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Abstract

This work proposes a constructive method for build-
ing a wavelet network classif ier. The network consists
of a wavelet layer, which implements a nonlinear trans-
formation in the input data, and a linear discriminant
function, which carries out classif ication on the basis of
the wavelet layer output. The proposed methodology is
tested in a f inancial distress prediction problem involv-
ing British companies in the period 1997–2000. In this
case study, the wavelet network was found to be a better
classif ier than a model obtained by linear discriminant
analysis and a multi–layer perceptron trained with the
Optimal Brain Damage technique.

1. Introduction

A wavelet network is a nonlinear structure that imple-
ments input-output mappings as the superposition of di-
lated and translated versions of a single function, which
is localized both in the space and frequency domains [1].
Such structure can approximate any square-integrable
function to arbitrary precision, given a sufficiently large
number of network elements. This property has been ex-
ploited for function approximation and dynamic system
identification in a number of works [2],[3],[4],[5], which
claim that wavelet networks can be more easily designed
and tuned than multi-layer perceptrons and networks of
radial basis functions. In fact, efficient construction algo-
rithms have been devised to optimize the structure of the
wavelet network [3],[6], and even to adapt it in real time
[2],[5].

In the context of classification problems, linear
wavelet transformations have been employed to extract
features from signals and images as a pre-processing
stage for neural network classifiers [7], [8], [9]. However,
the use of wavelet networks to implement the nonlinear
decision surface of the classifier itself is still incipient.

This paper proposes a constructive algorithm to build
a wavelet network classifier. The classifier consists of
two blocks: (1) a wavelet layer, which implements a non-
linear transformation in the input data, and (2) a linear

discriminant function, which is applied to the output of
the wavelet layer. This approach is novel in compari-
son with usual neural-wavelet classification methodolo-
gies [7], [8], in which the wavelet layer is used for a
preliminary linear transformation and the classification is
carried out by a nonlinear neural network structure.

For illustration, the proposed methodology is applied
to the financial distress classification of British compa-
nies on the basis of data from 1997–2000. For compar-
ison, a conventional linear discriminant model [10] and
a multi–layer perceptron trained with the Optimal Brain
Damage algorithm [11] are also employed.

The text is organized as follows. A brief review of
wavelet networks is given in section 2. Section 3 presents
the proposed method to build a wavelet network clas-
sifier. Section 4 describes the financial application exam-
ple. The classification results are discussed in section 5.
Concluding remarks and suggestions for further research
are given in section 6.

2. Wavelet Networks

A wavelet network [1], [3] can be regarded as a neu-
ral architecture whose activation functions are dilated and
translated versions of a single function ψ ∈ L2(Rd),
where d is the input dimension1. This function, called
“mother wavelet”, is localized both in the space (x)
and frequency (ω) domains in the sense that |ψ(x)| and
|ψ̂(ω)| rapidly decay to zero when ‖x‖ → ∞ and
‖ω‖ → ∞, respectively2.

As an example, consider the so-called “Mexican Hat”
mother wavelet defined as

ψ(x) = (1− ‖x‖2) exp
(

−‖x‖
2

2

)

(1)

which is depicted in Figure 1a for a two-dimensional in-
put. For convenience of visualization, a cross-section of
this wavelet is also presented in Figure 1b. This type
of multidimensional wavelet is called “radial”, because
it only depends on the norm of the input vector.

1L2(Rd) is the set of square-integrable functions f : Rd
→ R

2ψ̂ is the Fourier Transform of ψ.
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Figure 1: (a) Mexican Hat wavelet with two-dimensional
input. (b) Cross-section of the Mexican Hat wavelet.

A wavelet network with one output, d inputs and L
nodes can be parameterized as follows [1],[3]:

y =

L
∑

j=1

wjψj(x) (2)

where x = [x1 x2 · · · xd]
T is the vector of inputs. Func-

tions ψj , called wavelets, are dilated and translated ver-
sions of the mother wavelet function ψ:

ψj(x) = a
−d/2

j ψ

(

x− bj

aj

)

(3)

In Equation (3), the dilation parameter aj ∈ R∗ con-
trols the spread of the wavelet, whereas the translation
parameter bj ∈ Rd determines its central position. It can
be shown that, if pairs (aj ,bj) are taken from a grid Λ
given by

Λ = {(αm,nβαm); m ∈ Z,n ∈ Zd} (4)

for convenient values of α > 1 and β > 0, then any
function in L2(Rd) can be approximated by Equation (2)
to arbitrary precision, given a sufficiently large number
of wavelets [3],[12]. In this sense, wavelet networks can
implement arbitrary nonlinear discriminant functions.

