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Abstract

The next experiments in high energy physics depends
a lot on good calorimeter (energy meters) data. During
experimental beam tests for a calorimeter calibration at
CERN, the European Institute for Particle Physics, con-
taminations on the beam line can arise as great difficult
to the calibration procedure. This work presents a neural
network system to identify these contaminations using a
preprocessing based on the particles deposition profiles.
Comparisons with other analysis methodologies shows
an efficiency greater than 93.5% in data and contami-
nation identification.

1. Introduction

During the last century, many experiments were as-
sembled to search deeper the rules that govern the Uni-
verse. In the present days, science has been promot-
ing collaborative work among research institutes, to build
huge and very expensive experiments in many fields.
This cooperative structure increases the exchange of
ideas and distributes costs between its members. With-
out this cost distribution, many experiments could never
be feasible.

One of such collaborative efforts in high energy
physics has been powering the European Laboratory for
Particle Physics (CERN) [1], which is dedicated to the
study of elementary physics. Many European countries
collaborate to perform the experiments that can prove or
reject new theories in the field. CERN is located in the
franc-swiss boarder and is now building a new particle
accelerator, the Large Hadron Collider (LHC).

The LHC comprises a 27 Km tunnel, which is hun-
dred meters under the floor. This accelerator, built with
superconductive techniques will be able, when opera-
tional by the year 2007, to increase the particles energy
up to 14 TeV (Tera-electron-Volts) in the center of mass,
an energy level never reached by this kind of experiment.
To analise the products of the collisions, two large detec-
tors are also being constructed, the CMS and the ATLAS.

The ATLAS (A Toroidal Lhc ApparatuS) [2] is shown
in Figure 1. Particles from LHC should come in both
senses through the central detector axis, colliding in the
central point. The products of these collisions should hit
the detector from the center to its outside, passing thought
many sub-detectors. The first sub-detector is the Inner

Figure 1: The ATLAS detector and all its sub-detectors.
See text for details.

Detector, responsible for tracking estimation of the in-
coming particles. After that, the Electromagnetic and the
Hadronic Calorimeters will measure the particle energy.
A special detector to track important particles (muons)
for the expected physics at LHC completes the ATLAS
detector. Two solenoids are responsible for creating huge
magnetic fields to help in particle charge detection.

Presently, many sub-detectors are in final production
phase and beginning to be calibrated with experimental
particle beam produced by a smaller particle accelera-
tor. The calibration procedure consists of studying the re-
sponse of the detectors and how to convert the electronics
signals into meaningful variables. One of the detectors
being calibrated by now is the hadronic calorimeter.

Although the beam quality is very high for the cali-
bration procedure, it is impossible to avoid the creation
of particles that behave as contaminating particles for the
particle beam selected. So, some discriminating proce-
dure must be used to provide a calibration free of such
outsider particles. Our approach is to use neural networks
to perform automatic particle discrimination detecting the
outsider particles and obtaining a purified data set for cal-
ibration.

In this work, particle discrimination is developed by
using a topological preprocessing schema on the infor-
mation provided by this hadronic calorimeter of ATLAS.
Such topological approach allows to reduce the dimen-
sion of data input space, which is high due to the detector
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Figure 2: Two calorimeter modules during calibration
beam tests.

granularity. Thus, the classification task may be made
easier and faster.

The next section describes the calorimeter and its
properties. The third section shows the first results and
comparisons with classical methodologies used by physi-
cists. Conclusions are derived in the fourth section.

2. Calorimetry

The ATLAS Hadron Calorimeter will form a toroid
around the collision point, receiving the incoming parti-
cles into its inner part and measuring their energy. In or-
der to facilitate the assembling and transport procedures,
the calorimeter was divided into 64 modules each one
comprising

�������
of the toroid. This modules are now

in calibration phase. Figure 2 shows two lateral sections
of the calorimeter being prepared for a testbeam on a me-
chanical table.

The detection principle is quite simple. The calorime-
ter is made of iron plates placed between a active (plastic)
material [3]. The iron absorbs most of the incoming par-
ticle energy. Typically, the particles, when colliding in
the calorimeter mass, lose part of their energy and pro-
duce many other particles. These ones will repeat the
same process until all the energy of the first particle is
completely dispersed into the calorimeter structure. The
energy dispersed can be partially collected by the active
material which produces light by scintillation. This light
is proportional to the energy quantity let in the detector.
Using a net of optical fibers this light is taken to the elec-
tronic read-out of the detector. Since the active material
lay like tiles in a roof in the detector module structure,
the ATLAS hadronic calorimeter is called Tile Calorime-
ter, or simply TileCal.

