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Abstract

A method is devdoped for the iterative parallel
solution of the feadforward neural networks supervised
training problem. Stochastic optimal linear estimation
is used go get a backpropagation with momentum
method, where the momentum weighting is
automatically done. The estimation of neural network
weights is done avoiding the difficulties characteristic
of Kalman filtering type of algorithms and related with
the adjustment and calculations involving the a priori
covariance matrix of estimation errors. Preliminary
numerical testing indicates that the method is a
competitive doice in terms of effediveness efficiency
and facility of use when compared to the
backpropagation method.

1. Introdution

The seach for effective and efficient feedforward
neural networks supervised training methods is certainly
relevant and still of present interest. The theoreticd
results guaranteeing that these neura networks are
universal approximators ([1], [2], [3]) ae nat
constructive, that is, they do not provide the procedure
for constructing the neural network to approximate a
given mapping. The usual approach of treating the
problem as one of optimization where a functional of
fitting errors is minimized allows the use of existing
numerica optimization methods. However, due to the
charaderistics of the problem there is still much to be
done in the seach for methods giving a better
compromise in terms of effediveness efficiency and
fadlity of use.

Recently an analogy with multilayer feedforward
networks training and stochastic optima linear
estimation were used to develop a new method for the
pardlel solution of linea algebraic systems of equations
([4], [5]). This was done exploring analogies with the
problem of supervised training of artificial neural
networks when loca training Kalman algorithms are
used (e.g.: [6], [7], [8], [9], [10], and [11]). The method
resulted to be a generalization of Jacobi’s method, even
when its most recent and elaborated form as presented
by Bjoérck ([12]) is considered.

211

In this paper, exploring analogies in the reverse way,
a method is developed for the iterative parallel solution
of the problem of fealforward neural networks
supervised training. The resulting method turns out to be
a stochastic optimal linear estimation version of a
badpropagation with momentum method, where the
momentum weighting is automaticaly done. The
motivation is to have aparallel processng, stochastic
optimal estimation based method, more dficient than
the usual backpropagation, but which avoids the
difficulties of dealing with the a priori information
covariance matrix in the Kalman filtering approach.

2. Neural Network Training Approach

When a feeadforward neura network is used to
approximate a given mapping its training is done by
supervised learning from input-output patterns data sets:

{Ox(t), y(t)): y(t)= f(x(t)+e(t)t=12,..L} (1)

where, £(t) is a zeo mean random variable

representing the acaracy with which the approximation
is to be dtained. Adjusting (estimating) the neurons
weight parameters to approximately fit the artificial
neural net correspondent computational model to this
data can be viewed and treded as a parameterized

mapping:

()= F(x(t),w) @)

where w is the vedor of neuron weight parameters to
be estimated.

A usual approach to solve the problem of supervised
training is to minimize, with respect to the vector of
weights w, the functional:

L
J(w)=1/2 )= F(x(t),w))T R™(t
(w) [;(Y( )— F(x(t),w)) (t) @

(y(t) = F(x(t).w)]
where, the inpu-output data {x(t),y(t): t=1,2,....,L} is

given, and the weight matrices R™(t) can be taken as
the inverse of the cvariancematricesof (t).



Minimizing the cost function o Eg. (3) can
heuristicdly be seen as a solution to the etimation
problem:

y(t) = F(X(t),w)+&(t),t=12,...L (33)
If the mapping of Eq.(3) is expanded in a Taylor
series, in atypicd ithiteration, it results:

Y(1) OY(Li)+ T (X(0), W(i ) (w—W(i))+ @
o(2)+¢(t),t=12,....L
where, o0(2) indicates the high order terms;
i=12,...1;W(i) isthe apriori estimate of W coming
from the previous iteration, sarting with
W(1)=w; y(t,i)= f(x(t),w(i)); f,(x(t),W(i)) is
the matrix of first partial derivativeswith resped to W.
Retaining only the first order terms of the series
expansion, and in order to better attend the linear

perturbation condtion, it is reasonable that in a typicd
ith — iteration:

a(i)[ y(t)-y(t,i)] =

r . N (49)
f (x(t), W(i [ w(i ) —W(i )] +e(t)
where, O0&(i)<1 isarate-of-learning parameter to be

adjusted in order to guarantee the hypothesis of linear
perturbation. The resulting approximation d J(w) in

Eq.(3), inaithiteration, is then:

L
() =112 5 (A1) =ML NTR(L)

(5)
(z(t,i)=H(t,i)w(i))]
where the following compact notation was adopted:
Z(ti)=a(i)[ y(t)-y(t,i)] + ©)
fu (x(t),W(i))w(i)
H(ti) = B, (1), W(1)) ©)

The minimization of the functional of Eq.(5) with
zero weighting of the apriori knowledge of W(i) is
formally equivalent ( see eg.[13]) to the optimal
solution of the following stochastic linea estimation
problem:

Z(t,i) =H(t,i)w(i)+e(t)
E[(t)] =0,E[&(t)e" ()] = R(t)

(8)
(©)
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with, t=1,2,...,L, and g(t) taken as a Gaussan white
noise sequence.

