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Abstract

This article presents a concept for obstacle 
avoidance in dynamic environment suitable for mobile 
robot. The task of obstacle avoidance is divided in three 
principal groups: local, global and for emergencies. 
The local avoidance is here approached, in which the 
concept used is based on reinforcement learning, in 
such a way that the situations are divided into four 
states and two kinds of actions are possible. The states 
define in what situation the movement relationship 
between the robot and the dynamic obstacles is present, 
and the actions decide in which direction the robot must 
follow, in order to avoid a possible collision. And 
besides, here it is showed also how the state-action 
matrix was filled and its representation using neural 
network.

1. Introdution

In recent years many researches have their attention 
pointed to the solution of obstacle avoidance, principally 
obstacles which change their position. For static 
obstacles, many strategies were presented with excellent 
results. But for dynamic obstacle, there is too much to 
do, although many proposals have interesting results.

Different strategies were and are presented in order 
to solve this problem. It is possible to divide these 
strategies in two classes: model-based and learning-
based. The model-based concept utilizes mathematical 
models to describe the robot and obstacles movement 
and to describe the possibility of an collision, and 
therefore how to avoid them. On the other hand, 
learning-based methods use the knowledge obtained 
in/from real situations and “learn” the way to avoid 
obstacles.

Regarding the model-based methods, interesting 
work is presented by Freund et al. [2], which deals with 
model and conditions for safety path planning. Shiller et 
al. present another excellent work [8], in which 
mathematical model of free places is developed.

An interesting learning-based method in obstacle 
avoidance is presented by Tang et al. [10]. In this work 
rules for the possibility of collision are detailed and 
implemented in a fuzzy system. Another interesting 

work is presented by Tsourveloudis et al. [11]. In this 
work a fuzzy system is combined with the electrostatic 
potential field method for path planning. In the work of 
Kawano and Ura [5], it is presented a path planning 
done by multi reinforcement learning (RL) modules, 
which can also accept external command. Yen and 
Hickey ([12]) propose improvements in the performance 
of traditional RL methods used for robotic navigation. 
Gachet et al. ([3]) propose a special Neural Network 
representation of a RL system.

One question is always present, when we see around 
this kind of problem, which can be solved by animals 
and is difficult to construct a machine with the same 
characteristic: do animals do hard calculus in order to 
find a solution for these “trivial” problems? Due to this 
question, this article presents an imitation of how human 
beings can solve these problems. Here, the most 
important tool is memory. With memory, a past 
experience can be used in a similar future situation, and 
the most successful solution applied in that case is 
reused in the present situation. It seems that our mind 
attempts to "remember the future" based on what has 
occurred in the past [4]. For such, it is necessary to have 
the following conditions:
• Plausible encoding of the information from the 

environment;
• Good information storage;
• Easy retrieval of the information.

And in order to make decisions, it is necessary too a 
proper evaluation of the decision taken in the past, such 
that it is possible to “learn” which decision is better than 
other, and then choose it in the future.

Considering the conditions above, specially the one 
about decisions, this work uses the learning-based 
method, more precisely RL method, for local obstacle 
avoidance. These methods try to acquire the knowledge 
necessary for the solution by trials and evaluation of 
each solution. In this work, the way to represent the 
movements, possibilities and situations (encoding) are 
presented, as well as the procedure of storage of 
evaluated decisions.

This article has the following organization: in section 
2 the desired characteristic of learning methods are 
presented, followed by a discussion about the RL 
technique, as well as the states and actions used here are 
detailed. Then, the architecture of the obstacle 
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avoidance system is shown. The results obtained in 
simulations are presented and the conclusions and future 
works are depicted.

2. Desired Characteristic of Learning 
Methods

Diverse techniques can be used in order to solve this 
problem. Neural Network, Fuzzy Logic and 
Reinforcement Learning are some of artificial 
intelligence techniques, which can be used. Each of 
these has particular characteristic, such that one can be 
more suitable for a type of problem. For obstacle 
avoidance, it is difficult to say which strategy is the best. 
However, it is possible to say the characteristics, which 
are desirable in a technique, such that it is more eligible 
for the obstacle avoidance problem:
• Intuitive data;
• Cumulative learning;
• Constructive solution;
• Direct knowledge acquisition.

