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Abstract   A new hierarchical structure of the Self-
Organizing Map (SOM) with dynamic growth is presented and 
applied to codebook design in vector quantization (VQ) and 
image compression. The tree-structured approach for 
codebook design is motivated for reducing the high 
computational efforts in the training and image coding phases 
in traditional VQ algorithms. The DHSOM has the ability to 
self determine the structure of the network through heuristic 
rules, and its final structure reflects the variability of the data 
(image blocks). It is shown that training and coding times 
obtained with DHSOM algorithm are faster than conventional 
SOM and LBG algorithms while the qualitative results are 
equivalent. 

 

1. Introduction 

The importance of image and signals compression 
algorithms in computer systems and communication is ever 
increasing due to the many and massive uses of digital data 
storage and transmission devices.  

Traditional lossy compression methods include scalar 
predictive coding, transform coding and hybrid techniques. 
The first approach is relatively simple but do not achieve 
much compression, while the transform methods can result 
in higher compression at the expense of increased 
computational complexity [1].  

The method of vector quantization has been widely used 
preferentially when there is the need of high compression 
rate. The traditional algorithm to design the codebook (or 
reference vectors) is the LBG algorithm [2] which generates 
it by an iterative process that optimizes a cost function of 
distortion (or mean square error – MSE). The drawbacks of 
the LBG include the need to choose the size (K) of the 
codebook a priori, problems due to inappropriate 
initialization and local minima during adaptation. The VQ 
encoding process involves a high computational load, which 
increases with K, but the decoder is a simple look-up table. 
The quality of the decoded image is related to the size and 
quality of the designed codebook.  

A diversity of artificial neural networks models have 
been employed for image compression, including feed-
forward multilayer perceptrons [3], Hopfield [4] and 
competitive / unsupervised algorithms [5-8].  Self-
Organizing Maps (SOM) have shown capable to develop 
codebooks for vector quantization with superior 
performances of the LBG [8-9], and some of its advantages 
include robustness to the codebook initialization and  
topographic map formation.  

The search for the winner neuron for a given pattern in 
the map is the heaviest task in both the training and image 

coding phases. In the conventional SOM the search is 
sequential and requires a computational effort proportional 
to the number of neurons. For a good statistical significance 
of the codebook, and a better reconstructed image, the 
number of neurons should be large, however it implies in 
higher training and encoding times. Tree-structured vector 
quantization approaches have been developed to overcome 
these limitations, that is, to have a fair codebook size at low 
searches iterations [6-7,10-11].  

In a previous work [5], a fixed hierarchical structure of 
the algorithm SOM was considered. The structure of the 
tree was defined a priori and the results of this 
implementation are presented in this work for effect of 
comparison with the dynamic algorithm proposed. The new 
proposal includes the dynamic growth of the tree and was 
denominated DHSOM – Hierarchical and Dynamic Self-
Organizing Map. This algorithm will be applied in the 
development of codebook and its growth and prunning, of 
the network and sub-networks, are made through heuristical 
rules. The main objectives are minimizing the quantization 
error and the processing time.  

This organization of this paper is as follows: section 2 
describes Kohonen hierarchical structure and section 3 
presents the rules of growth of the dynamic hierarchical 
network and the algorithm DHSOM. Results are described 
in section 4 and conclusion and final comments are 
presented in section 5. 
 

2. Hierarchical structure of the SOM  

The SOM algorithm is based on unsupervised learning and 
it generates a topology-preserving map of the training data 
where the location of a unit carries semantic information 
[7]. It has been used in a diversity of problems including 
data visualization, clustering, and data analysis [13-17]. The 
algorithm is described very briefly. A detailed exposition 
can be found in ref. [7].  