In what follows an approximate parallel processng
solution will be proposed for the etimation problem of
Egs. (8).

3. Proposed Parallel Solution Method

Following closely Rios Neto and Rios Neto ([4],
[5]), consider the system of redundant linea algebraic
equations when Egs. (8) are aombined for all values of t,
resulting:
Zi)=H(i)wi)+e (10)
where H(i) is a given mxn rank nred matrix; w(i) is the
complete nx1 vedor of unknown neuron weight
parameters in the ith iteration; z(i) is a given mx1 red
vector; and € with the distribution as in Eq. (9) is to
represent the numericd acaracy expeded to be
attained.

In an inside (relative to each ouside iteration ini for
eah i=1,2,..., 1) iterative solution scheme, the problem

of Eg. (10) can be treaed, in a typicd i inside

I
iteration, as;

Be(Z(i) = H(W(i; ))=H(i)(W(i ) -W(i; ) +& (11)

where, i; =12,...l;; W(i;) is the value from the
previousinside iteration, with an initial guessreasonably
taken as W(1;) =W(i); and 0< B, <1 isto be chosen
to adjust the step size in a given iteration d the linear
system iterative solution.

Consider now the analogy where the linear algebraic
system is viewed as a multilayer perceptron neural
network, with a first layer of n fan ou neurons and an
output layer of m perceptrons with identity adivation
functions (e.g.,[14]). The mndtion of Eqg. (11) is that
obtained in a typicd iteration if a stochastic optimal
linear parameter estimation training approach is applied
to this particular neural network (see eg., [11]), to
determine the input w asociated with the output vector
Z(i), in asituation where the output layer weights hy, (i)

are aumed known. For this analogows neural network,
one can now take an approximate in parallel iterative
solution ([11]), to get in each inside iteration
convergence @ntributing increments in the components

w(i):

B((i)~H(W(; ) = Hy (1) (W (1) ~ W (i) + & (12)

and for j=1,2,...mand k=1,2,...,n:



ﬁ(zj(i)_zhjl(i)v_vl(ii )=

iy (Wi (1) =W (1)) + &y

(13

An equivalent form of Eq.(11), from which Eq.(12)
would heuristically follow, is:

> Bl )= H( ()=
- (14)
> [HC(W ()i )+ i)

where, H, (i) is the kth column of H(i); and B = B,
and &, sumupto B;and € respedively.

In the linear parameter estimation problem of
Egs.(13) the arors £ are thus zero mean, normally

distributed not correlated random errors (see Eq. (9)),
with variances:

E[e5] =7, =n?E[e]] =n""r,

j (15)

With this modeling approach, the problem of solving
for the generic comporent w, (i) in Eqg.(12) can be
viewed as one of stochastic linear parameter estimation,
in each i; inside iteration. For eahh k=12,..n, the

observation like Eq.(12) can thenin each i, iteration ke

procesed in paralel, using a without a priori
information GaussMarkov estimator (see, for example,
[15]or[13]), to get an estimate of the components

Wk(i):

Wi (i) =Wy (1,1 ) =W (i )+
BIH (DR™H ()] " H (DR (i)~ H(iW(i; )
(16)

where, as defined before, H (i) is the kth column of
H(i); and

R=diag.[T; =n~’r;:j =12,...m] =n°R (17)

Noticing that the without a priori information form
of the estimator in Eq. (16) allows to cancel out the

factor N2 in ﬁ,andthatRisthesamefor k=1,2,....n,
it is then possble to combine the estimates W (i,i; ), of

the parallel processng estimation, to get the equivalent
following estimator for the whae vedor w(i) in the

inside iteration i; :

W(i ) =W(ii; ) =w(i; ) -

(18)
BSOf T (W(i; ) = W(i; ) - BSYW(i; ))
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S=diag.[(H{ (i )R™H (i) ™k =12,...n]

fLOw(i) =1/ 2[ H(iw(i)-z(i)] TR (19)
[HOW() = =(i)]
Of T (W(i; ) =HT (R (H( Wi ) - (1)) = 9(W(i; )

and where 0< 8 can be chosen such as to minimize
fL(wW(i)) in a given inside iteration, if it is taken as

([16]):

B=(3"S3) /(3" SH(i)T R™H(i)sD),
g = g(w(i; ))

Since S and H(i)" R™H(i) are positive definite
matrices, the etimator of Eq.(18) is equivalent to a
modified Newton method applied to the functional
fL(W(i)).

Convergence of the paralel processng method of
Egs.(16) can now be verified considering its Newton
method equivaent form of Eq. (18), using the
Kantorovich inequality and concluding that in each
iteration ( see for example [16], pp. 261-262):

(20)

QUi )] <y *QIW(i; )] (21)
QIw(i)] =1/ 2(w(i)=wr () H(H'R™
H(i)(W(i) = w* (i)

Y =(Am = Am) Ay +2Am) (23)

w* (i) being the value of w(i) that leads to the
minimum of f_ (w(i)) in Eq.(19); and Ay ,A,, the
largest and smallest eigenvalues of the positive definite
matrix SH(i )" R H(i).

