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Transient stability analysis is one of the principal
studies used in EPS (Electric Power Systems). It is a
procedure to evaluate the effects provoked by
perturbations that cause great excursions on the angles
of the synchronous machines, e.g., short-circuit,
operation outage/input of electric equipment. In this
case, the model of the system is described by a set of
algebraic and non-linear differential equations. On the
unstable cases and/or being violated the capacity limit of
the equipment, it is necessary to adopt providences that
can lead the system to a secure state, known as security
control. The methods for dynamical preventive control
have appeared recently and the publications available in
the literature are not enough [1], [2], [3], [4], [5], [6]
and [7] among others.

Therefore, this work develops a methodology based
on neural networks [8] to analyse the transient stability –
considering short-circuit faults with transmission line
outages – and, principally for the sensitivity analysis of
EPS, that represent the necessary instruments to do the
preventive control. Neural networks are important
resources to treat the preventive control problem,
considering that once the training is finished (off-line
activity), the analysis can be concluded almost without
computational effort (basically the calculus with the
input and output of the neural network), and can be used

for applications in real time. It is emphasised that the
sensitivity calculus is effectuated without computational
effort. It is also emphasised that, to obtain the sensitivity
model by conventional procedures, it involves a great
quantity of complex calculus of matrices, consuming
much time, principally for applications in large systems.

The neural network used is a non-recurrent
multilayer one with training by BP (Backpropagation)
algorithm [9] and [10]. The BP algorithm training rate is
adjusted by a fuzzy controller [11] and [12], monitoring
the global error and the global error variation during the
training. It is an optimal mechanism that reduces the
convergence time and improves the precision of the
results, as observed in [12]. The variables used on the
training are causal variables of a problem of transient
stability analysis (active and reactive nodal electric
power) (input neural network stimulus) and the security
margins (output neural network stimulus) generated
using the PEBS (Potential Energy Boundary Surface)
iterative method [13], microcomputer version. The
security margin expressed in function of total energy,
can be interpreted as being a measure of the distance in
relation to the condition of the instability of the system.
The sensitivity model is referred to the relation with the
security margin and the nodal electric power. Thus, it
can be evaluated the generation reallocation and load cut
necessary for obtaining a secure state of the system, this
is, a security level considered adequate for transient
stability. For testing the proposed methodology it is
presented an application considering a multi-machine
system.

 �����	���!����

Considering an Electrical Power System composed
of �� synchronous machines, the dynamical behavior of
the �!th machine, related to CA (Center of Angles), is
described by the following differential equation
(classical model) [14] and [15]:

"L���
��

θ L��−�#L�(θ�)�$�%�����∈ �& (1)

where:

#L�(θ) = #�L�−�#�L�− ( "L��#'(��) / "�) (2)
"L = *�+L�,�ω�;
ω� ∆ synchronous speed of the rotor;

= *π��;
+L = inertia constant (s);
�� = nominal frequency of system (Hz);
#�L = mechanical power of input (pu);
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#�L = electrical power of output (pu);
θL ∆ rotor angle of �!th synchronous machine

related to CA (electrical radians);
= δL�−�δ�;

δL = rotor angle of �!th synchronous machine in
relation to synchronously rotating reference
frame (in electrical radians);

δ� = ∑
∈ 1M

"M�δM�;

#'(� ∆ accelerating power of CA;
= ∑

∈ 1M

( #�M�−�#�M);

"� = ∑
∈ 1M

"M�;

& ∆ index set of synchronous machines that
comprise the system;

= {-�*������������};
�� = number of electrical synchronous machines.

"����������	��	�����	����������

The transient stability analysis of EPS, considering a
contingency of index �, is effectuated using the security
margin criterion [2], [13], [15] and [16]:

�U = (.���
U�−�.�U) / .���
U� (3)
where:
.���
U = total critical energy of the system;
.�U = total energy of the system evaluated on the

instant of the fault elimination (
�).