A major advantage of wavelet networks over other
neural architectures is the availability of efficient con-
structive algorithms [2], [3], [5], [6] for defining the net-
work structure, that is, for choosing convenient values for
(m,n). Once the structure has been determined, weights
wj can be obtained by linear estimation methods.

3. The proposed constructive method

In this work, a modified version of the constructive
method introduced by [3] is proposed as follows. Sup-
pose that M modelling samples of known classification
are available in the form of data vectors xk ∈ Rd,
k = 1, . . . ,M . Then:

1. Normalize the modelling data to fit within the effec-
tive support S of the mother wavelet employed. For
radial wavelets, S is a hypersphere in Rd with ra-
dius R. For the Mexican Hat, for instance, R can be
taken as 5 (see Figure 1b). For computational sim-
plicity, S is approximated as a hypercube inscribed
in the hypersphere with edges parallel to the coordi-
nate axis.

2. For each sample xk in the modelling set, find Ik,
the index set of wavelets whose effective supports
contain xk:

Ik = {(m,n) s.t. xk ∈ Sm,n,

mmin ≤ m ≤ mmax}, k = 1, . . . ,M (5)

where Sm,n is a hypercube centered in nβαm with
edges αmR

√
2. As a rule of thumb, set the mini-

mum and maximum scale levels to mmin = −1 and
mmax = +1, respectively. In the present applica-
tion, these settings proved to be adequate but, in the
general case, more scale levels may be added until
the performance of the wavelet network is consid-
ered satisfactory.

3. Determine the pairs (m,n) which appear in at least
two sets Ik1 and Ik2 , k1 6= k2. These are the
wavelets whose effective support include at least two
samples. This step is different from the algorithm
described in [3], which allows for wavelets with ef-
fective supports containing only one sample. Since
such wavelets introduce oscillations between neigh-
bor data points, they should be excluded from the
modelling process to avoid overfitting problems.

4. Let L be the number of wavelets obtained above.
For simplicity of notation, replace the double index
(m,n) by a single index j = 1, . . . , L.

5. Apply the L wavelets to the M modelling samples
and gather the results in matrix form as

Ψ =











ψ1(x
1) ψ1(x

2) · · · ψ1(x
M )

ψ2(x
1) ψ2(x

2) · · · ψ2(x
M )

...
... · · ·

...
ψL(x

1) ψL(x
2) · · · ψL(x

M )











(6)

Notice that each sample is now represented by L
wavelet outputs (a column of Ψ), instead of d variables.
Since the mapping x 7−→ Ψ(x) is a nonlinear transfor-
mation, patterns which were not linearly separable in the
x-variable domain may be so in the domain of wavelet
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outputs. However, many wavelets resulting from steps
1-4 may be redundant or may not convey useful discrim-
inating information. Thus, the next step consists in deter-
mining which wavelets or, alternatively, which rows ofΨ
are the most relevant for the classification task.

At this point, the algorithm of [3], which was pro-
posed in an estimation framework, makes use of the infor-
mation available in the dependent variable (the variable
to be estimated). However, in the present case, which
is aimed at classification, a different approach must be
used. For simplicity, a two-class problem will be as-
sumed, without loss of generality.

Before describing the proposed approach for wavelet
selection, two definitions are needed.

Definition 1 (Fisher Discriminant Criterion). Let ψ
be a vector containing elements of class 1 and of class 2.
The Fisher Discriminant Criterion of ψ is defined as

F (ψ) =
[µ1(ψ)− µ2(ψ)]

2

[σ1(ψ)]2 + [σ2(ψ)]2
(7)

where µ1(ψ) and σ1(ψ) are respectively the mean and
standard deviation of the elements of ψ associated to
class 1. In the same manner, µ2(ψ) and σ2(ψ) are
defined for the elements associated to class 2. The Fisher
Discriminant Criterion is a measure of how well the two
classes are separated in ψ.

