Análise e Implementação do Tripolo de Hopfield

Alexsandro José Virgínio dos Santos¹, José Homero Feitosa Cavalcanti¹ ¹ DTM-CT/UFPB, Bairro Universitário, S/N. CEP58059-000 João Pessoa, PB E-mails: ajvs@bol.com.br, zevhom@uol.com.br

Abstract

This paper presents design details, algorithms, simulation and experimental results obtained from a new circuit that uses three Hopfield neurons coupled like a tripole. The tripole is used as analog to digital signal converter circuit and like an inverse and direct neural controller.

1. Introdução

Catunda & Cavalcanti [1] propuseram um controlador, baseado na Rede Neural de Hopfield -RNH [2,3], utilizando dois neurônios conectados entre si na forma de um dipolo. O controlador foi denominado Controlador Neural de Hopfield e a arquitetura dos dois neurônios foi chamada de dipolo de Hopfield. Baseando-se neste trabalho [4,6] Cavalcanti et ali apresentaram um novo conversor A/D denominado Dipolo de Hopfield usado como conversor Analógico Digital e como um controlador inverso [5].

Neste trabalho apresenta-se um tripolo de Hopfield utilizado como conversor A/D e como controlador inverso. Serão apresentados o modelo dos neurônios e os resultados obtidos de simulações e experimentais de um novo circuito baseado no tripolo utilizadeo na linearização da resposta de um conversor A/D. Além disso, serão apresentados resultados experimentais obtidos com um controlador diereto e inverso [7,8] usando o tripolo de Hopfield. Por último serão comparados os desempenhos obtidos experimentalmente dos controles de uma planta não linear utilizando o dipolo e o tripolo de Hopfield.

2. Os Neurônios de Hopfield

O neurônio de Hopfield, ilustrado na Figura 1, utiliza um circuito elétrico do tipo RC como armazenador de carga. Os X_{i1} , X_{i2} ,... X_{in} representam as entradas do neurônio, os W_{i1} , W_{i2} , ... W_{in} representam os pesos. Obtém-se Y_i através da Eq. (1). Emprega-se a chave S1, indicada na Figura 1, para conduzir a zero a saída Oi do neurônio. Obtém-se a saída Z_i , na forma contínua, através da Eq. (2), com t representando o tempo.

$$Y_{i} = X_{i1}^{*}W_{i1} + X_{i2}^{*}W_{i2} + \dots + X_{im}^{*}W_{im}.$$
 (1)

$$\frac{dZ_i}{dt} = (Y_i - Z_i)/RC$$
(2)

Figura 1. O neurônio de Hopfield

A saída O_i do neurônio pode ser uma função sigmóide ou uma função tangente hiperbólica.

3. Os Dipolos de Hopfield

Uma RNH com dois neurônios, conforme ilustrado na Figura 2, representa os dipolos de Hopfield. Cada um dos dois neurônios possui uma entrada externa e uma entrada recorrente. As entradas externas do dipolo são denominadas I₁ e I₂. A entrada X₁₁ do neurônio N₁ é conectada ao valor I₁. A entrada X₂₁ do neurônio N₂ é conectada ao valor I₂. Assim obtêm-se as entradas de N₁: X₁₁=W₁₁*I₁ e X₁₂=W₁₂*O₂, com W₁₁>0 e W₁₂<0. As entradas de N₂ são: X₂₁=W₂₁*I₂ e X₂₂=W₂₂*O₁, com W₂₁>0 e W₂₂<0. Na Figura 2 os valores dos pesos são os seguintes: W₁₁=W₂₁=-1 (elipse) e W₁₂=W₂₂=1(losango).

