
Proceedings of the VI Brazilian Conference on Neural Networks - VI Congresso Brasileiro de Redes Neurais
pp. 349–354, June 2–5, 2003 – Centro Universitário da FEI, São Paulo - SP - Brazil

 349

A Services-Oriented Architecture applied to Evolutionary Artificial Neural
Network

Gilson F. Laforga1, Roseli F. Romero2

1UNIRP-Centro Universitário de Rio Preto
2ICMC-USP São Carlos

E-mails: laforga@unirpnet.com.br, rafrance@icmc.usp.br

Abstract

In this work, a services-oriented architecture that
allows the identification and the training of the best
Artificial Neural Network (ANN) to be used in a certain
problem, through the use of Genetic algorithms (GA), is
proposed. The Web Services and the Neural Network
Markup Language constitute the technology used for
the development of this approach. A main advantage of
this approach is that any user can invoke this
application programmatically over the Internet, without
that it needs to have a computer with great capacity of
processing.

1. Introdution

Services-Oriented Architecture (SOA) provide a
standard programming model that allows software
components to be published, discovered and invoked by
each other. There are essentially three components to a
SOA: a Service Requester is a software component in
search of a service to invoke, a Service Broker is a
central repository that facilitates service discovery and a
Service Provider, in this case a Web Service [1].

A Web Service is a software application or
component identified by a URI (Uniform Resource
Identifiers) [2], whose Interfaces and Interface Bindings:
(a) are capable of being described by standard XML
(Extensible Markup Language) vocabularies [3] and (b)
support direct interactions with other software
applications or components through the exchange of
information that is expressed in terms of an XML Info
set via Internet-based protocols [4].

At a long time, researchers seek in the nature
inspiration for the development of techniques for the
solution of problems. One of the reasons for this search
is due to the fact that in the nature, we found satisfactory
solutions for problems highly complex, as it is the case
of the survival of the species. The ANN appeared of the
attempt of imitating the human brain, and the GA
appeared of the attempt of imitating the natural
evolution.

An ANN is an interconnected assembly of simple
processing elements, units or nodes, whose functionality
is loosely based on the biological neuron. The
processing ability of the network is stored in the inter-

unit connection weights, obtained by a process of
adaptation to, or learning from, a set of training patterns.
There are a variety of kinds of design and learning
techniques that enrich the choices that a user can make.

ANN can be trained to solve problems that are
difficult for conventional computers or human beings.
ANN has been trained to perform complex functions in
various fields of application including pattern
recognition, identification, classification, speech, vision,
and control systems [7].

Neural network topology, or the number of nodes,
and the placement and number of connections between
them has a significant impact on the performance of a
neural network and its training ability. The problem of
finding an optimal topology can be thought of as a
search problem, where the search space is the space of
all possible network topologies. This space is infinite,
since there can be any number of nodes and connections
in a neural network.

Genetic Algorithms refer to a population-based
stochastic search algorithms that are developed from
ideas and principles of natural evolution. One important
feature of this algorithm is their population-based search
strategy. Individuals in a population compete and
exchange information with each other to perform certain
tasks. Hundreds of articles that explore the relationship
between GA and ANN have been presented [8].

An aspect constantly pointed out in these articles, is
that a lot of times GA cannot be explored in your
totality, because the search space should be limited. One
of the reasons for this limitation is that GA with large
search space is very computationally expensive.

In this work, an approach to minimize this problem
is proposed that uses the Web Service and the Neural
Network Markup Language [10]. These technologies are
used to create an architecture that allows authorized
users to use the service that allows the identification and
training of the best ANN to be used in a certain problem
through the Internet. Several modules compose this
architecture: user control module, ANN-WS (ANN Web
Service) control module, input control module and
ANN-WS modules. This paper is organized as it
follows. In the section 2 and 3, a brief introduction to
Web Service and Evolutionary Artificial Neural
Networks concepts are presented. In section 4 and 5, the
operation of the system and the conclusions are
presented.

 350

2. Web Service

In a simplified way, a Web Service (WS) is an
application that exposes a Web-accessible Application
Program Interface (API). In other words, this
application can be invoked over the Web. Applications
invoking this Web service are referred as clients [11]. In
a more precise way, Web services are a platform for
building interoperable distributed applications.

The Web service platform is a set of standards that
the applications have to follow in order to achieve Web
interoperability. Since the standards are respected, Web
service can be writing in whatever language and on
some operational system.

