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Abstract - A supervised learning algorithm for multilayer
perceptrons (Optimal Estimate Training 2 - OET2) has
been developed to overcome shortcomings of the
generalized defta rule with backward error propagation.
OET2 is particularly useful for real-world pattern
recognition problems where very large training sets are
necessary.

1. INTRODUCTION

The majority of the applications of ANNs have emploved semi-
linear teed-torward nets (multilaver perceptrons), using the
generalized delta rule with backward error propagation for the
learning process [1]. However, it is almost impossible to treat
real-world problems utilizing this leaming rule. The principal
shortcomings of the generalized delta rule with backpropagation
of error are as tollows:

- it generally takes a long time to converge:

- it does not scale well (usually the training time grows
exponentially as the number of neurons increase);

- it requires a choice of good parameters for the learning process
(learning rate, constant of the mementum term and slope of the
activation function). and

- as a steepest-descent method it could stop at a local minimum,

Despite many attempts to improve the pertormance of the
generalized delta rule with backward error propagation [2, 3],

and to find an altermative to it [4. 3]. there is still no ellicient and
reliable method to train & multilayer perceptron. The main
probleim is the high nonlinearity of the error tunction.

The Functional Link Net (FLN) [6). a high-order net, has been
tried with more success than a multilayer architecture. The baswe
idea is to avoid the necessity of hidden layers by pertormnng u
nonlinear transformation of the input pattern (enhancement of the
original input pattern) betore it is supplied to the nput laver of
the network. Without hidden lavers. the learning process can be
pursued using the delta rule instead of the ‘generalized delta rule.
Consequently. the FLN takes less time to couverge.

Assuming that the input pattern enhancement is done properly. 1t
has been shown that the FLN can also achieve more accurate
results. However, besides the fact that the munber of new inputs
can increase considerably, depending on the number of orginal
inputs and independent training patterns. it is not an easyv task to
define a general procedure that will guarantee the effectiveness
and etticiency of the input pattern enhancement.

In order to overcome the problems mentioned above. a new
method tor loading information into a muitilaver perceptron is
proposed in this paper. The idea is to use successive quadratic
approximations for the error tunction. until getting into the
proximity of the global minimurmn.

2. A SUPERVISED LEARNING TECHNIQUE FOR VERY
LARGE TRAINING SETS

Reference [7] presents a comparison study between Optimal
Estimate Training (OET) and the generalized delta rule with
backward error propagation. The task is to restore a data bit
stream corrupted by a diftusive point-spread function. The results
obtained are an indication that OET can be much taster and much
more accurate than the other technique.

OQET is a supervised learning technique tor multilayer
perceptrons. The sets of input and output patterns are represented
in matrix form. An optimum nonlinear mapping that associates
input training patterns to output training patterns is tound by
successively solving linear svstems using direct methods, which
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in fact is a procedure based on nonlinear least-squares methods
(local approximation of the error function by a quadratic function,
and the exact minimization of such an approximate function).
The Moore-Penrose pseudoinverse is solved explicitly in
different steps of the OET. An important feature of this technique
is that the scaling problem is verv well characterized. Based on
the complexity of the operations involved {Ofr.m2), where r is the
number of input training patterns and m their dimension), it is
easv to estimate how the OET leamning rate will scale with
network size.

3. OPTIMAL ESTIMATE TRAINING

The general idea of OET can be summarized using Figure 1. In
Figure 1, hw (=0, 1, ..., m) is the set of input variables (h,, ,
represents an additional input with constant value equal to 1). w,,
is the set of interconnection weights leading from element j to
element /, and #,,,, , represents the output of neuren /.

As usual. the propagation of the inputs is produced by a
summation of the weighted inputs, i.e.,

Ly = th,jwji )]

The value of A, is calculated by the application of an

activation function,
Roei = f(Zous) (2)

To perform the OET, a desired output value, Ay .. is
propagated back through the activation function and the
corresponding desired intermediate result, z ., ; is obtained.
To execute this operation, it is necessary to employ a continuous
invertible function such as the hyperbolic tangent. This function
is suitable for the OET since the desired outputs can be positive
or negative. Afterwards, the set of inputs and desired
intermediate results can be interrelated to calculate optimal
estimates for the set of interconnection weights, in a least-squares
sense.

hin.m
Figure 1: Representation of a neuron.