Fibers coming from the same areas on the module sur-
face are grouped together, defining cell regions in the de-
tector. Figure 3, shows the cell disposition for half a mod-
ule of TileCal (each half is tested separately).

The 23 cells are organized in three layers in deep. The
first is composed of 10 rectangular cells, the second com-
prises 9 irregular shaped cells, and the third has 4 larger
rectangular cells.

Figure 3: Detector cells in one module of the TileCal de-
tector.

Figure 4: Electron deposition profile in a TileCal module.
Almost all the energy is contained in the first cell touched
by the particle.

Each particle has a different energy deposition profile
on the detector cells, depending on its intrinsic interaction
properties [4]. So, it is possible to detect the particle type
only by studying its deposition profiles.

For instance, one of the particles used during the cal-
ibration tests is the electron. This particle deposits most
of its energy (more than 60%) in the first calorimeter cell
it touches. We can see an example of a electron inter-
action in the Figure 4. This was produced by a beam
set to 20 GeV (Giga-electron-Volts). Most of the energy
(more that 11 GeV), is contained in the first calorimeter
cell touched, in the present case, the third cell of the first
layer.

Another particle type used in calibration tests is the
pion. This particle does not interact with the first mass
portion it encounters as electrons do. Their interaction
typically begins at the end of the first cell, spreading a
great quantity of energy around the interaction point. The
Figure 5 brings an event of pion interaction. As can be
seen, Just a small quantity of energy was deposited in the
first cell touched (the same of the electron event). Most
of the energy was deposited in the second cell. Also,
it should be noted that the energy peak (5.63 GeV) is
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Figure 5: Pion deposition profile in a TileCal module.
The major part of the energy is contained in the cell of
the second lay hit by the particle.

smaller than that of the electron event (11.02 GeV). This
is caused by the larger energy spread in the pion case, that
reduces the maximum energy concentration.

These two profiles are based in the presence of a cen-
tral tower with greater energy level and cells around this
maximum with less energy. So, in the electron event,
the tower in the first layer accounts for the maximum.
A ring (open) with less energy can be defined with the
cells around this maximum point. The same can be done
with the pion event deposition profile, but, clearly, the
proportion of energy between these rings of cells is not
the same. For electrons, the center predominates over the
ring, while for pions, the energy in the rings is more dis-
tributed. This fact will be further used when we discuss
our preprocessing technique.

A third particle type, muons, lets just a very small
energy in the detector, forming a track along all the
calorimeter deep, from the cell in the first layer until the
cell in the last layer [5].

So, as can be noted, the problem of particle detection
is a pattern recognition problem. This is the reason the
approach based in neural networks was followed.

During the beam tests, the three types of particles al-
ready discussed, electrons, pions and muons, are used.
Unfortunately, contamination events appear in the beam
line. Pion data sets are contaminated by muon events (up
to 30%) and the electron set have both pion (30 %, but
up to 45 % has been detected) and muon (2-25 %) con-
taminating events. The muon set is the only one that can
be considered a pure data set. Neural networks are then
applied to this sets to identify this cross contaminations.

3. Results

The neural network is simulated using the Fortran
JetNet-2.0 package [6]. This package can simulate the
network and perform a training on its weights based on
the backpropagation method. This is supervised method

Figure 6: Electron deposition profile based on ring struc-
ture.

Figure 7: Pion deposition profile based ring structure.

[7], which depends, for the training phase, on the defini-
tion of input-output pairs. This is a problem, since, with
the contaminations, not all the events in each data set are
really from the particle type of that data set. For instance,
contaminating muons in a pion sample will be consid-
ered as pions when defining the outputs to be used for
that data sample during the neural network training. As
we will see, this will not be a problem, since the network
will be able to extract from the data sets the features that
define the different sets, being able to identify the con-
taminations from the pure events.

In order to profit from the differences in the particles
deposition profile, two ring structures were defined with
the calorimeter cells as inputs to the neural network. One
was based in the electrons deposition profile and the other
in the pions deposition profile. The initial idea was to op-
timize the detection of each kind of particle by using a
preprocessing based on the deposition profile of that par-
ticle type. For the electron deposition profile-like rings,
Figure 6 brings the cells selection for each ring.