The Web service platform needs a minimum set of
features to enable the building distributed applications:

· To enable interoperability, the Web service
platform must provide a standard type system that
bridge among system types of different platforms,
programming languages, and component models. The
XML is the basic format for data representing on the
Web service platform. In addition, for being simple to
create and parse, XML is an open pattern. The W3C
(World Wide Web Consortium) XML Schema (XSD)
[12] is a standard that specifies some built-in types and
language to define additional types.

· The Web service platform must provide a mean
for describing a Web service and information others
need to invoke the own Web service. The Web Service
Description Language (WSDL) [1] is an XML grammar
used to formally describe Web service interfaces and
protocol bindings. Being XML-based, WSDL is both
machine and human readable.

· There must be a mechanism for invoking Web
service remotely, similar to a Remote Procedure Call
(RPC) protocol [13]. To promote interoperability, this
RPC protocol must be platform and programming
language independent. The Simple Object Access
Protocol (SOAP) [14][19] provides the standard RPC
mechanism used for invoking Web Service. The SOAP
specification provides standards for the format of a
SOAP message and how SOAP should be used over
HTTP (HyperText Transfer Protocol) [15]. SOAP also
builds on XML and XSD for providing standard rules
for encoding data.

SOAP is the key technology behind the Web Service
technology. In a general way, SOAP specifies a wire
protocol that is used for highly distributed architectures.
SOAP specifies a very lightweight protocol from an
administrative and use perspective. Users of SOAP-
based applications need only be able to process HTTP
requests and parse XML data. These requirements are
relatively easy to manage, especially when compared
with the requirements of other distributed processing
architectures [14].

In Figure 1, it is shown Web Service high-level
architecture, assuming the utilization of SOAP over

HTTP for invoking the Web service. The architecture
processing consists in the following steps:

Figure 1 - Web Service Architecture

1. A client, written in any language and running

on any platform, invoke the Web service by processing
of the WSDL document that describes a Web Service.
The client then formulates a SOAP request message
based on the service description.

2. The Web server receives the SOAP request
message as part of an HTTP POST request.

3. The Web server forwards to a Web service
request handler these requests for processing.

4. The request handler is responsible for parsing
the SOAP request, invoking your Web service, and
creating the proper SOAP response.

5. The Web server then takes this SOAP response
and sends it back to the client as part of HTTP response.

3. Evolutionary Artificial Neural Networks

The evolution in the nature is an excellent example
of the operation of the process of natural adaptation.
Thanks to this process, millions of species of plants and
animals live in the Earth. Each one of these species
survives, adapting yourself to the peculiar conditions of
your environment.

The populations of organisms of each one of these
species, cooperate and compete continually, in an
evolutionary interaction with selection mechanisms and
variation, what does with that the plan of creation of
each new organism, codified in your genome, constantly
vary. Like this, to each new generation, appear
organisms that thanks to your characteristics and
specific abilities are more capable to compete and to
survive in your environmental conditions.

 351

About the decade of 50, some researchers
recognized that, starting from these beginnings
adaptation evolutionary could be deduced countless
concepts and strategies for the resolution of optimization
problems. These researchers originated the call
evolutionary computation, that is the generic name,
given to computer methods, inspired in the theory of the
evolution [9].

The algorithms used in evolutionary computation are
known as evolutionary algorithms. They include
Evolution Strategies (ES), Evolutionary Programming
(EP) and Genetic Algorithm (GA). An important
characteristic, common to all these algorithms, is the
research strategy based on populations. The individuals
in a population compete and exchange information, with
the objective of accomplishing a certain task; this
strategy is composed of the following steps:

1- An initial population is created of random form
2- It is determined the fitness degree, of each

organism of the population
3- The parents of the next generation are selected,

with base in your fitness degree
4- A new population is created, through the

application of the genetic operators (crossing and
mutation)

5- If the end condition be not satisfied, returns to
the step 2

The evolutionary algorithms are very useful, to treat

of optimization problems. For analogy, the resolution of
optimization problems can be considered as the search
by the highest mountain in an area covered by the fog.
The number of individuals in the population is the
number of climbers. After a certain time of exploration,
the climbers communicate the base your altitude and
position. The climbers that register the smallest altitudes
are excluded of the expedition; new climbers substitute
them, these are children of the climbers that registered
the largest altitudes. This process is repeated until a
certain altitude it is reached (stop condition).

The determination of the parameters of a neural
network is an optimization process. In the case of an
ANN Back-Propagation these parameters can be the
learning rate, momentum, number of intermediate layers,
number of elements in the intermediate layer and the
activation function. The combination of all these
parameters characterizes a space of multimodal search,
with thousands of possible options. The observation of
this fact took the creation of a new research area in
neural networks, the Evolutionary Artificial Neural
Network (EANN) [8].