The procedure for training a network with one hidden layer
(Figure 2) is now described. The extension of this training
procedure for more than one hidden layer is straightforward.
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The following notation is used in this paper:
Hy s = T by 1 desired output matrix,
H,, - 1 by mr+1 input matrix:

Z 4 our = H.op Propagated back through the output layer (r by i
matrix); the i column of Z,_,, is denoted by z, ./, and the
column of Z; /' is denoted by z5 ./ —

W, — mtl by n matrix of interconnection weights linking the
hidden layer with the output laver. the /# column of H,, is
denoted by w,,, /.

H = T by mt1 matrix: the 1 column of H,,, / is denoted
Y g

Zg jid = H g.imq Propagated back through the hidden layer (r by
m+| matrix), the k& column of Z 4 5, , is denoted by z,; h:dk'-

Wyq — m+l by m+] matrix of interconnection weights linking
the input laver with the hidden layer. the & column of ), , is
denoted by gh,-dk:

Z,,4—> produced by multiplying £, and ), ; (r by m+1 matrix).

Hy,4 — Zp,q propagated forward through the hidden laver (r by
m+1 matrix),

Z . — produced by multiplying Hy, and ¥, , (r by n matrix);
H 0 = Z,,, Propagated forward through the output layer (r by n
mairix),

r — number of input/output patterns in the training set;

m+1 — number of input neurons (which is the same as the
number of neurens in the hidden layer}, and

n — number of output neurcns.

Hout

Output loyer
Wout

Hidden layer
Whid

Input layer
Hin

Figure 2: Fully connected feed-forward net with one hidden laver
(input layer processing elements are data conduits)
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The network training steps are [7}:

1) Calculate an initial vajue for W, (this would be the final
value for /T, , if hidden lavers were not used):

W,=H2Z , (3)

our
where

Z, . =tanh'(H,_ ),

and

H, =(H H)" H,

assuming that r is greater than m+! (overdetermined system).
The svmbol + represents the generalized inverse or Moore-

Penrose pseudoinverse.

2) Obtain H; , ,that would produce Z; ,  given ¥,

sif n=mtl,
H =W, )2 )
assuming that I, ! is non-singular.
eifn>mti,
Hy =W, )2 ., (3
(We, )y =(W W, "W, (6)
overdetermined case:
and
sifn<mtl,
H =W, )7 _,,, (8)
(Wey =W _ (W W_»)', 9

underdetermined case.

3) Normalize the elements of H, p,, to ensure that they will be
situated within the output range of the hidden layer's activation
functions,

H,, =H._,09/|

; (10)

where X is the element of H ;, with the largest magnitude. A
multiplication factor, say 0.99, is used to obtain finite values for
Zapg and to get advantage of the hyperbolic tangent
nonlinearity.
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4) Produce Z; ., using the inverse hvperbolic tangent,
Z, ., =tanh'(H, ,.) (11}

5)GivenH, and Z, , . calculate 7, ,,

W,=H2Z_. (12
6) Obtain the actual intermediate output for the hidden laver,

Z. = HW,, (13)
and

H,, = tanh(Z,,) (1)
7) Recalculate .

W,=H,2Z, ., (154
where

H., =(H_ H_)'H,. (16)

The network training is finished at step 7. i.e., once the matrices
of intercomnection weights H7 , and H_  are optimally
calculated in the least-squares sense.

To cbtain the ANN output for any set of inputs. the following
steps are pertormed:

1) Combine H,,and ¥}, ;to produce Z, ..
Z, = H,W, (7)

2) Treat Z,,, with the activation function (hyperbolic tangent),

H,, = tanh(Z,,) (18)
3) Combine i, ;and ¥, to produce Z,,, .

Z, = H,W, (19)
4) Treat Z,,,, with the activation function to generate H_ , (the

output of the network),

H_ =k tanh(Z, ), (20)

where &k = 1.010] (output nermalization factor {1/0.99)).
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4. OPTIMAL ESTIMATE TRAINING 2 (OET2)

In this section, the OET algorithm is extended in order to
overcome its major drawbacks. Three new features are
incorporated to the OET algorithm: numerical stability, input
enhancement, and bounded interconnection weights.

