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Abstract 
 

A method is developed for the iterative parallel 
solution of the feedforward neural networks supervised 
training problem. Stochastic optimal linear estimation 
is used go get a backpropagation with momentum 
method, where the momentum weighting is 
automatically done. The estimation of neural network 
weights is done avoiding the difficulties characteristic 
of Kalman filtering type of algorithms and related with 
the adjustment and calculations involving the a priori 
covariance matrix of estimation errors. Preliminary 
numerical testing indicates that the method is a 
competitive choice in terms of effectiveness, efficiency 
and facil ity of use when compared to the 
backpropagation method. 
 
 
1. Introdution 
 
      The search for effective and eff icient feedforward 
neural networks supervised training methods is certainly 
relevant and still of present interest. The theoretical 
results guaranteeing that these neural networks are 
universal approximators ([1], [2], [3]) are not 
constructive, that is, they do not provide the procedure 
for constructing the neural network to approximate a 
given mapping. The usual approach of treating the 
problem as one of optimization where a functional of 
fitting errors is minimized allows the use of existing 
numerical optimization methods. However, due to the 
characteristics of the problem there is still much to be 
done in the search for methods giving a better 
compromise in terms of effectiveness, eff iciency and 
facility of use. 
      Recently an analogy with multilayer feedforward 
networks training and stochastic optimal linear 
estimation were used to develop a new method for the 
parallel solution of linear algebraic systems of equations 
([4], [5]). This was done exploring analogies with the 
problem of supervised training of artificial neural 
networks when local training Kalman algorithms are 
used (e.g.: [6], [7], [8], [9], [10], and [11]). The method 
resulted to be a generalization of Jacobi’s method, even 
when its most recent and elaborated form as presented 
by Björck ([12]) is considered. 

      In this paper, exploring analogies in the reverse way, 
a method is developed for the iterative parallel solution 
of the problem of feedforward neural networks 
supervised training. The resulting method turns out to be 
a stochastic optimal linear estimation version of a 
backpropagation with momentum method, where the 
momentum weighting is automatically done. The 
motivation is to have a parallel processing, stochastic 
optimal estimation based method, more efficient than 
the usual backpropagation, but which avoids the 
difficulties of dealing with the a priori information 
covariance matrix in the Kalman filtering approach. 
 
2. Neural Network Training Approach 
 

When a feedforward neural network is used to 
approximate a given mapping its training is done by 
supervised learning from input-output patterns data sets: 
 

L,...,2,1t),t()t(x(f)t(y:))t(y),t(x{( =+= ε }     (1) 

 
where, )t(ε  is a zero mean random variable 

representing the accuracy with which the approximation 
is to be attained. Adjusting (estimating) the neurons 
weight parameters to approximately fit the artificial 
neural net correspondent computational model to this 
data can be viewed and treated as a parameterized 
mapping: 
 

)w),t(x(f̂)t(ŷ =                (2) 

 
where w  is the vector of neuron weight parameters to 
be estimated. 

A usual approach to solve the problem of supervised 
training is to minimize, with respect to the vector of 
weights w, the functional: 
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where, the input-output data {x(t),y(t): t=1,2,….,L} is 

given, and the weight matrices )t(R 1−  can be taken as 

the inverse of the covariance matrices of )t(ε . 
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Minimizing the cost function of Eq. (3) can 
heuristically be seen as a solution to the estimation 
problem:  
 

L,...,2,1t),t()w),t(x(f̂)t(y =+= ε                       (3a) 

 
If the mapping of Eq.(3) is expanded in a Taylor 

series, in a typical ith iteration, it results: 
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where, )2(ο  indicates the high order terms; 

)i(w;I,...,2,1i =  is the a priori estimate of w  coming 

from the previous iteration, starting with 

));i(w),t(x(f̂)i,t(y;w)1(w == ))i(w),t(x(f̂w  is 

the matrix of first partial derivatives with respect to w . 
Retaining only the first order terms of the series 

expansion, and in order to better attend the linear 
perturbation condition, it is reasonable that in a typical 
ith – iteration: 
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where, 1)i(a0 ≤〈  is a rate-of-learning parameter to be 

adjusted in order to guarantee the hypothesis of linear 
perturbation. The resulting approximation of )w(J  in 

Eq.(3), in a ith iteration, is then: 
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where the following compact notation was adopted: 
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The minimization of the functional of Eq.(5) with 

zero weighting of the a priori knowledge of )i(w  is 

formally equivalent ( see, e.g.,[13]) to the optimal 
solution of the following stochastic linear estimation 
problem:  
 

)t()i(w)i,t(H)i,t(z ε+=                                         (8) 
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with, t=1,2,…,L, and )t(ε  taken as a Gaussian white 

noise sequence. 
In what follows an approximate parallel processing 

solution will be proposed for the estimation problem of 
Eqs. (8). 
 