The critical energy (.���
), and the critical time
(
���
), is determined by the iterative PEBS method [11]
and [13], or another procedure that presents a similar
result, principally in relation to precision. The total
energy, related to system (1), is given by [11], [13] and
[15]:

.(θ, ω) = .�(ω) + .
(θ) (4)
where:

.�(ω ) = kinetics energy;
=  1/2 ∑

∈ 1L

 Mi ωi
 2 ; (5)

.
(θ ) = potential energy;

= − ∑
∈ 1L

 ∫ �

�

θ
θ

#L(θ ) �θL . (6)

Then, the transient stability for the �-th contingency
is evaluated by the security margin on the following way
[2] and [13]:

• if �U > 0, the system is considered �
����, for
transient stability;

• if �U < 0, the system is considered ���
����, for
transient stability.

#��$�������������	�������	���

Considering a list composed of S contingencies, the
security margin of the system must satisfy the following
relation [2], [4] and [17]:

� ≥ "���� (7)

where:

"��� = minimum limit of the security margin of the
system ("��� > 0 );

� ∆ min (�U  , � = -��*�������/).

The control actions must cause modifications on the
security margins such as, the following relations must be
satisfied [2], [4] and [17]:

�U��= (�U
� + ∆�U) > �"��� , � = -��*�������/ (8)

where:
�U = security margin referred to the �-th

contingency.

The necessary changing (∆�U) to correct the security
margin − in function of a vector � − is estimated by the
sensitivity theory, of first order, according to [2], [4] and
[17]:

∆�U ≅ 〈  ∂�U /∂�, ∆� 〉 (9)
or

∆
���
U ≅ 〈  ∂�
���
U /∂�, ∆� 〉 (10)

where:
∂�U /∂� = sensitivity of the security margin in

relation to the vector �;
∂
���
U /∂� = sensitivity of the critical time in relation

to the vector �;
∆� = vector corresponding to the changing on

the components of vector �.

The vector �, in this work, is represented by the
nodal active power. The sensitivity ∂�U/∂� is developed
in Section 6 by neural networks.

%�����������	
�����	���	���

The �-th output element (neuron) [8] is a linear
combination of the element inputs xj that are connected
to the element � by the weight �LM:

ϑ �L  =  ∑
M

�LM�0M (11)

Each element can have a bias� �� fed by an extra
constant input 0��= + 1. The linear output ϑ L is finally
converted in a nonlinearity, as a sigmoid and relay
[10], etc. The relay functions are appropriated for
binary systems, while the sigmoid functions can be
employed for both continuous and binary systems.

The training of this neural network is realized as
shown in the Appendix A.

&�������	���	�����������������������	
����

The BP algorithm is initialised presenting a pattern
� ∈ �ℜ Q to the network, that gives an output ��∈ �ℜ P. In
the sequence it is calculated an error in each output
(the difference with the desired value and the output).
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Next step is to determine the error propagated in
inverse way by the network associated to the partial
derivative of the quadratic error of each element
related to the weights, and finally to adjust the weights
in each element. Then, a new pattern is presented, and
the pattern must be repeated until convergence (| error |
≤ predefined tolerance). Once concluded this step, the
training mechanism do not actuate, including the fuzzy
controller. This way, the network is able to generalise,
this is, applying any input pattern vector, propagating
the signal on the straight sense (input to output), it
results on the output an evaluation of the analysis
(diagnosis), providing a mapping, � → � = �(�),�� ∈
ℜ Q��e���∈ �ℜ P.

Using this idea, it is estimated the derivatives of
the output variables (sensitivity analysis) in relation to
the input vector components, using a neural network
structure trained as described as follows. The
sensitivity analysis, by neural networks, is used in this
work to obtain ∂�U/∂�� (problem defined by equation
(9)). Taking into account that, for the solution of the
preventive control problem, it is adopted the generation
reallocation and load shedding (according to the
formulation described in Section 4), the vector �
corresponds to the nodal active power (�).