Figura 2. Representação da RNH

Para ilustrar as características do dipolo ele é emulado num microcomputador padrão tipo IBM-PC. O número de iterações utilizado para calcular o valor de saída dos neurônios desde a fase transitória até o regime é denominado de ITER. Durante a emulação da RNH no microcomputador foram atribuídos os seguintes valores às variáveis: ITER=100, β =0.02 (ver [4 ou 6]), para I₁=1.0 fixo e para diferentes valores de I₂ (0.1;0.5;0.9). Apresentam-se, na Figura 3, as curvas dos resultados obtidos durante a fase transitória da saída dos neurônios N₁ e N₂. Antes de cada simulação O₁ e O₂ são forçados a zero utilizando a chave S1 apresentada na Figura 1. Os valores analógicos das saídas são representados por O₁ (linha contínua) e O₂ (linha tracejada). Na Figura 3 o ponto em que a curva O₂ cruza a abscissa (obtida com I₁=1.0 e I₂=0.5) está indicado pelo símbolo t₁.

4. O Tripolo de Hopfield

A partir da análise dos resultados experimentais obtidos com o dipolo de Hopfield (apresentados na Figura 3), decidiu-se experimentar uma rede de Hopfield com três neurônios, e denomina-la de tripolo de Hopfield.

Na Figura 4 apresenta-se o esquema do tripolo de Hopfiled com as entradas "ref" e "atual". Os círculos escuros representam pesos com valor 1, os círculos brancos representam pesos com valor -1. Além disso, $W_{11}=W_{22}=W_{33}=W_{21}=W_{12}=W_{13}=W_{23}=1$ e $W_{31}=W_{32}=W_{31}/10$. Basicamente, o novo neurônio tende a aumentar a importância da entrada atual na competição.

No desenvolvimento do tripolo utilizou-se uma variante do neurônio de Hopfield desenvolvida por Cavalcanti & Albuquerque (2000) pois $W_{31} \neq W_{13}$ e $W_{32} \neq W_{23}$.

Figura 4. Arquitetura do tripolo

Na Figura 5 apresentam-se as curvas obtidas do tripolo para $I_1=1$ e $I_2=0;0.1;...;1$. As saídas dos neurônios estão indicadas na cor azul para a saída O_1 , vermelho para a saída O_2 e verde para a saída O_3 .

Na Figura 6 apresenta-se a forma normalizada do sinal de saída de O_2 obtido com o tripolo. A curva na cor vermelha foi obtida com W_{33} =0.5, a curva na cor verde foi obtida com W_{33} =0.2, e a curva na cor a foi obtida com W_{33} =0.1. A forma da curva de O_2 e a variação da curva de O_2 em função do peso W_{33} (as três curvas) sugere a aplicação do tripolo em controladores do tipo inverso.

Na Figura 7 apresentam-se três curvas do sinal de saída de O_3 do neurônio auxiliar obtido com o tripolo para diferentes valores de W_{33} , observe-se a semelhança entre as três curvas que apresentam uma quase linearidade mesmo com a variação de W_{33} , o que possibilita o uso do tripolo como circuito conversor A/D.

Figura 7. O₃ em função de I₂ e W₃₃

5. O Dipolo como Controlador

As características observadas durante as simulações com o dipolo evidenciaram a possibilidade da sua aplicação em controladores (seção 4). Na Figura 8 apresenta-se a curva característica obtida com o dipolo utilizando os resultados de simulação apresentados na Figura 5. A abscissa dessa curva corresponde ao valor de I₁ (I₁=0., 0.05, ..., 0.95,1.) a ordenada corresponde ao valor t₁ normalizado (todos os valores de t₁ divididos pelo valor máximo de t₁).

Na Figura 9 apresenta-se esquematicamente um pêndulo simples. O comportamento dinâmico do mesmo é descrito matematicamente pela eq.3. Onde, t é o tempo na forma contínua, $T_I(t)$ é o Torque de carga, P é o peso do pêndulo, M é a massa do pêndulo, L é o comprimento do pêndulo, $\theta(t)$ é o ângulo entre o pêndulo e a vertical, e g é a aceleração da gravidade. O protótipo experimental utilizado neste trabalho consiste de um pêndulo com comprimento L = 0.01 m e massa M = 0.05 Kg que, para determinados valores do ângulo θ, apresenta torque T₁ maior que o atrito viscoso do eixo do motor. Considerando-se a aceleração do eixo do motor igual a zero, conseguida movimentando-se lentamente o pêndulo, vê-se que o T_l(t) é proporcional ao seno($\theta(t)$). Isto é, a função que representa o deslocamento do pêndulo pode ser aproximada por uma senóide.

$$T_{l}(t) = \frac{1}{2}(P/g)L^{2} + PLsen(\theta(t))$$
(3)

Observando-se a Figura 8 vê-se que, grosseiramente, a função da saída do dipolo assemelha-se a função inversa da senóide (para $0 \le \theta \le \pi/2$), e que o dipolo possui características semelhantes às necessárias ao controlador neural inverso.