In a general way, the evolution can be applied to
neural networks in several ways: in the weights of the
connections, in the architecture of the net, in the
learning rules, among others.

4. A Services-Oriented Architecture applied
to Evolutionary Artificial Neural Network
(SOA-EANN)

A great number of researchers are working with ANN
in the whole world. These researchers have been
proposing a great amount of ANN models; these models
have been applied in the resolution of hundreds of
problems.

In the development of these applications, several
types of ANN simulators can be used. These simulators
usually belong to one of the three main existent
approaches of ANN simulators: the parallel
implementation techniques, hardware emulation and
simulation tools.

One of the most popular approaches is the one that it
uses simulation tools. The tools for development and
simulation of ANN can be divided into three main
categories: menu based/graphic oriented systems,
module libraries and specific programming languages.

The systems based on module libraries are
characterized by the provision of a module library
written in a general purpose programming language.
Such a library can be considered as a toolbox consisting
of basic building blocks for the construction and
execution of connectionist experiments. These basic
building blocks may be complete network models, tools
for training networks, tools for graphical representations
and analysis [16].

The ANN Web Service (ANN-WS), proposed and
implemented in this present work, belongs to the module
libraries category of simulators. The Web Service is an
application that exposes a Web-accessible Application
Program Interface. That means that this application can
be invoked programmatically over the Web.

The ANN-WS proposed is an independent module. It
accepts as entrance a description of the characteristics of
the ANN to be workout, as well as the necessary data for
its training.

For the description of the characteristics of an ANN,
exist some ANN specification languages, used in
different simulators, such as ASPIRIN [17], CONNECT
[18] and SNNS [5].

Recently, another type of ANN description language
has been proposed; that is a language based on XML
notation for the ANN description. The description of the
ANN in XML format, allows an easy interpretation of
the information, independent from operating system
platform or programming language.

One of the first ones is proposed as a part of PMML
(Predictive Model Markup Language) [6]. However,
PMML presents a serious limitation, since it allows
defining only Back-Propagation networks.

A more powerful approach is supplied by the NNML
(Neural Network Markup Language) in [10]. NNML
uses XML notation for full description of supervised
learning neural networks, including data dictionary, pre-

 352

processing and post-processing, details of structure and
parameters of ANN and also various auxiliary
information.

NNML allows the description of the ANN in an
expressive and extensible way, easy to interpret and
independent from individual platform or programming
language. For these reasons, a similar NNML Language
was chosen for ANN descriptions (Table 1) (Table 2).

The description of the ANN characteristics and
necessary data is received in the XML description form.
In the same way, the output of ANN-WS is also codified
in XML .

Figure 2 shows SOA-ANN high-level architecture.
The operation of SOA-ANN system occurs according to
the following steps:

Figure 2 – Services-Oriented Architecture applied to

Evolutionary Artificial Neural Network

1- Receives the information on ANN to be

workout (type of ANN, number of inputs,
number of outputs), as well as the group of data
for training and test.

2- Initializes the genetic algorithm; create at
random, the first generation of genotypes and
phenotypes.

3- Sends simultaneously, each one of the
phenotypes ANN and the group of training data
and test for a WEB Service appropriate of an
Application Server. Receive the trained
phenotype, together with a fitness value.

4- Selects the best genotypes of the previous
generation, makes the crossover and the
mutation and creates the next genotypes
generation. If is not the last generation, go back
to previous step.

5- When finishing the last generation, chooses the
best genotype, codifies your phenotype, and
sends it for the customer.

For the operation of the system, many other
procedures exist, for example, the maintenance of the
Application Service Manager database and User
Manager.

5. Conclusions and future works

Evolution can be introduced into ANN at many
different ways: connection weights, architectures,
learning rules, connection weights and architecture
simultaneously, etc. As previously mentioned, this
application consumes a great amount of computer
resources. In this work it is presented an infrastructure
that allows the exploration of the application of GA in
ANN by users without that it needs to have a computer
with great capacity of processing. SOA-EANN proposed
is an initial model; certainly, many modifications are
necessary for improvement the performance of the
proposed system.

The number of ANN applications has been increasing
in a considerable way in the last years, mainly in the
industry and in the research. The possibility of the ANN
utilization by users that don't have equipments with a
good processing capacity, but that even so can work
with complex training groups, can still enlarge the
number of ANN users and applications.