SOM network consists essentially of two layers of neu-
rons. The components of an input vector are fed into all 
neurons of the input layer. The SOM defines a mapping 
from the high dimensional input data space onto a regular, 
usually, two-dimensional array of nodes. Each neuron i of 
the SOM is represented by an p-dimensional weight vector 
mi [ ]T

ipii mmm ,...,, 21= , where p is equal to the dimension of the 

input vectors. The neurons of the map are connected to 
adjacent neurons by a neighborhood relation dictating the 
structure of the map. In the 2-dimensional case the neurons 
of the map can be arranged either on a rectangular or 
hexagonal lattice.  
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Training is accomplished by presenting one input pattern x 
at a time in a random sequence and comparing, in parallel, 
this pattern with all the reference vectors. The best match 
unit (BMU), which can be calculated using the Euclidean 
metric, represent the weight vector with the greatest similar-
ity with that input pattern. Denoting the winner neuron by c, 
the BMU can be formally defined as the neuron for which  

{ }  mx   mx i
i

c −=− min  (1) 

where ||⋅|| is the distance measure. The input is thus mapped 
to this location. The weight vectors of BMU as well as the 
neighboring nodes are moved closer to the input data vector. 
The magnitude of the attraction is governed by the learning 
rate. The SOM update rule for the weight vector of the unit i 
is  

[ ])()()()()1( ttthtt iciii mxmm −⋅+=+  (2) 

where t denotes time, x(t) is the input vector randomly 
drawn from the input data set at time t and hci(t) is the 
neighborhood kernel around the winner unit c at time t. This 
last term is a non-increasing function of time and of the dis -
tance of unit i from BMU and usually is formed of two 
components: the learning rate function α(t) and the neigh-
borhood function h(d, t):  

( )t-htthci ,)()(  r    r ic⋅= α  (3) 

where ri denotes the location of unit i on the map grid.  

As the learning proceeds and new input vectors are given to 
the map, the learning rate and the neighborhood radius 
gradually decreases to zero according to the specified 
functions. The correct choice for parameters is not a 
straightforward task and there are several rules-of-thumb , 
found through experiments. After the training has been 
performed, the map should be topologically ordered. This 
means that vectors that are close in the input space would be 
mapped onto neighbor neurons or even in the same neuron. 
Some recent improvements include linear initialization and 
its parallel implementation, or batch algorithm [8].  

The use of tree-structured Kohonen maps objectives the 
reduction of the computational effort necessary for 
obtaining, or designing, large codebooks [5,10-11]. In a 
previous work, the authors described a static and pyramidal 
structure, where each tree node was a SOM map trained 
with the traditional algorithm. After the end of training in 
each tree level the map’s neurons generate new child map 
which receive data assigned to its parent neuron. The 
training of the HSOM is sequential, i.e., top down, and the 
structure was determined previously the beginning of the 
learning. This model allows the creation of sub-maps that 
possess hierarchical relations with maps in superior levels. 
The main advantage, regarding the use of the conventional 
full-search SOM, is the training and coding times reduction, 
which is a important feature in  signal and image 
segmentation and compression algorithms.  

The drawback is that the structure is fixed a priori, what 
it means that does not have mechanism of dynamic growth 
for sub-maps. The modification presented in this paper aim 
to flexibly the algorithm by allowing only neurons with 
good activation to generate sub-maps. The hierarchical and 
dynamic SOM thus produces a data-driven tree of maps 
with growth controlled for heuristic rules calculated for 
each neuron in each level of the hierarchy. It can emphasize 

high variance parts of the input space allowing more 
neurons to that region.   

3. Hierarchical and dynamic SOM (DHSOM) 

The DHSOM appeared to surpass the limitations of the 
HSOM, keeping many of its characteristics. The DHSOM 
does not require the priori definition of the structure, 
therefore growth rules are established by the proper 
algorithm thus enabling expansion (or contraction, via 
pruning) in a dynamical way. The main characteristics of 
the DHSOM are:  

 

• Determination of the heuristic rules that define if a 
node will or not be expanded.  It will be taken in 
consideration the relative activity of the neuron 
regarding the other neurons in the same map. 

• Determination of the flexibility criterion to expansion 
the network in each level. It will establish criterion of 
expansion less rigid in the beginning of the tree. 
Otherwise highest levels will have a more rigid 
criterion. 

• Determination of the size of the sub-maps as a function 
of its activity and importance to the quantization error 
minimization.  

• Pruning test for maps: determination of the viability of 
maintaining sub-maps just generated according to its 
contribution for reducing the quantization error of the 
parent node.  

 
3.1  Determination of the Heuristic Rules  
 

The training in each level is the traditional SOM 
algorithm. After finishing the training in the root map it can 
initiate the phase of hierarchical expansion. Heuristic rules 
have been established to control the dynamics of growth of 
the network. There are two main conditions for considering 
a particular neuron for growing (expansion to a new sub-
map): activity and its quantization error. The observance of 
these criterions will enable the neuron expansion. 