Figura 9 O Pêndulo simples

Na Figura 10 apresentam-se os resultados experimentais obtidos com o dipolo trabalhando como controlador inverso no posicionamento de um pêndulo simples. Utilizou-se, para se obter as curvas apresentadas na Figura 10, $I_2=1.0$ e $I_1=$ vref (vref representa a posição de referência do pêndulo). Os valores de t_1 obtidos após a competição entre os neurônios $N_1 \in N_2$ foram utilizados como valores em malha aberta de acionamento do motor de corrente contínua cujo pêndulo está acoplado ao seu eixo.

A seguir foi construído um sistema para controlar a posição do pêndulo. O sistema foi desenvolvido num microcomputador IBM PC usando a saída da impressora para comunicação entre o microcomputador e o pêndulo.

Na Figura 10 apresentam-se três curvas constituídas de 800 pontos. As abscissas das curvas representam o tempo variando entre 0 e 16s. A cada 1ms foi lida a posição do pêndulo e a cada 20ms foi calculado um novo valor de controle. A curva superior representa a tensão na armadura do motor de corrente contínua fornecida pelo dipolo (tempo t₁ normalizado). Na parte inferior da área das curvas apresentam-se duas curvas, a curva da posição referência (vref, curva superior) e a curva do deslocamento do pêndulo (atual, curva inferior). Observe-se que o dipolo não conseguiu posicionar corretamente o pêndulo, e que o menor erro ocorreu na região central das curvas.

CONTROLE INVERSO USAD	O TRIPOLOS DE	HOPFIELD			_ 🗆 ×		
<u>Arquivo Motores Estabilização</u>	Ajuda	_					
Teste experimental off line							
RN Aleatória Grava RN	Branco	Início	Espera	378 💌	3BC		
Amostra 800 Desloc 14 I	Refer <mark>10</mark> uc =	38	100				
DIP-HOP	TRIP-HOP						
				enha na tela.			
			🗹 Des	enha gráfico.			
				L			
-							
			"				
			£	~~~			
- Relation 6 🖉 🗑 🖄 🥞 🕲	77 🖪 🖄 🛛 👪				1354		

Figura 10. Controle inverso usando dipolo

6. O Tripolo como Controlador

Observou-se a partir da Figura 6 que, modificandose W_{33} em função do erro observado entre a saída da planta e a referência, se pode controlar diretamente a planta descrita na seção anterior. Na Figura 11 apresenta-se a arquitetura do controlador neural direto inverso proposto neste trabalho. No tripolo de Hopfield coloca-se uma nova entrada proporcional ao erro no neurônio N₃, o valor do controle direto será dado por W_{33} *atual + k*(Σ erro). Onde o erro é definido como a diferença entre o valor de referência e o valor de saída da planta, k é uma constante de proporcionalidade, e Σ é a somatória do erro.

Figura 11. Controle inverso direto usando tripolo.

Na Figura 12, semelhante à Figura 10, apresentam-se três curvas obtidas com o tripolo de Hopfield controlando a planta descrita na seção anterior. Observe-se que em alguns instantes o tripolo conseguiu posicionar corretamente o pêndulo.