Intuitive data means that the data used by a strategy 
should be “visible”, like distance between the robot and 
one obstacle, time for occurrence of impact and turns in 
robot movement. Quantities strongly modified by 
complex mathematical equations are good for precise 
calculations, but they become a value more artificial, 
less intuitive and, therefore, tend the interpretation of 
them to be difficult.

The problem of dynamic obstacle avoidance consists 
of several situations, which are different among them, 
but are interconnected too. Then the learning acquired 
for a given situation must be kept, while another 
knowledge is learned for another situation. That means 
cumulative learning. More, if a learning already 
acquired should be modified, the modification must not 
interfere in other knowledge, which doesn’t have 
relation with it.

Another characteristic of dynamic obstacle 
avoidance is that a unique action normally is not 
sufficient for a collision free movement. Many times it is 
necessary to have a serie of actions. This complex task 
can be performed by a set of primitive actions [3]. 
Therefore a solution can be well founded when 
hierarchical decisions are taken in a well-defined 
sequence. For example, for a certain obstacle, turn right 
and after go ahead makes a robot to avoid it, but the 
same cannot be true if it first goes ahead and then turns 
right.

An important characteristic of a learning strategy is 
the possibility of acquiring a knowledge at the first time 
it is presented to this strategy, or in some cases after few 
times. It is not good, when knowledge must be presented 
many times repeatedly, until the learning strategy can 
acquire this knowledge. If for an obstacle is coming in 
front of the robot, turn right or left should be learned at 
the first time, or in the worst case after three or four 
times.

Based on these four characteristics, it seems to be a 
good option, the reinforcement learning (RL) technique. 
Moreover, there are other conditions for this choice: no 
previous knowledge of the correct solution must be 
known by the designer, as Fuzzy Logic needs; and the 
environment also must not present the correct solution to 
the learner [12]. RL techniques can learn a solution 
without this information. They can learn by trial-and-
error method, but with directions to the correct way of 
the solution.

3. The RL techniques, States and Actions

Diverse RL techniques exist nowadays. They can be 
classified as Direct Reinforcement (DR), value function 
methods and Actor-Critic [6]. Each one has advantages 
and characteristic suitable for a particular class of 
problem. An excellent reference on this topic is 
presented by Sutton and Barto [9].

Considering the characteristics presented in section 
2, principally the last three characteristics, the value 
function methods seem to be a good option for obstacle 
avoidance and more precisely the Monte Carlo 
technique offers good reasons to be selected: it has 
cumulative learning, whereas it is possible, a solution 
for a given situation to be learnt today, and tomorrow 
another knowledge can be learnt for another situation, 
with no interference from previous knowledge acquired, 
except if an interference with relationship aspect is 
desired. The constructive solution can be performed 
defining primitive actions on robot’s movement, such 
that a set of these basic actions can perform all complex 
movements. And the most important characteristic is 
achieved because Monte Carlo updates the Q-value 
direct into Q-value matrix. But for excellent results, a 
proper function of the performance in obstacle 
avoidance must be defined.

The evaluation function utilized in this work during 
training, in order to classify the decisions taken by the 
robot in an obstacle avoidance situation, is the time 
spent by the robot from the beginning of the robot-
obstacle transaction until the end of this transaction. 
Here, the most important thing, when an obstacle 
avoidance movement is taken, is not the absolute time 
value, but the order of these values, that means, the 
qualitative evaluation is more important than the 
quantitative value. And this classification will be used 
wherever another similar situation is presented to the 
robot and, therefore, is necessary to decide which action 
to take. In fact, the evaluation function f used is shown 
in equation 1 below.
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where t is the time spent during the avoidance, a is the 
number of actions taken and n is the number of trials 
performed. The terms a and n are used, because it is 
possible, two actions for the same robot-obstacle 
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situation spent the same time, thus, in order to have 
different values for all actions ever, these components 
are added to the time spent. The reason of the inversion 
and the constant –100 is due to the initialization of the 
matrix used for saving the states-actions values. This 
initialization was made with zero for all elements of this 
matrix, except to those, which correspond to the action 
“go ahead”. This way permits the decision with the best 
evaluation to have a minimal value and to be inferior to 
zero.