Thus, consider �N and �N as being the 	-th pair of
input and output vector of the neural network. Consider,
too, the non-recurrent neural network shown in Figure 1.
It is the representation of a network composed of three
layers, where the variables on the principal points of the
network and the weight matrices are defined. The input
and output layers have �� and �� neurons, respectively,
where:

� = dimension of input vector �N)
� = dimension of output vector �N�
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Figure 1. Non-recurrent neural network

It is desired to obtain the partial derivative of �S
N (
-

th component of vector �N) in relation to xM
N (1-th

component of the input vector �N). To obtain these
partial derivatives, it is necessary to obtain the
intermediate partial derivatives (on the output of the
neurons of the hidden layers) of the neural network.
Thus, the calculus of partial derivatives of �L

N (�!th
component of output vector �N), in relation to xM

N, is
obtained in the following way [17]:

∂�LN,∂0M
N = λ,*(-−{�L

N
 }

�) (for sigmoid function (A3))(12)

or

∂�LN,∂0M
N = λ���LN(-−��LN) (for sigmoid function (A4)) (13)

where:
0M

N = 1WK component of input vector �N;
�N

� = [ 0�
N��0�

N��������0Q
N
�]

T;
	 = index referred to the 	-th pattern vector.

The 
-th intermediate output (input of the sigmoid
function) of the output layer of the neural network is
expressed by:


S
N = {�N}T �S

�,   
�

�$�-�*���������� (14)

where:
�N = [��

N����
N����������Q

N] T ;
�S = [��S����S���������QS

�] T.

Thus:

∂�S
N , ∂0M

N    = {∂�S
N�λ�
SN ,∂�
SN�}�∂�
SN�,�∂0M

N (15)

as:

∂�
SN,∂0M
N

��= {�S
N}T ∂�N,∂�0M

N
� (16)

where:

∂�N,∂�0M
N = [∂��N,∂�0M

N
��∂��N,∂�0M

N�������∂�QN,∂�0M
N] T

Then, substituting equation (A3), or (A4) on
equation (15), it is obtained:

∂�S
N,∂0M

N = λ�,2(-�−�{�S
N}�

�){�S}
T �M

N
 (for sigmoid function

(A3)) (17)
or

∂�S
N,∂0M

N = λ���S
N�(-�−��S

N)�{�S}
T��M

N�(for sigmoid function
(A4)) (18)

where:

�M
N = [(-−�{��

N}�)��M�������(-�−�{��
N}�)��M��� . . .

(-�−�{�Q
N}�)��MQ] 

T (for sigmoid function (A3)); (19)
or

�M
N = [��

N�(-�−���N)��M����������N�(-�−���N)��M�� . . .
�Q

N�(-−��QN)��MQ] 
T (for sigmoid function (A4)). (20)

'���((����	���

Faults like three-phase short-circuit with time of
fault elimination equal to 0.15s (9 cycles considering a
60Hz operation), followed by the outage of the
transmission line are considered. The one-line diagram
system is shown in Figure 2 (Appendix B). This
system is composed of 10 synchronous machines, 73
transmission lines and 45 buses, based on the
configuration of a southern Brazilian system.

The neural network training was effectuated
considering a set of 158 generation and load profiles and
respective security margin. Each profile corresponds to a
generation redispatch in relation to a base case in a
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random way to attend the demand, also fixed in a
random way in each bus. The universe of the load
variation is between 80 and 120% (+20%), in relation to
the nominal load of the system. Therefore, each profile
is generated considering a variation percentile around
the nominal state (base case) and a respective seed to the
random sequence generation process. Thus, to a same
percentile, different generation seeds generates different
generation dispatchs of different load profiles. This
proceeding generates an adequate set of patterns to the
training phase.