Defining activation as the number of patterns assigned to 
a neuron, a node can be considered active for purpose of 
expansion if its activation is superior to the average 
activation in the map.  

The other criterion is related to quantization error (QE) 
associated in each neuron. It is of interest to expand neurons 
with high data variance and its child map will act to 
decrease the error in a next level of the structure. The QE 
factor establish that neurons with error superior to the 
average quantization error are candidate to be expanded.  

Finally, a factor that considers a minimum of data 
assigned for a sub-map, which prevents undesirable large 
growth of the tree. This rule acts as a stopping criterion of 
the algorithm, because this rule can disable the network 
expansion when the representation of the neuron will be 
minor that a percentage that is about 3 to 5% of the data set.  
 
3.2.   Criterion of Flexibility for Expanding the Network 
 

The heuristic rules of activity and representation can have 
their average values modified by factors to allow the 
flexibility of the network. This is made using a monotonic 
function that privileges more expansion of the network in 
initial levels. Thus, mean of activity and mean of 
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quantization error are modulated to lower values in levels 
near to the root map, and to great than mean values as the 
level increases.  

An example could be written as factor(level) = α*level ^ 
β, where 0 < α,β < 1. Figure 1 shows the case when α = 0.5 
and β = 0.6. The level is in the x axis. It can be seen that in 
the beginning, for x = 1 or 2, the attenuation is lower than 1 
and the criterion value is decreased. Otherwise, for values 
upper than 3 result in high criterion to be accomplished, 
making the node forced to exceed a high criterion value to 
expand to a child map. For example, in the case of activity 
criterion, for level = 3 the neuron has to exceed about 1.2 
times the average activity of the neuron’s map to be a 
candidate for expansion.  

 
Fig. 1: Example of an attenuation / amplification factor for the 

heuristic rule criterions. 

3.3.    Determination of the Size to the Sub-maps  
 

After the decision of that a neuron will be expanded to a 
child map it becomes necessary the determination of the 
sub-map size. It can be defined as a function of the 
percentage of the data the neuron represents relative to the 
total size of the data used to train the map. The following 
equation defines the size of the child map:  
 

f
f p

p

N
M M

N

β
 

=   
 

 

 
(4) 

 
where Nf is the number patterns associated to the neuron 
that will be expanded, Np is the number of patterns used to 

train the map, β is a constant (0.3 in our simulations) and 
Mp is the size of the parent map.  
 
3.4.    Mechanism of Pruning  
 

The process known as “pruning” is present in DHSOM 
algorithm of the following way: for a given sub-map, if the 
quantization error of the parent neuron is reduced at least by 
20% the expansion is considered valid. Otherwise the sub-
map is excluded from the hierarchy. The purpose of this 
mechanism is to prevent the time wastefulness in that it says 
respect to the expansion of the tree and in the phase of 
signal and image codification. Only maps that significantly 
reduce the quantization error, regarding its parent neuron, 
are preserved in the tree.  

 

4. DHSOM algorithm 
DHSOM is an extension of the conventional SOM. The 

map in the first level, or root map, is trained with the full 
data set and according the quantization factors associated to 
each neuron new sub-maps are generated upon the data 
associated to them. Geometrically, the cells of the Voronoi 
diagram of the map in a level k  are partitioned in a level k + 
1 increasing of the resolution (detailing) of the 
reconstructed image. Figure 2 illustrates a simplified 
configuration of the structure generated by DHSOM.   

 

.   Level 1 i

Level 2 

 

Level 3 

 

 

 
Fig. 2. Structure generated by the DHSOM 

 
Due the dynamic characteristic of the network, after the 

convergence of the algorithm, we will have an unbalanced 
tree that will reflect the variability of the data set. The 
codebook will be generated to represent the regions with 
great accumulations of data.  

The training of the DHSOM is performed sequentially, 
i.e., top to down, and the basic algorithm is described 
below:  
 

1.  Set current level = 1.  
2. Train the map(s) of the current level.  
3. Partition the data set used to train the map in the 

current level generating subgroups. Each subgroup 
Si represent data mapped to neuron i of the current 
level.  