4.1 Numerical Stability

Although the OET gives verv promising results, some numerical
problems with the matrix inversions of equations {4) and (16) are
reported in [7]. These problems should have been expected
because the conventional least-squares solution via normal
equation is intrinsically prone to ill-conditioning problems. It can
be shown that the condition number c(&#* /) is the square of
c(H). This means that if A is not very well conditioned, H' H is
ill-conditioned, and this may badly affect the final results,
without any warning.

In order to improve the accuracy of the Shepanski's learning
process, a QR (orthogonal) decomposition methed could be used.
There are several ways to define an orthogonal transformation.
Since the patterns to be used in the training process of an ANN
may be encountered sequentially, the Givens transformation is
potentially suitable because it works by rows. With respect to this
aspect, the Givens method is a better choice than the sequential
algorithms based on the Kalman filter, which are also sensitive to
numerical problems. An iterative method. such as the
Preconditioned Conjugate Gradient (PCG), could be used to
overcome illconditioning problems in the least-squares solution
via a normal equation. However, the PCG method becomes more
efficient than direct methods only when A’ H has a sparse
structure and a verv large dimension (say, > 103), which is not
usually the case since /,, is generally a dense matrix.

It is important to be aware of the cases in which ff,, is not
assumed to be sufficiently well conditioned. It could occur that
during the computation, perturbations caused in H, due to
round-off errors replace A, by a rank-deficient matrix. Notice
that with OET there is a restriction related to the columns of the
input matrix. If the values associated to a certain input channel
can be obtained (approximately) as a linear combination of the
corresponding values of other input channels, H,, will be rank-
deficient H,,' H, singular). This arbitrary instability can be
avoided using a stabilization method to detect the set of linearly
independent columns [8]. A new input matrix can be formed by
considering only the linearly independent columns (redundant
information is discarded). A stabilization method shall also be
applied in case of rank deficiency in W} andfor Hy;, which
must be treated as being of full rank.

4.2 Input Enhancement

A major limitation in the Shepanski's training technique is the
necessity of having the same number of processing elements in
the input and hidden lavers. To overcome this shortcoming, an
enhanced input representation scheme can be applied when it is
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necessary to increase the number of neurons in the hidden laver.
Using the idea of facilitating the leaming process by increasing
the extent of nonlinearity, with a nonlinear transformation of the
input pattern [6], the problem is solved in a better wayv than just
including "dwmmy" input channels.

A strategy for input enhancement. similar to the one suggested in
[9]. is adopted in this work. The values of the most statistically
correlated pairs of input channels. considering only the ones
cortained in the new full rank input matrix. are multiplied to
form new entries. The appearance of a specific input in several
products is not permirted. Limited diversity of information in
noisy environments is not a safety policy. With this proposed
technique, the necessary increase of the enhanced inputs is
expected to be less than using the FLN because there is a
corresponding increase in the number of hidden neurons.

4.3 Bounded Interconnection Weights

Interconnection weight bounds can be applied when it would be
necessary to decrease the number of neurons it the hidden laver.
Using OET, the number of neurons in the hidden layer cannot be
decreased without reducing the dimensionality of the input
pattemns. An improvement on the ANNs generalization
capability, produced by decreasing the number of hidden units
(and, consequently, decreasing the number of interconnections),
is expected to be obtained altematively by reducing its
interconnection weight bounds. This can be intuitively
understood by noting that when weight bounds are applied. the
total squared sum of errors can be controlled, allowing the
training procedure to appropriately constrain the decision regions
created by the network.

In fact, when an ANN is trained for classification or function
approXimation purposes, it is necessary to avoid the training data
overfitting in order to obtain good generalization. This can be
achieved bv making a search for the simplest ANN {the one with
less neurons and interconnections) which provides the minimum
error rate for the testing set being used. When training with an
iterative procedure like backpropagation, an alternative to avoid
an exhaustive search for a good network architecture is to use
cross~validation [10]. The idea is to interrupt the learning process
as soon as the generalization for the test set begins to deteriorate.