At this time, ANN-WS implements only the Multi-
Layer Perceptrons with the Back-Propagation algorithm
(Figure 3) (Figure 4), but the incorporation of other
ANN models into proposed system are also part of
future works. The exploration in the several ways of
application of GA to ANN will also be object of future
works.

References

[1] Shohoud, Y. Building XML Web Services. Addison

Wesley, 2002.
[2] Berners-Lee, T. Uniform Resource Identifiers (URI):

Generic Syntax. RFC 2396, MIT/LCS, U.C. Irvine, Xerox
Corporation, 1998.

[3] Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/2000/REC-xml-20001006, 2001.

[4] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001

[5] Zell, A. et al. SNNS - User Manual, Version 4.2.
University of Stuttgart, 1995.

[6] The Data Mining Group (DMG). PMML 2.0 - Neural
Network. http://www.dmg. org/v2-0/NeuralNetwork.html,
2001.

[7] Haykin, S. Neural Networks, A Comprehensive
Foundation. Prentice Hall, 1999.

[8] Yao, X. Evolving Artificial Neural Networks. Proceedings
of the IEEE, 87(9): 1423-1447, September 1999.

[9] Back, T. Evolutionary Computation: comments on the
history and current state. IEEE Transactions on
Evolutionary Computation, vol. 1, no.1, April 1997.

 353

[10] Rubtsov D. Development of technology of artificial
neural networks application in applied information
systems. Ph.D. thesis, Altai State University, Barnaul,
2000.

[11] Coyle, F. XML, Web Services, and the Data Revolution.
Addison Wesley, 2002.

[12] Holzner, S. Inside XML. New Riders Publishing, 2001.
[13] Tanenbaum, A. Modern Operating Systems. Prentice-

Hall Inc, 1992.
[14] Scribner, K. Understanding Soap. Sams Publishing,

2000.
[15] Tittel, E. Foundations of WWW. IDG Books, 1996.
[16] Kock, G., Serbedzija, N. Simulation of Artificial Neural

Networks. Systems Analysis - Modelling - Simulation
(SAMS) 27(1):15-59, Gordon & Breach Science
Publishers, 1996.

[17] Leighton, R. The Aspirin/Migraines Software Tools.
MITRE Corporation, 1993.

[18] Kock, G. Artificial neural networks: from compact
descriptions to C++. Proceedings of the International
Conference on Artificial Neural Networks, Springer-
Verlag, pp. 1372-1375, 1994.

[19] Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP, 2001.

Figure 3: ANN Back Propagation Class

Figure 4: Genetic Algorithm Class

Table 1: ANN Patterns XML Schema

<?xml version="1.0"?>
<xs:schema
id="Patterns"
targetNamespace=http://tempuri.org/treina.xsd
xmlns=http://tempuri.org/treina.xsd
xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:element name="Patterns">

 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="P">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="I" type="xs:string" minOccurs="0" />
 <xs:element name="O" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>

 </xs:element>
 </xs:choice>
 </xs:complexType>

</xs:element>

 354

Table 2: ANN Back-Propagation XML Schema

<?xml version="1.0" ?>
<xs:schema id="ANN1BP" targetNamespace="http://tempuri.org/net0.xsd"
xmlns="http://tempuri.org/net0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema" >
<xs:element name="Network">
<xs:complexType>
<xs:sequence>
 <xs:element name="Epochs" type="xs:string" minOccurs="0" />
 <xs:element name="Fitness" type="xs:string" minOccurs="0" />
 <xs:element name="LearningRate" type="xs:string" minOccurs="0" />
 <xs:element name="Momentum" type="xs:string" minOccurs="0" />
 <xs:element name="RandomLimit" type="xs:string" minOccurs="0" />
 <xs:element name="m_Layers" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="m_Neurons" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="IDLayer" type="xs:string" minOccurs="0" />
 <xs:element name="IDSeq" type="xs:string" minOccurs="0" />
 <xs:element name="RMSE" type="xs:string" minOccurs="0" />
 <xs:element name="ActivationType" type="xs:string" minOccurs="0" />
 <xs:element name="BiasValue" type="xs:string" minOccurs="0" />
 <xs:element name="BiasWeight" type="xs:string" minOccurs="0" />
 <xs:element name="calcValue" type="xs:string" minOccurs="0" />
 <xs:element name="neuronValue" type="xs:string" minOccurs="0" />
 <xs:element name="m_Synapses" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight" type="xs:string" minOccurs="0" />
 <xs:element name="IDConnectedNeuronLayer" type="xs:string" minOccurs="0" />
 <xs:element name="IDConnectedNeuronSeq" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