Definition 2 (Condition Number associated to a set of
vectors). Let A = {ψj , j = 1, . . . , J} be a set of M -
dimensional row vectors (M > J). The condition num-
ber associated to A is defined as the condition number
(ratio between the maximum and the minimum singular
values) of a matrix∆ built as

∆ =











ψ1

ψ2

...
ψJ











(8)

The condition number can be used as a measure of
the collinearity (or “redundancy”) between the vectors
in A [13]. In fact, if the vectors are linearly dependent,
the condition number is infinite and, if they form an or-
thonormal set, the condition number equals one.

The proposed algorithm for wavelet selection chooses
rows fromΨ in a stepwise manner, starting from the one
which displays the largest Fisher Discriminant Criterion
and adding a new row at each iteration.

a) (Initialization) Let A be the set of row vec-
tors still available for selection and B the set
in which the selected vectors are stored. Ini-
tially, A =

{

ψj , j = 1, . . . , L
}

, where ψj =

[ψj(x
1) ψj(x

2) · · · ψj(x
M )], and B = ∅.

b) (Preliminary pruning) Eliminate from A all vectors
whose norm is lower than κmaxj(‖ψj‖) for a fixed
0 < κ < 1.

c) (First selection) Determine the vector in A which
displays the largest Fisher Discriminant Criterion.
Move this vector from A to B.

d) (Collinearity prevention) Remove fromA all vectors
which, if added to B, result in a condition number
larger than a fixed threshold χ > 0. If all vectors in
A are eliminated then stop.

e) (Selection) For each of the remaining vectors in A,
obtain a linear discriminant model (see Appendix)
by using this vector in conjunction with the vec-
tors in B. Evaluate the Fisher Discriminant Cri-
terion of the model output. Determine the vector
which leads to the largest Fisher Discriminant Crite-
rion and move it from A to B.

f) Return to step (d).

Notice that redundancy is avoided in step (d), whereas
step (e) selects the vector that displays the better synergy
with those already selected. The selection procedure de-
scribed above can be regarded as a growing network con-
struction algorithm, since it starts with a single-wavelet
network, which is augmented with a new wavelet at each
iteration. Parsimony considerations can be used to select
an optimal size for the network, as it will be shown in the
section of Results and Discussion.

4. Application Example: Financial Distress
Prediction

A company is said to be insolvent or under financial
distress if it is unable to pay its debts as they become due,
which is aggravated if the value of the firm’s assets is
lower than its liabilities. Once a company has become in-
solvent there are several courses of action covered by the
relevant laws. Not all of these courses of action neces-
sarily mean the end of a company or its business activity.
The primary objective is to recover as much of the money
owed to creditors as possible.

Distress prediction models are used by a large number
of parties, which include lenders, investors, regulatory
authorities, government officials, auditors and managers
[14]. The development of prediction models for financial
distress started in the late 1960’s [15], [16] and continues
to this day. Financial distress models are usually based on
ratios of financial quantities, rather than absolute values.
By deflating statistics by size, the use of ratios allows a
uniform treatment of different firms.

A number of works have found neural network clas-
sifiers to provide better results than linear models in case
studies based on American [17], [18], [19], [20], [21] and
British [22], [23] firms.

4.1. Data set employed in this study

Financial data from 29 failed and 31 continuing
British corporations were used in this study. The data
set covers the period between 1997 and 2000. The vari-
ables employed are financial ratios commonly found in
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the literature: x1 (working capital/total assets), x2 (accu-
mulated retained profit/total assets), x3 (profit before in-
terest and tax/total assets), x4 (book value of equity/book
value of total liabilities), x5 (sales/total assets). Here the
only difference from Altman’s choice [16] is the use of
the book value of equity, rather than the market value of
equity, to calculate x4. Tables with the complete data set
are available in [24].

The companies were divided into a modelling set (21
failed and 21 continuing firms) and a validation set (8
failed and 10 continuing firms).

5. Results and Discussion

5.1. Linear classifier

A linear classifier was initially built by linear discrim-
inant analysis (see Appendix) using the five ratios de-
scribed above. The resulting model is given by:

Z = 3.31x1+0.93x2− 2.09x3+0.47x4+0.14x5 (9)

with cut–off value zc = 1.51. A company is classified as
continuing if Z > zc and as failed otherwise.