SONTROLE INVERSO USA	DO TRIPOLOS DE H	IOPFIELD			_ 🗆 X
<u>Arquivo Motores Estabilização</u>	o <u>Aj</u> uda				
		l este exp	perimental off li	ne Motor CC	-Motor Pas
RN Aleatória Grava R	N Branco	Início	Espera	378 💌	3BC
Amostra 800 Desloc 13	Refer 10 uc =	<mark>38</mark>	100		
DIP-HOP	TRIP-HOP				
			🖂 🖂 De	senha na tela.	
			🗹 De	senha gráfico.	
	~				
				<u></u>	
~ ~					
	<u></u>		r		
1980 Inician 🛛 🖉 🕅 🕅 🕅 🕸 🕅	n 🕶 🗖 😜 🛛 🚟 ი.	. Ruildor A Stat	control i hon	Crofice	12.57

Figura 12. Controle inverso usando tripolos

Nas Figuras 13 e 14 apresentam-se as curvas obtidas no posicionamento do pêndulo usando o dipolo e o tripolo de Hopfiled. Observe-se que a tensão gerada pelo tripolo (valor na saída de O_2) aumenta no intuito de tornar zero o erro entre a referência e a saída da planta.

Figura 14. Comparação entre os controladores: Posicionamento

7. Conclusão

Apresentou-se uma RNH com três neurônios denominada tripolo de Hopfield. A partir das curvas das saídas do dipolo, obtidas por simulações, foram definidas as características de funcionamento do tripolo de Hopfield.

Baseado nessas definições, e observando-se que a saída do terceiro neurônio fornece valores de conversão A/D numa forma quase linear, foi proposto um tripolo de Hopfield que lineariza a conversão A/D pelo tripolo.

Baseado no dipolo de Hopfield, em que a saída do segundo neurônio pode ser utilizado num controlador inverso, e que o valor da saída O_3 é proporcional ao peso W_{33} , propôs-se utilizar o tripolo de Hopfield como controlador inverso direto. A seguir foram apresentados resultados experimentais do tripolo de Hopfield controlando plantas não lineares. Foram comparados os

resultados obtidos pelo dipolo e o tripolo no controle de plantas não lineares mostrando que o tripolo de Hopfield consegue sintonizar a saída da planta sobre a referência. O sistema de controle do pêndulo foi escrito na linguagem C do Builder C++ da Borland.

Futuramente serão apresentados resultados experimentais de um circuito analógico/digital implementado a partir com os três neurônios de Hopfield que funcionou como controlador inverso direto e conversor A/D. Também serão analisados alguns tipos de estratégias desenvolvidas para a adaptação do peso W₃₃ ao erro na saída da planta.

8. Referências Bibliográficas

 [1]Catunda, S. Y. C. and Cavalcanti, J.H.F. (1997).
 Adaptative Hopfield Neural Controllers , IEEE International Symposium on Industrial Electronics -ISIE'97, Guimarães, Portugal, Pp.1206-1211.

- [2]Hopfield, j. J. (1982). Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Republicado por E. Sanchez-Sinencio & C. Lau, Artificial Neural Networks, IEEE Press, New York, pp. 25-29.
- [3]Hopfield, J.J. (1988). Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nac. Acad. Sci. U.S.A., vol.81, pp. 3088-3092. Republicado por J. A. Anderson & E. Rosenfeld. Neurocomputing Foundations of Researchs. MIT Press, Cambridge, Massachusets, USA, 1988. Pp. 579-583.
- [4]Cavalcanti, J.H.F e Santos, A.J.V. dos, Treinamento do Dipolo de Hopfield usado como conversor A/D, Congresso Brasileiro de Redes Neurais, CBRN'2001, Rio de Janeiro RJ, 2001, pp.2016-2020.
- [5]Cavalcanti, J.H.F e Albuquerque, A.C. e Ferreira, J.R.S. "Uma Nova Abordagem para os Pesos da Rede Neural Artificial de Hopfield", Congresso Brasileiro de Automática, CBA'2000, Florianópolis SC, 2000, pp.2021-2023
- [6]Cavalcanti, J.H.F e Santos, A.J.V. dos, "Controlador Inverso Utilizando Dipolos de Hopfield", INDUSCON, Bahia, julho de 2002.
- [7]Äström, K.J. & Wittenmark, B. Adaptive Control, Addison-Wesley Publishing Company, USA, 1989.
- [8]Narenda, K. S. & Parthasarathy, K., Identification and Control of Dynamical Systems Using Neural Networks, IEEE Transactions On Neural Networks, Vol.1 No.1, march 1990, pp.4-27.