Considering the constructive solution of complex 
tasks based on primitive behaviors, an obstacle 
avoidance solution is obtained with a series of actions in 
directions and velocities. Thus, it is necessary first to 
know if a sequence of actions was able to avoid a 
collision. If so, then the function f above is calculated; if 
not, then it is not possible to say about the actions taken 
and no action is updated. And more, for consistency 
reasons, the evaluation values are saved into matrix only 
for the last action taken in one state. That means, in a 
sequence of decisions, it is possible for a given state S1, 
the action A1 to be taken and after, but yet in the same 
problem, the robot can be in the same state S1 and 
another action A2 is taken, then only this action is 
evaluated, because it conducted the robot to safety 
place. This procedure is made for all states visited by 
the robot for specific obstacle avoidance.

Moreover, an action chosen for updating for a given 
state, according to the explanation above, is updated 
only if the present evaluation is better than the previous 
one already saved in state-action matrix.

The most problem (and even so not easy to solve it) 
in designing with RL is to determine the representation 
of the situations (states) and the attitudes to be made by 
the agent (actions), in order to solve the problem, or in 
this case to avoid an obstacle.

For robot navigation, the states and actions chosen 
were based on probable human representation of the 
situation and the decision made by them. The actions are 
simple: bounded velocities of the robot in two 
directions, in such a way that the robot can move in 2-
dimensional space, or stop.

The states, which can represent a situation in 
obstacle avoidance, are more complex. However, when 
we humans do obstacle avoidance, we look into the 
environment, detect obstacles and extract important 
information based on their position and velocity with 
respect to us. The objective is to avoid an collision (two 
bodies in the same point and at the same moment), then 
the following information can be inferred from the 
environmental data: 1) if there is a possibility of 
collision; 2) where is the possible collision; 3) when is 
the possible collision. Based on these inferences, a 
proper decision is taken. In order to demonstrate the 
applicability of the states chosen, it is convenient to 
follow the steps below.

Imagine you in a collision avoidance situation. You 
are a robot in a space with one dynamic obstacle. For 
better understanding, it is shown this situation from a 

top view. The robot is the square and the unique 
obstacle is the circle. The arrow indicates the present 
direction of one body and if one body has no arrow, its 
direction is unknown. For the following situation, which 
direction would you take ?

Figure 1: Robot-Obstacle transaction where the 
obstacle’s direction is unknown

The obstacle’s direction is very important. For the 
four situations in Fig. 2, it is possible to take easily a 
correct decision.

Figure 2: Robot-Obstacle transaction with the obstacle’s 
directions known

For the obstacle’s direction pointed by a dashed 
arrow, a collision is imminent, while for others 
directions, if no changes happen, it is not necessary a 
correction in robot’s course.

As consequence of the direction of the obstacle, it is 
possible to say that more important than the robot-
obstacle distance is the distance from the present robot’s 
position and the probable point of impact. The figure 3 
shows this importance.

Figure 3: Two different distances to collision for the 
same obstacle’s position

In this figure, for the same distance between the 
robot and the obstacle, there are two different points of 
impact, and possibly two different behaviors for 
collision avoidance. When the point of impact is nearer 
than another point, our preoccupation for collision 
avoidance is different too.

Another interesting consideration is how far the 
obstacle is from the robot’s way. This can be seen as a 
degree of how free is the robot’s way. If the obstacle is 
near from the presumable path of the robot, the path is 
less free than if it is far. Depending on how free is the 
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robot’s path, different avoidance may be performed. The 
Fig. 4 shows this situation.

Figure 4: Two different configurations of freedom

The last important data useful for obstacle avoidance 
has relationship with time and it is dependent on both 
robot’s and obstacle’s velocities. Here, the most 
important is not to know the velocity values, but if the 
robot can arrive at the point of impact at the same time 
of the obstacle or if he arrives before or after it. If it is 
more possible to arrive before than the obstacle at the 
point of impact, then the decisions that brake the robot 
are less interesting.