4. For each neuron j that to satisfy the three conditions 
of growth, generated a sub-network with size 
according to eq. 4 that will be trained with the SOM 
algorithm, using the subgroup Sj mapped to its 
parent node.  

5. Set level = level + 1 and train the map(s) of the 
current level.  

6. Test for the pruning mechanism. Eliminate tree 
nodes (sub-maps) that achieve low decrease of 
quantization error regarding its parent node.  

7. If there are yet maps to train back to step 2 otherwise 
end.  

5. Results 

The platform used was a personal computer with processor 
Intel Pentium III-800 MHz. All tests were performed in the 
Matlab® environment. Some functions of SOM Toolbox 
[12] were also utilized. 

5.1.  Synthetic data  

Figure 3 shows the final configuration for a ten neurons 
one-dimensional map after training. The data set consists of 
four bi-dimensional clusters generated after Gaussian 
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densities. According to the DHSOM algorithm most of the 
root map neurons expanded (only neuron 8 did not) to sub-
maps and figure 4 shows the hierarchy obtained where nf is 
the number of sub-maps. Note that each node of the tree 
represents one entire map, and all the generated neurons can 
be seen in figure 5. The root map generated 9 sub-maps, 
only neuron 8 was not expanded. Figure 6 illustrates also 
the Voronoi diagram and links from data to their assigned 
neuron in the root map. Ths size of circles around root map 
nodes are related to their activity, H(i).  

As can be seen in figure 6, the generated sub-maps 
receive data only from its parent node and act to minimize 
the quantization error.  

5.2.  Image data 

The algorithms used in our tests were the LBG, 
Hierarchical LBG, SOM, HSOM and DHSOM. Lena and 
Zelda images used had 512 x 512 pixels size and 256 gray 
levels, or 8 bits/pixel (bpp).  

The algorithm used to train SOM maps was the batch one 
and the initial neighborhood was set 80% of the map size, 
decreasing to zero at the end of the training [7]. 3000 4×4 
block samples were collected at random to form the training 
data. 

The Hierarchical (or structured) LBG and the HSOM 
used had two levels; In both cases there were 10 
codevectors at each level totalizing 100 leaves neurons in 
the structure that integrate the codebook.  

The DHSOM was generated with 1-D output space maps. 
In the implementations with images we got structures with 4 
hierarchical levels, being that the algorithm made use only 
of three initial levels because the last level was eliminated 
by the pruning mechanism. 

 

 
Fig. 3 – Data set (four clusters) and the grid (10 neurons 1-D map) 

after training. 
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Fig. 4: Tree of maps obtained for data presented in fig. 3. 

 

 
Fig. 5: All the generated neurons. 

 

 
Fig. 6: All the generated neurons, data and Voronoi diagram 

for the root map. 

Figure 7 and 8 show the original image of Lena and Zelda 
used in the simulations. It is not observed qualitative 
distinction between the reconstructed images with the 
Dynamic LBG and the DHSOM. Results for DHSOM are 
shown in figures 9 and 10. Then a quantitative analysis of 
the images becomes necessary. The measures of quality had 
been taken off in function of the mean square error (MSE) 
and the peak signal/nois e relation (PSNR) given by:  
 

1 1 2

0 0

1
( , ) ( , )

M N

x y

MSE Î x y I x y
MN

− −

= =

 = − ∑ ∑  
 

(5) 

 
2

10

255
10logPSNR

MSE

 
=  

 
 

 
(6) 

 

where I(x, y) represents the original image, Î(x, y) is the 
reconstructed image and 255 is the maximum value for 
pixel. 

Table 1 and 2 illustrates the results for the images of Lena 
and Zelda, respectively. In our case the images were scaled 
to the [0, 1] range, than the value 255 (see eq. 6) is replaced 
by 1 in results presented in table 1 and 2. 

 

Level 1 map 

Level 2 map 
Level 3 map 
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Fig. 7. Original Image of Lena 

 

 
Fig. 8. Original Image of Zelda 

 

 
Fig. 9: Lena reconstructed with DHSOM  

 

 
Fig. 10: Zelda reconstructed with DHSOM 

  
The quantitative results show that the dynamic structures 
present a better performance to the hierarchical (fixed 
structure) methods. Both Hierarchical LBG and HSOM had 

100 leaf nodes or centers, i.e., the size of the codebook. Its 
also seen that the dynamic structure of the algorithm SOM 
presents slight superior results to the dynamic structure of 
the LBG. It is important verify that the codebook generated 
by the traditional algorithms and the fixed hierarchical 
structures presents 100 vectors reference in codebook, while 
that the size of codebook generated by the hierarchical and 
dynamic structures is 79 and 83 vectors of reference for the 
images of Lena and Zelda, respectively. Even with less 
codevectors the quantitative results were better because the 
nodes were generated in regions of the input space were 
there a high quantization error. 
 