3. Proposed Parallel Solution  Method 

 
Following closely Rios Neto and Rios Neto ([4], 

[5]), consider the system of redundant linear algebraic 
equations when Eqs. (8) are combined for all values of t, 
resulting: 
 

ε+= )i(w)i(H)i(z                                                (10) 

 
where H(i) is a given mxn rank n real matrix; w(i) is the 
complete nx1 vector of unknown neuron weight 
parameters in the ith iteration; z(i) is a given mx1 real 
vector; and ε  with the distribution as in Eq. (9) is to 
represent the numerical accuracy expected to be 
attained. 
    In an inside (relative to each outside iteration in i for 
each i=1,2,…, I) iterative solution scheme, the problem 

of Eq. (10) can be treated, in a typical ii  inside 

iteration, as: 
  

εβ +−=− ))i(w)i(w)(i(H))i(w)i(H)i(z( iit    (11) (11) 

 
where, ii I,...,2,1i = ; )i(w i  is the value from the 

previous inside iteration, with an initial guess reasonably 
taken as )1( iw = )i(w ; and 10 t ≤< β  is to be chosen 

to adjust the step size in a given iteration of the linear 
system iterative solution. 

Consider now the analogy where the linear algebraic 
system is viewed as a multilayer perceptron neural 
network, with a first layer of n fan out neurons and an 
output layer of m perceptrons with identity activation 
functions (e.g.,[14]). The condition of Eq. (11) is that 
obtained in a typical i teration if a stochastic optimal 
linear parameter estimation training approach is applied 
to this particular neural network (see e.g., [11]), to 
determine the input w associated with the output vector 
z(i), in a situation where the output layer weights )i(h jk  

are assumed known. For this analogous neural network, 
one can now take an approximate in parallel iterative 
solution ([11]), to get in each inside iteration 
convergence contributing increments in the components 

)i(wk : 
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and for j=1,2,...,m and k=1,2,...,n: 
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An equivalent form of Eq.(11), from which Eq.(12) 

would heuristically follow, is: 
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where, )i(H k  is the kth column of H(i); and kββ =  

and kε  sum up to tβ and ε  respectively.  

In the linear parameter estimation problem of 

Eqs.(13) the errors kjε  are thus zero mean, normally 

distributed not correlated random errors (see Eq. (9)), 
with variances:  
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With this modeling approach, the problem of solving 

for the generic component )i(wk  in Eq.(12) can be 

viewed as one of stochastic linear parameter estimation, 

in each ii  inside iteration. For each n,...,2,1k = , the 

observation like Eq.(12) can then in each ii  iteration be 

processed in parallel, using a without a priori 
information Gauss-Markov estimator (see, for example, 
[15]or[13]), to get an estimate of the components 

)i(wk : 
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where, as defined before, )i(H k  is the kth column of 

H(i); and 
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Noticing that the without a priori information form 

of the estimator in Eq. (16) allows to cancel out the 

factor 2n−  in R , and that R is the same for k=1,2,…,n, 
it is then possible to combine the estimates )i,i(ŵ ik , of 

the parallel processing estimation, to get the equivalent 
following estimator for the whole vector w(i) in the 

inside iteration ii  : 
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and where β<0  can be chosen such as to minimize 

))i(w(f L  in a given inside iteration, if it is taken as 

([16]): 
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Since S  and )i(HR)i(H 1T −  are positive definite 

matrices, the estimator of Eq.(18) is equivalent to a 
modified Newton method applied to the functional 

))i(w(f L . 

Convergence of the parallel processing method of 
Eqs.(16) can now be verified considering its Newton 
method equivalent form of Eq. (18), using the 
Kantorovich inequality and concluding that in each 
iteration ( see for example [16], pp. 261-262): 
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w* )i(  being the value of w )i(  that leads to the 

minimum of ))i(w(fL  in Eq.(19); and mM ,λλ  the 

largest and smallest eigenvalues of the positive definite 

matrix )i(HR)i(SH 1T − . 

Notice that for each neuron weight )i(wk  the 

estimate of Eq.(16) is the result of processing in batch 
the L observations li ke Eqs.(13). Since the )t(ε  are 

taken as Gaussian white noise sequences, the matrices 
R(t) are diagonal and the result of the estimate of 
Eq.(16) can equivalently be obtained by recursively 
processing Eqs.(13) ( see e.g., [15], pp. 161-163). Thus, 
the proposed parallel solution method turns out to be a 
backpropagation with automatically generated 
momemtum type of method. 