The first ring is the main interaction point. In the
present case, this is the third cell of the first layer. A ring
composed of all the cells around this point was defined
reaching until the second layer. A third ring reaching the
third layer also appears and the last ring used has 2 cells
at the left and three at the right of the first three rings.
The lines in the figure, help to show the second, third and
fourth rings. Some cells at the right of the module do not
receive any signal (since the beam was not targeting this
part of the detector), and, so, are not included in the rings.
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The Figure 7 shows the same situation when the
pion deposition profile-like rings are assembled with the
calorimeter cells. Now, the first ring is the cell in the sec-
ond layer, while the other rings are assembled around it.
The third and fourth rings are open rings.

Using such preprocessing, by inputing the sum of the
cells in a ring instead of the each cell separately to the
neural network, a reduction on the input space dimension
from 23 to 4 is obtained. Clearly, this can have a large
impact in the system speed, what may be helpful when
considering online applications [8].

The data sets, acquired in the 1999 testbeam, were
splitted into training and testing sets. This helps to eval-
uate the system performance when events never used to
train the network are concerned. The network was com-
posed of 4 input nodes, 8 nodes in the hidden layer and 3
output nodes, each one assigned to one particle type. Dur-
ing the training phase, the output related to the set of the
incoming event was set to one, while the two others were
set to minus one. So, an electron event, or even a con-
taminating pion or muon event on the electron set, would
receive a +1 electron output, while the others would be
set to -1. In the testing phase maximum probability (out-
put value) was used as decision factor.

The inputs were normalized in order to couple with
the small linear range of the activation functions of the
network neurons (hyperbolic tangent). The normaliza-
tion was performed by dividing each of the four input
variables by the square root of the absolute value of their
sum. This was done to keep some energy information,
helping to discriminate muon events on the data sets.

The two neural networks (one for the electron rings
and the other for the pion rings) were trained with 120
thousand training steps with data coming from a 100 GeV
experiment and its three outputs for the three data sets can
be viewed in the Figure 8.

These outputs are for the pion rings used as inputs.
Only test data sets are considered here. Each column
brings a histogram of one of the outputs in the three data
sets (each of the lines). So, for instance, the first top
left histogram is the electron output for the electron set
events. The histogram at the right of this first one is the
pion output in the same set. It should be expected that
only the histogram on the main diagonal of this histogram
matrix should have events with value +1. But events with
negative values appear in the electron output to the elec-
tron set. Also, events with positive values of the pion
output to the electron set can be found. It seems that pion
events are being found in the electron data set. In fact,
the neural network may be identifying the contaminating
pions in the data sample.

We need to check that information, and for that, en-
ergy cuts can be used [9]. Variables such as the fraction
of energy deposited in the first layer of cells, in the third
layer, total energy or auxiliary detectors information can
be used to establish an offline and energy depend method-
ology for discriminating the particles. One example of
comparison between both methods can be found in the
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Figure 8: Network outputs (columns) for the three test
data sets (rows).
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Figure 9: Pion minus muon neural network output versus
the total energy in the module.
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E e � � tot
20 93.23% 90.33% 97.82% 93.74%

100 96.13% 97.50% 99.53% 97.71%
180 96.68% 90.77% 99.53% 95.59%

E e � � tot
20 92.22% 89.20% 98.04% 93.08%

100 93.42% 95.43% 98.66% 95.81%
180 95.06% 93.60% 99.05% 95.88%

Table 1: Comparison table for the three data sets in three
energy levels. The first table refers to the network with
electron deposition profile-like rings, the second to the
pion deposition profile-like rings.

Figure 9. In this figure, the neural network pion minus
muon output (factor for discriminating possible muons in
the pion set), is compared with the total energy in the
calorimeter for the pion test set. The events in the posi-
tive side of the horizontal axis, are those considered by
the neural network as being real pions. These are the
same events with a higher energy level (as indicated in
the vertical axis). On the other hand, the events in the
negative side on the horizontal axis (considered as muons
by the neural network) were the same that deposited less
energy in the detector, what is a physical characteristic of
the muon interaction.