So, in order to represent the items from section 2 and 
considering the description above, the four states below 
are used in this work:
• di: distance to the possible point of impact;
• beta: direction of an obstacle;
• y_dro: shortest distance between obstacle and the 

robot’s path;
• ti: condition of arriving: if the robot will arrive 

before, at the same time or later related to the 
obstacle at the impact point.
However, one common problem with RL 

representation is the explosion of the number of states 
and actions, that means, too much number of states and 
actions are necessaries for a good representation. In this 
work, in order to decrease the amount of memory used 
to save the state-action matrix, a neural representation of 
this matrix is used. This representation permits to use 
fewer bytes compared to the matrix direct in memory 
storage.

Moreover, it is used also a scheme of neural 
networks (NN) in parallel, that can make a cooperative 
training. The following figure shows this scheme with 
two NNs., but if necessary, more NNs can be added to 
it. In this scheme Y is the output of the set of NNs, 
which is equal to sum of each NN. D is the desired 
output for the scheme and E is the output error of the set 
of NNs.

In this scheme, the training is a little bit special: in 
order to avoid the NNs make a dirty competition, in 
which one tries to destroy the other and so they can’t 
construct a solution together, only one NN is trained, 
while the other NNs produce their results with their 
weights unaltered. This procedure has two great 
advantages: avoids dirty competition among the NNs 
and, therefore, no necessity of an element for 
coordination. In many schemes, in which more than one 

NN is used, a coordinator is necessary for the 
organization. The coordinator can be another NN or 
other element that can apply a linear or non-linear 
combination among the NNs’ output. This scheme was 
already utilized in control of a flexible link [1]. An 
important reference on use of more than one NN can be 
found in [7].

Figure 5: A scheme of two NNs in parallel

The scheme begins with only one NN and this is 
trained alone with a partial set of the training data. 
When the training can’t advance, another NN is added 
to the scheme, whose outputs are zero for all inputs. 
This second NN is trained, while the first produces its 
output. If the training of the second NN can’t advance 
too, it is possible to continue the training of the first NN, 
while the weights of the second NN become invariant, 
or another NN is added and the process repeats. This 
procedure causes another advantage of this scheme: 
when a NN is trained, it utilizes the knowledge acquired 
by the others NNs, that means, the training of each NN 
doesn’t reject the knowledge already learned by the 
others NNs because it is used in the present training. 
The equations below show this. When the first NN was 
training, the output error was E = D – Y1 and the 
teaching signal for this NN was

Y1 = D (2) 
 

The output error is E = D – Y1 – Y2 with the 
second NN, and the teaching signal for this NN is

Y2 = D – Y1 (3) 
 

If the first NN is trained again, the second NN is not 
trained and the teaching signal for the first NN is

Y1 = D – Y2 (4) 
 

Or if another NN is added, and the teaching signal 
for the third NN is

Y3 = D – Y1 – Y2 (5) 
 

As it can be seen, the desired output of each NN is 
different from each one. Even when a NN is trained 
again, its teaching signal is different from that used in 
previous training.
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4. Obstacle Avoidance Architecture

There are three different obstacle avoidance 
approaches: local (decision), global (planning) and for 
emergencies (failure). The local avoidance tries to avoid 
the most imminent collision. The global avoidance 
chooses an action that can be used for the local 
avoidance (not necessarily the best one), but that also 
avoids the others obstacles or has a greater chance to 
avoid them. However, if the action chosen, or the 
sequence of actions, drives to a collision, because the 
action was not properly chosen or the environment has 
another context, another type of actions is made 
considering the emergency situation. The action chosen 
has many times no relationship with the destination 
point. The goal in this moment is to avoid an immediate 
collision.

The avoidance above must combine with the path 
defined for the static environment. That means, there is 
a path defined a priori, which dictates the robot’s 
movement in a well-known and static environment. And, 
in complement of this path, avoidance are made based 
on the pre-defined path and the dynamic obstacles 
condition. The following explanation clarifies how both 
systems can work together.

First, a path for the static environment is made. 
Normally, the algorithm for this case uses the initial 
(present) and final positions and velocities of the robot, 
as well as a map with description of free and occupied 
positions.

