus. they do not make impos-
sible that in the average case it may be resolved in
polynomial time.

It is interesting to verify that all Judd’s results
found in ({7]). which are related to learning computa-
tional complexity of weighted neural models, are also
extendable to weightless neural models. This is be-
cause, the proofs found there are independent of any
particular training algorithm and they are based on
the set of Boolean functions®. A crucial point in those

2 And-Or functions, linear]y separable functions. all Boolean
functions, etc.
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proofs, which allows this extension. is that neurons are
considerate like truth tables (look-up tables). Thus.
those proofs are directly extensible to weightless neu-
ral model, since weightless neuron models are truth
tables as well. Examples of theorems and corollaries
extended are: '

Theorem 3 Loading weightless neural net-
works, whose node function set are onty AND
and OR functions. is NP-complete.

Corollary 3 Loading is NP-complete. inde-
pendent if one are using weighted or weight-
less neural models.

This Judd’s way to approach the loading problem
was criticized by Blum e?. all ([2]) and Dasgupta ef.
all ([3}) who proposed a study of the loading problem
in terms of a specific neural network and node function
set. Nevertheless. most of their results lead to the NP-
completeness of learning.

3.2 Loading pyramidal architectures

One fundamental point not approached until now is
the issue of loading deep networks. This issue usually
are not analyzed in the weighted models, because the
connectionist literature uniformly reports great hard-
ness in loading these kinds of networks ({13, 8]).

In the context of weightless neural models. though.
it is interesting to consider deep networks. since the ar-
chitecture mostly used is the pyramidal. which tends
to have high depth.

Figure 3: Iliustration of support cones. The shaded
and outlined area surrounding output node X encom-
passes all the nodes in its support cone. Likewise the
support cone for output Y is shaded in.
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Pvramidal networks form a special class of archi-
tectures. Given a network of this class it is important
to verifv that its support cones® do not overlap among
them. This is a very important characteristic. once one
of the causes to the hardness of learning is the inter-
action among support cones. Such interaction allows
that constraints of choosing a configuration of func-
tions in a determined support cone interferes in the
choice of the configuration in the other overlapping
support cone. '

Hidden
Layer

Qutput
Layer

Input
Layer

Figure 4: Example of a backpropagation architecture.
The shaded and outlined area surrounding output n-
ode X encompasses all the nodes in its support cone.
All the support cones in this architecture have the
same nodes with exception of the output nodes, which
is different to each support cone.

These negative results about the complicated in-
teraction among support cones can be verified empiri-
cally, for example, looking at the features of the well-
known and widely used backpropagation architectures
([6]) These architectures usually are fully connected,
that is. a determined neuron of a level is connected
to all neurons of the former. Therefore. they have
the worst case in the interaction among support cones
(Figure 4). for each support cone overlaps to all other-
s. Empirically, it is acknowledged that as the network
gets larger and deeper, the amount of time required
for them to load the training data grows prohibitively
{({8]). Locking at these results. in terms of backpropa-
gation architectures, they reflect the increasing in the

3This is the set of all nodes that can affect the behavior of
an output node ( Figure 3} [7]. Note that in Figure 3 the two
cones overlap in three nodes. The binary numbers name node
functions and as group they constitute a partial configuration
for cutput node X.
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size of support cones. Such increase produces an ex-
plosion in the number of constraints that is necessary
to deal with, hence in these networks learning becomes
very hard.

On the other hand. there are experiments which
weightless neural model using pyramidal architectures,
when compared to backpropagation methods. can learn
orders of magnitude faster ([11}). The weightless neu-
ral models often use pyramidal architectures, where
each pyramid sees a part of the total input and there
are no overlappings among pyramids (Figure 2). Con-
sequently., each output neuron has its own support
cone (in the case the total pyramid which it belongs
to) and the choice of its support cone configuration
will not interfere with the other support cones. Thus.
in these architectures there are less constraints to deal
with (since that the only concern is about individu-
al pyramids) than the myriad of them that exist in
the backpropagation architectures, such that learning
becomes easier.

4 Final remarks

In this paper it has been sketched the first connec-
tions between the theory of computational complexity
and weightless neural models learnability. The learn-
ing computational complexity in the weighted models
have been reviewed. and one can verify that, in most
cases, the results lead to the NP-completeness. With
base on Judd’s work these results were extended to in-
clude the weightless models.

Also. a paralle]l was made between backpropaga-
tion {weighted neural models) and pyramidal (weight-
less neural models) architectures in terms of interac-
tions among support cones. It has been verified that
there are experiments which show that weightless neu-
ral models using pyramidal architecture can learn or-
ders of magnitude faster than the backpropagation
ones.

Based on this it is conjectured that the class of
pyramidal architectures may be a way to overcome the
hardness of learning and it is being investigated if this
is true. It is important to point out that the charac-
terization of a polynomial architecture class (an archi-
tecture class that all tasks it can perform are loading
in polynomial time) is a fundamental guide to neural
networks design.
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