The contingency, adopted as an example,
corresponds to a three phase short-circuit at bus 39, with
outage of transmission line between busses 39 and 40.
This contingency was chosen due to be the most critical
one among the possible faults. Nevertheless, other
contingencies can be included, only leading to a
calculation increase.

It is emphasized that the neural network, not only
effectuates the stability analysis (margin security
evaluation), but gives the sensibility analysis model
�∂�U,∂�  referred to the analyzed contingency. This

sensibility vector ∂�U,∂� is used to define the
generation reallocation, and the load shedding, necessary
to correct the security margin to predefined levels, i.e.
for levels considered secure, considering the transitory
stability. It is considered the minimum security margin
"��� = 0.3. These results are illustrated in Table 1.

Table 1. Analyzed results before and after the control
action (reallocation generation / load
shedding)

�	�	� �	�� )����
Initial Initial Security Margin (��)  −1.416

More sensitivity generation bus 9Identification of
more sensitivity
busses

More sensitivity load bus 40

Sensibility coefficient of bus 9
(∂�,∂#�)

−1.612Sensibility
Analysis

Sensibility coefficient of bus
40 (∂�U,∂�#��)

0.223

Generation reallocation at bus
9

−1.08Control action

Load Shedding at bus 40 −1.08
Final Final Security margin (�I) 0.32

Suppose it is desired to correct the security margin
from �� = −1.416 to �  ≥ "��� = 0.3. Then, the control
action (generation redispatch / load shedding) provides a
displacement of the security margin ∆�� ��1.716. This
goal, by sensibility analysis, is obtained, for example, by
a reduction on the generated power of synchronous
machine number 9, and a reduction of the load demand
associated to bus 40. This reduction correspondent to
1.08 pu, produces a final security margin of 0.32, that is
a good approximation of the goal to be reached (� ≥
"���).

*������������

It was proposed in this work, a procedure to analyse
the transient stability and preventive control of EPS
formulated by non-recurrent neural networks. The neural
network training was done using the BP algorithm with
fuzzy controller. The fuzzy controller gives a faster
convergence and more precise results, [12], when
compared to the traditional BP, by adjusting the training
rate, using the information of the error, and global
variation error, Once finished the training, the network
is able to evaluate the security margin and sensitivity
analysis. With this information, it was possible to
develop a procedure to do the correction of the security
(preventive control) for levels considered adequate for
the system. The approach presented is a preliminary
result, which is a beginning point to more elaborated
preventive control approaches (stability analysis
considering a set of contingencies, optimal generation
redispatch, etc.).
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�((����,��
Neural Network Training

The initial weights are general adopted as random
numbers [10]. The BP algorithm consists of adapting
the weights such as the quadratic error of the network to
be minimised. The sum of the instantaneous quadratic
error of each neuron on the last layer (network output) is
given by [10]:

ε�� = ∑
=

��

-�
ε�L��� (A1)

where:
ε�L =  ��L – ��L ;
��L =  desired output of the �-th element of the last

layer;
��L =  output of the �-th� element of the last layer;
�� =  number of neurons of the last layer.

Considering the �-th� neuron of the network and
using the gradient descendent method [8] and [10], the
weight adjustments are formulated by [10]:

Γ L
�(��A-) = Γ L

 (�) + φL (�) (A2)
where:

φL� (�)� = − γ [∇ L (�)];
γ� = stability control parameter or training rate;
∇ L (�) = gradient of quadratic error related to the

weights of neuron �;

Γ L� ∆ vector containing the weights of �-th neuron;
= [ ��L�����L�����L����������QL ]

T;

� = actualisation index of the adaptive process.

The direction adopted in equation (A2) to minimise
the objective function of the quadratic error corresponds
to the opposite direction of the gradient. The parameter
γ�  determines the length of vector φL(�). The sigmoid
function is defined by [8] and [10]:

�L ∆ �L(λ�ϑ �L) ${(-+�0
(−λ�ϑ �L)}/ {(-+�0
(−λ�ϑ �L)} (A3)

or

�L ∆ �L(λ�ϑ �L) $1 / {(- + �0
 (−λ�ϑ �L)} (A4)

where:
λ = constant that determines the inclination of

function �L.