TABLE 1 
Quantitative analysis of the reconstructed Image of Lena 

  

MSE 
 

PSNR 
 

LBG (100 centers) 
 

1,8 × 10-3 
 

27,5 
 

SOM (100 neurons) 
 

1,8 × 10-3 
 

27,53 
 

Hierarchical LBG  
 

1,8 × 10-3 
 

27,37 
 

HSOM 
 

2,2 × 10-3 
 

26,63 
 

Dynamic LBG  
 

2,3 × 10-3 
 

26,33 
 

DHSOM 
 

2,1 × 10-3 
 

26,7 
 

TABLE 2 
Quantitative analysis of the reconstructed Image of Zelda 

  

MSE 
 

PSNR 
 

LBG (100 centers) 
 

1,1 × 10-3 
 

29,76 
 

SOM (100 neurons) 
 

1,1 × 10-3 
 

 
29,69 

 

Hierarchical LBG  
 

1,1 × 10-3 
 

29,46 
 

HSOM  
 

1,4 × 10-3 
 

28,68 
 

Dynamic LBG  
 

1,3 × 10-3 
 

29,02 
 

DHSOM 
 

1,2 × 10-3 
 

29,06 
 
The small loss of quality of the dynamic structures when 

compared with the traditional algorithms of the LBG and 
the SOM it is compensated when we analyze the effective 
profit in the processing time. Table 3 shows to the training 
times for the algorithms using the image of Lena and Zelda. 
It is observed a reduction of 4,3 times the processing time 
compared with the conventional SOM. 
 

TABLE 3 - Training Time 
   

Lena 
 

Zelda 
 

LBG (100 centers) 
 

207,57 
 

208,49 
 

SOM (100 nodes) 
 

255,68 
 

260,4 
 

Hierarchical LBG  
 

51,73 
 

50,58 
 

HSOM (100) 
 

53,88 
 

53,66 
 

Dynamic LBG  
 

60,64 
 

60,31 
 

DHSOM 
 

57,49 
 

58,82 
 

Not only the training and coding time, other important 
possibility in using a hierarchical configuration is to 
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progressively transmit the image, working with multi-
resolution boarding. In applications where some distortion 
is acceptable we can work only with few levels of the tree 
enabling high compression rates and a faster image coding / 
decoding.  

Regarding the compression rates, in the presented case 
we had got 0.437 bits for pixel, which corresponds about 
compress the data to 5,5% of the original size, even without 
considering compression techniques that eliminate code 
redundancy (Huffman, for example).  
 Figure 13 illustrates a portion of the Lena image after 
reconstruction. In fig. 13 (a) only the first level was used 
whereas fig. 13 (b) was reconstructed using the hierarchy 
obtained by the DHSOM. It is seen that the high level maps 
try to minimize the error by closing to the data.   
 

 (a) 

 (b) 
Fig. 13 - Portion of Lena image: (a) reconstructed image using 
only first level map, and (b) reconstructed image using tree 

obtained with DHSOM  

6. Conclusions 

A new structured self-organizing map with dynamic 
growth was described. The main objective was to reduce 
the computational efforts both in training and 
coding/decoding phases, while keeping good image 
reconstruction.  

The heuristic rules were defined with the aim to reduce 
the quantization error and to privilege nodes with high 
activity. The results were considered good that it was 
possible to keep better quantitative and similar qualitative 
figures using less codevectors (leaf neurons) and with less 
training and coding times.    

Future works include the development of better rules in 
order to optimize these results and to explore the concept 
of parallel processing in the phase of generation of 
codebook. That is possible because the pertaining maps to 

one exactly hierarchical level are depended. Also, the edge 
degradations in the reconstructed image, horizontal growth 
and pruning, and applications of DHSOM in data mining 
and knowledge discovery in databases are also being 
considered. 
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