Using a set of cuts based on physical properties of the
beam interaction, we composed a complete benchmark
methodology. This methodology has to be adjusted for
each energy range, what is not necessary for the neural
network procedure, that automatically adjust itself to the
new conditions. Comparing for each set the identification
of both, pure particles and contaminations for three dif-
ferent energy levels, we have the results expressed in the
Table 1. The first table refers to the electron profile-like
rings and the second based to the pion profile-like rings
preprocessing. The three energy levels selected represent
three important energy ranges, 20 GeV (low energy), 100
GeV (medium range) and 180 GeV (high energy).

So, for example, in the electron set at 20 GeV, 59% of
the events were considered by both methodologies (en-
ergy cuts and neural network) as being real electrons,
32.14% as being contaminating pions and, finally, 2.09%
as being contaminating muons. In total, as shown in the
table, 93.23% of the events received the same votes by
both methods. The important values of total agreement
(never smaller than 93%) shows that the neural network
methodology agrees with the physical concept of interac-
tions in TileCal.

As can be seen, both preprocessing methods obtained
an smaller agreement for pions at 20 GeV. This is pos-
sible due to the fact that pion interactions at 20 GeV, a
very low energy level, do not develop too far from the be-
ginning of the calorimeter. The lower energy particle can
not penetrate much in the calorimeter structure and begin

E e � � tot
20 93.62% 93.52% 98.10% 95.06%

100 95.73% 95.91% 99.39% 97.00%
180 96.46% 91.60% 99.33% 95.74%

Table 2: Comparison results when both ring structures
are used for preprocessing.

agreem. elec. pion muon tot.
gran. 95.30% 94.37% 99.50% 96.39%
rings 95.73% 95.91% 99.39% 97.00%

Table 3: Comparison of the agreement levels for using
the two ring structures or full calorimeter granularity as
inputs to the neural network (100 GeV).

to produce interactions very similar to the electron ones,
being easily confused with this second particle type.

So, the electron profile-like rings can label many pi-
ons as being electrons, and the pion profile-like rings do
not seem to have enough granularity to correctly separate
electrons from pions. This leads to the idea of trying to
balance both procedures, profiting from the best charac-
teristics of both methods. In order to leave the decision
to the neural network, both procedures were used at the
same time. A network with 8 input nodes (4 for each ring
set) was trained for the same three energy levels studied
before. The results are expressed in the Table 2.

As can be noted when comparing this agreement table
with the two previous ones, the 20 GeV case profited a lot
from the two ring structures preprocessing. Every agree-
ment result was increased in this energy, with a special
prominence to the pion set result, which increased more
than 3%.

So, it was possible to reduce the initial dimensionality
from 23 to only 8, assuring a high level confidence in the
result, and keeping the automatism of the neural network
methodology, which does not depend, as the energy cut
method, on a specialist pre-analysis.

Finally, we can compare for the 100 GeV case, the
performance of the system with the proposed preprocess-
ing and a neural network system with the 23 input nodes
(one for each cell). The results are shown in the Table 3.
As can clearly be seen, just a small reduction on the muon
agreement (0.11%) can be accounted. For the pion set a
gain of more than 1.5% was obtained by the new tech-
nique. In the overall result the two ring structures had a
better performance.

4. Conclusions

A preprocessing for a neural network application in
the high energy physics was obtained. Two different
ring structures were studied and the results benchmarked
against classical procedures showed a good agreement
with the problem physics. In order to increase the system
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performance at low energies (when the deposition pro-
files of the different particles look similar), an approach
using both ring structures was successfully applied.

The benchmark system used is based in a set of energy
cuts, which can not be easily automatized. The neural
network application, can tune itself during the training,
not needing a specialist interference.

The situation studied included an interesting chal-
lenge to the neural network trained by the backpropa-
gation supervised method. Since natural data contami-
nation was present, wrong labeling of events during the
training phase was unavoidable. The feature extraction
capacity of the neural network was able to correctly iden-
tify this problem, even when the contamination level was
very high (At 180 GeV, only 22% of the electron events
were real electron events). The usage of self-organizing
methods is part of the future of this application as another
possible approach.

The usage of ring structures is quite common in
calorimetry applications [10]. The neural network sys-
tem is independent of the calorimeter being used. The
application here developed can, then, be adapted in other
calorimetry experiments.

Finally, the dimensionality reduction obtained with
the preprocessing studied was very high. From the 23
dimensions initial input space a maximum of 8 were used
in our application. This can have a huge impact when try-
ing to apply this technique online. Typically, in this sit-
uation, time restriction (both to neural network response
time and training time) are strong. The reduction can rep-
resent an increase of more than 2 times in the processing
speed.
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