The variation of equations (A3) and (A4) is,
respectively, (−1,+1) and (0,+1).

Then, calculating the gradient as shown on
equation (A2), considering the sigmoid function
defined by equations (A3) or (A4) and the moment
term [10], it is obtained the following schema of the
adaptation of the weights [10]:

Π LM�(�A-) = Π LM�(�) + ∆Π LM (�) (A5)

where:

∆Π LM
�(�) = *�γ (-�−�η) βM�0L + η ∆Π LM (��−�-); (A6)

Π LM = weight corresponding to the linking of the
�!th�and the 1-th neuron;

γ = training rate;
η = moment constant (%�≤�η�<�-) [10].

If the 1-th element is on the last layer, then:

βM��$�σM��εM� (A7)
where:
σM ∆ derivative of the sigmoid function, given

by  equation (A3) or (A4), respectively,
related to ϑ M)

= λ,*�(-�−��M 
�); (A8)

= λ���M (-�−��M
�). (A9)

If the 1-th�element is on the other layers, then:

βM = σM ∑
Γ∈ �M�N

�MN�βN (A10)

where:
Γ(1) = set of index of elements that are on the next

layer of the 1-th element layer and are linked to
the 1-th element.

The parameter γ� that is used as a stability controller
of the iterative process is dependent of λ. The network
weights are randomly initiated, considering the interval
[0,1]. By convenience, the parameter γ (training rate) is
redefined as follows:

γ  = γB / λ (A11)
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Substituting equation (A11) in equation (A6), it is
“cancelled” the dependency of the amplitude of σ
related to λ. The amplitude σ is maintained constant
for any λ. This alternative is important, considering
that λ only actuates on the left and right tails of σ.
Then, equation (A6) is written as follows:

∆Π LM
�(�) = {*�γB(-�−�η) βM�,�λ } 0L�+ η�∆Π LM (�−-). (A12)

The BP algorithm is considered in the technical
literature a benchmark in precision, although its
convergence is very slow. Thus, this work proposes the
adjustment of the training rate γB� during the
convergence process, to reduce the training time
during the execution. The adjustment γB� is effectuated
by a procedure based on a fuzzy controller [18]. The
basic idea of the methodology consists in determining
the system state, defined as global error ε� and the
variation of the global error ∆ε�, taking as an objective
a control structure that leads the error to zero, with few
iterations, when compared to the conventional
procedures. In this work, the control is formulated using
the concept of fuzzy logic [18]. The global error ε� and
its variation ∆ε� are the components of the system state,
and ∆γB is the control action that must be executed on
the system. Initially, the global error is defined as:

ε�  = ∑ ∑
= =

QS

�M

QR

�L

ε�L��  (A13)

where:
ε� = global error of the neural network;
�
 = number of pattern vectors.

The global error is calculated in each iteration, and
the parameter γB, adjusted by an increase ∆γB
determined by fuzzy logic. The system state and the
control action are defined as:

.�T  = [ε�T��∆ε�T�] T ,   and    �T  = ∆γB�T (A14)

where:

C = index of the current iteration.

For a very large pattern input �, ε� and ∆ε� can
saturate. Then, the adaptive control is effectuated
using an exponential decreasing function applied to the
response of the fuzzy controller. This way, the
adaptive controller is given by:

∆γ�B�T = �0
 (−�α�C�) ∆ψT (A15)

where:

α = a positive arbitrary number;
∆ψT = variation of the fuzzy controller on the

instant C.

This parameter is used to adjust the set of the
network weights referred to the subsequent iteration.
The process must be repeated until the training be
concluded.

�((����,�-

(   ) Transmission line number.
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Figure 2. Representation of test systems