Notice that for eah nreuron weight w,(i) the
estimate of EQ.(16) is the result of processng in batch
the L observations like Egs.(13). Since the g(t) are
taken as Gaussan white noise sequences, the matrices
R(t) are diagona and the result of the estimate of
Eq.(16) can equivalently be obtained by reaursively
processng Egs.(13) ( see e.g., [15], pp. 161-163). Thus,
the proposed pardlée solution method turns out to be a
badkpropagation  with  automatically  generated
momemtum type of method.

The numerical implementation of the method can be
done in the foll owing three steps agorithm:

Inan ouside i < | iteration, and for all the
t=1,2,..., T, with x(t),y(t),R(t) given;

and with the a priori estimate W(i)

(i)



coming from the previous (i-1) iteration or
starting with w(1)=w, calculate the
V(t,i)= f(x(t),W(i)). If the
(y(t)-¥y(t,i)) are insde the 3 sigma
limits given by the distribution of the
g(t), make Wi)=w(i) and stop,
convergence was readed. If not: cdculate
the fw(x(t),v_v(i)); adjust Of&(i)<1 to
guarantee the hypothesis of linear
perturbation; calculate the z(t,i),H(t,i)
and form Zz(i),H(i); cdculate S (Eq.

(19)) and SH(i )" R™H(i)S. Go to (ii).
(ii) For the given i, in a given inside i; < I;
iteration, with W(i, )=W(i; -1) the a
priori estimate cwming from the previous
iteration in i; and starting with

w(l,)=w(i) cdculate
(z(i)-H(i)w(i;)), and for those
components inside the 3 sigma li mits, take

(z,(1)=H, (Wi, ) =
(sigr(z,(i)=H (i )W(i, ))3r}'?

If al components are inside the 3 sigma
limits given by the distribution of ¢,
increment i, and for the incremented value
of i redefine W(i)=w(i; ), reset i, =1
and go back to (i). If not, cdculate
g(W(i; )) (Eq. (19)) and B (Eq. (20)), go
to (iii).

(iii) In pardld, for k=1,2,...,n, cdculate the

estimates of w, (i) (Eg. (16)). Redefine

W, (i; +1)=W,(i,i; )=W,(i; ), increment
i; and go back to (ii).

4 Preliminary Numerical Test

The very simple xor problem is considered, for a
preliminary evaluation d the method developed as
compared to Matlab versions of the Badkpropagation
and the Levenberg Marquadt methods. A multilayer
perceptron neural network with two inputs, two hidden
hyperbolic tangent sigmoid neurons and one linear
output neuron was trained, initializing the weights with
random outcomes of a zeo mean and variance one
norma distribution. In what follows, the results,
correspondent to the value of the rate of learning
parameter (alfa) for which each method exhibited the
best performance, are presented.

214

Network training for xor

10

mon

10

10

4
10

100 150 200 250 300

Epoch Number

Figure 1: Badkpropagation best result, a =0.1
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Figure 2: Levenberg Marquadt best result, a =0.6
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Figure 3: New Method best result, a =0.8

These results indicate that the new proposed method
is competitive @ compared to the usua
Backpropagation, as expeded, since it is a
badkpropagation with momentum type of method. The
results also indicate that the new method can be
competitive & compared to the Levenberg Marquadt
method, depending upon optimization of the numericd
programming of its numericd algorithm.



Though numerical tests in more complex situations
have nat yet been done, it is expeded that for neural
networks with more @mplex architedures, where a
large number of neurons is involved, the proposed
method will suffer limitations smilar to those of the
Levenberg Marquadt method, and related to memory
requirements and time spent in each iteration
cdculations. It is recognized that further efforts have to
be made to simplify the cdculations to get 8 in Eq.

(20).
5. Conclusions

The aoption of an iterative stochastic parameter
estimation approach alows the problem of neural
network supervised training to be reduced, in each
iteration, to one of solving a stochastic linear estimation
problem. The possbhility of getting an approximate
pardlel iterative solution can be explored if in each
iteration this problem is looked at as one of solving a
stochastic system of redundant linea algebraic
equations and if an analogy is made to view the linear
system as modeled by a multilayer perceptron reural
network.

In this paper these posshilities were explored to
develop a stochastic badkpropagation with automatic
momentum weighting method.

The motivation was to have a method giving a good
compromise in terms of effediveness efficiency and
fadlity of use. That is, a method with effediveness of
convergence dose to Kalman filtering type methods, but
with the dficiency of backpropagation with momentum
methods, however withou the difficulties of
heuristicdly having to adjust the weighting of the
momentum term.

The preliminary testing results presented are only
indicative of method's expeded performance. However,
the fact that a numerical forma equivalence with a
modified Newton method exists is a guarantee of
competitive performance as compared to gradient based,
first order methods.
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