Then, the path produced feeds the dynamic 
avoidance system. For each time step, this system uses 
the present robot’s and environment’s states and the 
trajectory to be done by the robot at this time. Based on 
this information, it classifies the situation in one of the 
three possibilities: no collision, possible collision or 
collision. In this work, this classification is made by the 
following rule: if the robot’s semi-line and the obstacles’ 
semi-line have no intersection point, then the situation is 
classified as no collision. If there is at least one 
intersection point and the distance between the robot 
and the obstacle is inferior to 4 m, then there is a 
possible collision; and if the distance is less than 0.8 m, 
then the classification is collision. The figure below 
shows an example of possible collision. Here the semi-
lines are drawn as dashed lines and the arrows indicate 
the direction of the objects.

Figure 6: A classification of “possible collision”

For the first type of classification – no collision –, no 
problem is detected and the robot can follow the 
movement defined by the pre-defined trajectory. If the 

situation is classified as collision, then an escape path 
must be done. This escape tries to avoid an immediate 
collision, even if it follows an opposite direction relative 
to the desired destination.

However, if the classification is as possible collision, 
then avoidance must be done. The avoidance must 
consider the destination of the robot’s path, the 
movement of the dynamic obstacles and the position of 
the static obstacles. Based on this information, a 
sequence of actions is taken, which can drive the robot 
to the destination through a safe path. After the collision 
is surpassed, generally another pre-defined path to the 
destination is necessary.

The sequence of actions is defined by the RL 
technique. During the training, the robot is put in diverse 
situation with only one punctual dynamic obstacle. After 
several trials, a classification of the actions for each set 
of states is available.

For the avoidance in a real situation, first three 
tracking points should be defined: left, central and right. 
These points define a non-punctual obstacle. In last 
figure, these points are the three black circles around the 
obstacle. The point to be avoided is the central point, 
while the others define the boundaries of the obstacle. 
The central point moves along the obstacle’s surface, 
according to the avoidance taken by the robot. The 
central point movement continues until no more impact 
condition is encountered or until it is equal to one of the 
other two points, when the tracking points are redefined.

Trying to avoid a point, which moves to a boundary, 
performs the first case of solution of a complex problem 
using a combination of primitive solutions. The other 
case concerns the global avoidance. In this case, before 
an action is taken, it is verified the consequence related 
to the others obstacles. From the set of actions, that can 
avoid the central point, it is chosen one that has less or 
no consequences, that implies it has the longest duration 
to the point of impact or has no collision conditions for 
the other obstacles. It is possible that the action chosen 
is not the best action concerning to the central point, but 
for the other obstacles the future implications are small 
or none.

5. Simulations

In this work, only the local and for emergencies 
avoidance were implemented. Therefore, only the 
avoidance of one obstacle is presented.

The following figures present the avoidances tested 
in simulation. In these figures, the different faced colors 
indicate the different positions in time and a drawing of 
the robot and the obstacle with the same color indicates 
their position for the same instant. Hence, first they are 
in position indicated by the white color and go to the 
position indicated by black color. From one position, the 
time spent to the next position was 2 s. The arrows mean 
that after this position, they probably can follow the 
indicated direction. The goal in these simulations is to 
achieve the X point. The obstacle’s velocity was 0.6 m/s 
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in modulus.

Figure 7: Obstacle avoidance – case 1

Figure 8: Obstacle avoidance – case 2

Figure 9: Obstacle avoidance – case 3

6. Conclusions and Future Works

This work showed learning-based methods for 
dynamic obstacle avoidance, which can avoid more 
complex obstacles based on primitive actions. These 
primitive actions were obtained with RL technique 
trained with Monte Carlo algorithm. A combination of 
primitive actions and a well-structured logic permitted 
the robot avoid obstacles didn’t used during the training, 
like ones with different trajectories or/and dimensions.

However, more is still necessary. The concept 
presented here must be proved in situation with dynamic 
and static obstacles. The insistence of performing a 
solution for more complex problem utilizing primitive 
actions combined with some procedure will be tested. 
The success of avoidance of bigger obstacle, while the 
training was performed using only punctual obstacles, is 
a motivation of this strategy.
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