The numerical implementation of the method can be 
done in the following three steps algorithm: 

(i) In an outside Ii ≤  iteration, and for all the 
t=1,2,…,T, with )t(R),t(y),t(x  given; 

and with the a priori estimate )i(w  



 214 

coming from the previous (i-1) iteration or 
starting with w)1(w = , calculate the 

))i(w),t(x(f̂)i,t(y = . If the 

( )i,t(y)t(y − ) are inside the 3 sigma 

limits given by the distribution of the 
)t(ε , make )i(w)i(ŵ =  and stop, 

convergence was reached. If not: calculate 

the ))i(w),t(x(f̂ w ; adjust 1)i(a0 ≤〈  to 

guarantee the hypothesis of linear 
perturbation; calculate the )i,t(H),i,t(z  

and form )i(H),i(z ; calculate S (Eq. 

(19)) and S)i(HR)i(SH 1T − . Go to (ii ). 

(ii ) For the given i, in a given inside ii Ii ≤  

iteration, with )1i(ŵ)i(w ii −=  the a 

priori estimate coming from the previous 
iteration in ii  and starting with 

)1( iw = )i(w  calculate 

))i(w)i(H)i(z( i− , and for those 

components inside the 3 sigma limits, take  
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 If all components are inside the 3 sigma 
limits given by the distribution of ε , 
increment i, and for the incremented value 
of i redefine )i(w = )i(w i , reset 1i i =  

and go back to (i). If not, calculate 
))i(w(g i  (Eq. (19)) and β  (Eq. (20)), go 

to (iii). 

(ii i) In parallel, for k=1,2,…,n, calculate the 
estimates of )i(wk  (Eq. (16)). Redefine 

)1i(w ik + = )i(ŵ)i,i(ŵ ikik = , increment 

ii  and go back to (ii). 

 
4 Preliminary Numerical Test 
 
     The very simple xor problem is considered, for a 
preliminary evaluation of the method developed as 
compared to Matlab versions of the Backpropagation 
and the Levenberg Marquadt methods. A multilayer 
perceptron neural network with two inputs, two hidden 
hyperbolic tangent sigmoid neurons and one linear 
output neuron was trained, initiali zing the weights with 
random outcomes of a zero mean and variance one 
normal distribution. In what follows, the results, 
correspondent to the value of the rate of learning 
parameter (alfa) for which each method exhibited the 
best performance, are presented. 
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Figure 1: Backpropagation best result, 1.0=α  
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Figure 2: Levenberg Marquadt best result, 6.0=α  
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Figure 3: New Method best result, 8.0=α  

 
     These results indicate that the new proposed method 
is competitive as compared to the usual 
Backpropagation, as expected, since it is a 
backpropagation with momentum type of method. The 
results also indicate that the new method can be 
competitive as compared to the Levenberg Marquadt 
method, depending upon optimization of the numerical 
programming of its numerical algorithm. 
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     Though numerical tests in more complex situations 
have not yet been done, it is expected that for neural 
networks with more complex architectures, where a 
large number of neurons is involved, the proposed 
method will suffer limitations similar to those of the 
Levenberg Marquadt method, and related to memory 
requirements and time spent in each iteration 
calculations. It is recognized that further efforts have to 
be made to simpli fy the calculations to get β  in Eq. 

(20). 
 
5. Conclusions 
 

The adoption of an iterative stochastic parameter 
estimation approach allows the problem of neural 
network supervised training to be reduced, in each 
iteration, to one of solving a stochastic linear estimation 
problem. The possibility of getting an approximate 
parallel iterative solution can be explored if in each 
iteration this problem is looked at as one of solving a 
stochastic system of redundant linear algebraic 
equations and if an analogy is made to view the linear 
system as modeled by a multilayer perceptron neural 
network. 
      In this paper these possibil ities were explored to 
develop a stochastic backpropagation with automatic 
momentum weighting method. 

The motivation was to have a method giving a good 
compromise in terms of effectiveness, efficiency and 
facility of use. That is, a method with effectiveness of 
convergence close to Kalman filtering type methods, but 
with the eff iciency of backpropagation with momentum 
methods, however without the diff iculties of 
heuristically having to adjust the weighting of the 
momentum term. 

The preliminary testing results presented are only 
indicative of method’s expected performance. However, 
the fact that a numerical formal equivalence with a 
modified Newton method exists is a guarantee of 
competitive performance as compared to gradient based, 
first order methods. 
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