"Easy learning” should also be avoided, ie., when an input-
output mapping can be established by assigning large weights (in
comparative terms) to a small percentage of the total number of
interconnections (e.g., when some features strongly characterize
certain classes). Without noticing that "easy learning” is
happening, one could be induced to reduce the ANN architecture.
Low knowledge encoding redundancy caused by "easy learning"
is highly undesirable in very noisy environments. Once more,
interconnection weight bounds can be used to avoid "easv
learning" and to get the benefits of knowledge encoding
redundancy. A more uniform distribution of knowledge across the
ANN is obtained by limiting the interconnection weight
magnitudes.
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The combination of input enhancement and bounded
interconnection weights is not emploved in this work because of
the associated increase in the computational burden. However,
this is a possibility that deserves investigation.

4.4 Proposed Training Algorithm
The proposed procedure for training a feed-forward network with
one fidden layer is presented next. The encoding algorithm steps

are as follows:

1) Determine an input matrix H,, (r X m).formed by m linearly
independent input pattern features of the original 7,,, matrix.

2} Calculate an initial i

ou!
HW, =27 . 2n
Min\H Wi, — 24 |l . fori=1 .a (22)
“’aur —
assuming r greater than .
3} Given I, obtain H ;,, , that produces Z,; ...
WO:!!Hé —our = Zl; —oul (23)
¢ ifnzmthen
mm”Wr ] piar = Lt > forj=lo.r @4
k) id
¢ if n < m then:
min”hj_w, , We Rl M =2Z)
forj=1,..r1 {25)

4) Normalize the elements of H; ., to assure that they will be
located within the output range of the hidden layer's activation
functions (hyperbolic tangent),

H,_, =H,_,099/| (26)
where 7. is the element of H ; ;, ; with the largest magnitude.
5) Caleulate Z; , ; using the inverse hyperbolic tangent,
Z, . =tanh'(H, ) (27)
6) Given H,and Z, . ;. calculate W), .,
HW, =2 ., (28)
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rzz“Hhﬂ%—zg_MHz, s.t., |wk, | < Bound!,

fork=1,..mand I=1, .. B m
where wy,, # is a compoment of w,, .

(29)

7) Obtain the actual intermediate output for the hidden layer.

Zy = HW,, (30}
and
H,, =tanh(Z) (3)
8) Recaleulate ¥, ,
HW, =2, . (32)
’f:,f H, W —fo;muz‘ s.t., ",w,1 < Bound?2,
fori=1,..,nand I=1... .m (3%

where w,,, [ is a component of_ou,

4.5 Finding Bounds

To find a good pair of bounds the following heuristic procedure is
emploved:

1) Train the ANN (one hidden laver) with no bounds. This allows
maximum network capacity for representing nounlinear mappings.

2) Keep Bound2 set to a very large number. Set Boundl
approximately to the maximum value that produces a solution for
Whig Which has ali elements equal to this value,

3) Improve the ANN capacity of producing nonlinear mappings
by gradually raising Bound!l, while leaving Bound2 set 1o a very
large number.

a) If this procedure immediately increases the error rate for the
test set, then try an ANN without hidden layers. Otherwise, go to
b).

b) Continue to raise Boundl until the etror rate for the test set
starts to increase. Then, go to step 4. If the ANN generalization
ability keeps improving until returning to the situation described
in step 1, then go to ¢).

¢) Apply an input enhancement scheme to increase the extent of
nonlinearity allowed by the ANN.

4) Keep the best Bound! value, and lower Bound2 to check if the
capacity for representing nonlinearities is greater than necessary.
Lower Bound? until the error rate starts to increase again. The
training process is finished.
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Numerically stable methods for solving the linear least-squares
problems (22). (24}, {25), {29) and (33) are described in [8].

CONCLUSIONS

This paper has presented a learning algorithm, Optimal Estimate
Training 2 {OET2), for muitilaver perceptrons. OET2 is very
appropriate for large training sets. Its execution time varies
linearly with the number of patterns and quadratically with the
dimension of the input patterns. OET2 does not require any
choice of learning parameters. OET2 has proved to be orders of
magnitude faster than the backpropagation algorithm in practical
applications [11-14].

The following topics deserve further research etfort:

- Inclusion of adaptation capacity in the OET2 algorithm. Row
weighting in the orthogonal decomposition of the input matrix
(H,,) can be used. The efect of past data can be reduced by
graduallv increasing the weighting as new data are acquired.

- Application of column weighting in the orthogonal
decomposition of the input matrix (/,,,) during the ANN training.
The inverses of the variances of the input variables can be used
as weighting factors. This procedure can tmprove the ANN
generalization ability.
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