An inspection of (9) reveals that the 3rd coefficient
does not have a logical value. In fact, it should be posi-
tive, because x3 relates profit before interest and tax with
total assets, and the higher the value of this ratio, the less
likely it is that the firm is in financial trouble (all other
factors kept constant). The source of this problem can be
understood by calculating the coefficient of multiple cor-
relation [25] of each ratio with respect to the other four.
For ratio xi, this coefficient is defined as σ(x̂i)/σ(xi),
where σ(·) stands for the sample standard deviation and
x̂i is the least-squares estimate of xi obtained from the
other ratios. The values obtained for x1, x2, x3, x4, x5

were 0.96, 0.75, 0.97, 0.56, 0.41, respectively. As can be
seen, x3 is the ratio that can be better predicted from the
other four. Thus, it is the most likely source of collinear-
ity problems, which are known to deteriorate the predic-
tion ability of linear discriminant models [26].

In order to circumvent the collinearity problem, a new
classifier was calculated with four inputs (x1, x2, x4 and
x5), rather than five. The resulting model is as follows:

Z = 0.22x1 + 0.38x2 + 0.47x4 + 0.12x5 (10)

with cut–off value zc = 0.75. As can be seen, all co-
efficients display positive values, which is in agreement
with the financial interpretation of the model. More-
over, by re-evaluating the coefficients of multiple corre-
lation after the exclusion of x3, the values obtained for
x1, x2, x4, x5 were 0.58, 0.60, 0.42, 0.31, which shows
that the collinearity effects are much smaller than in the
previous case. Interestingly, ratio x1 no longer exhibits a
large coefficient of multiple correlation, which suggests
that x1 was primarily correlated with x3.

The classifier in eq. (10) yields 9 errors on the mod-
elling set and 4 errors on the validation set, as shown in

Table 1: Results, linear classifier using four ratios. Error
types: I (failed company classified as continuing) or II
(continuing company classified as failed)

Data Type I Type II Total Percent
set errors errors errors accuracy

Modelling 2 7 9 79 %
Validation 0 4 4 78 %

Table 1. It is worth noting that, if ratio x3 is not dis-
carded, the number of validation errors increases to 7,
which corroborates the financial and statistical reason-
ings presented above.

5.2. Multi–layer perceptron

A multi–layer perceptron with one output, one hidden
layer with 10 neurons and hyperbolic tangent activation
function in all neurons was used. The company is clas-
sified as continuing if the network output is positive and
as failed otherwise. The inputs to the network were the
five financial ratios x1, x2, x3, x4, x5.

The network was trained with the Levenberg–
Marquardt method [27], with randomly generated ini-
tial weights. In order to alleviate overfitting problems,
which might result from an over-parameterized structure,
the Optimal Brain Damage pruning technique [11] was
employed. This technique employs 2nd-derivative infor-
mation (Hessian of the cost function with respect to the
network parameters) to identify synaptic weights whose
elimination will result in the smallest increase in the out-
put error. Pruning was performed by removing one con-
nection at a time and then retraining the network [28].

Figure 2 displays the mean square error MSE in the
modelling set as a function of the number of remaining
parameters (weights and biases) in the network. This
graph suggests that a good trade-off between model com-
plexity and classification performance is obtained at the
inflection point indicated by an arrow (22 parameters).
Table 2 presents the classification performance of the
pruned network on the modelling and validation sets.

Table 2: Results, multi–layer perceptron. Error types: I
(failed company classified as continuing) or II (continu-
ing company classified as failed)

Data Type I Type II Total Percent
set errors errors errors accuracy

Modelling 0 0 0 100 %
Validation 0 3 3 83 %

By comparing Tables 1 and 2, it can be seen that the
multi–layer perceptron is a better classifier than the lin-
ear model. Moreover, the removal of ratio x3 was not
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Figure 2: Pruning record of the Optimal Brain Damage
training. The arrow indicates the inflection point used to
select the number of parameters.

required in this case, which suggests that the neural net-
work may be more robust to collinearity problems than
the linear discriminant model.

However, it is worth mentioning that the validation
performance of the multi–layer perceptron depended on
the initial weights used in its training (with the modelling
and validation sets kept the same). This is due to the
presence of local minima in the error surface. In fact,
by repeating the training procedure several times starting
from different sets of weights, it was verified that in some
cases, the trained network yielded 4 validation errors in-
stead of 3. The network that gives the best validation
performance is usually chosen, as this indicates a better
generalisation ability.

5.3. Wavelet network

A Mexican Hat wavelet with grid parameters α = 2
and β = R/2 = 2.5 was employed. This choice of β
results in a maximum overlap of 25% for wavelets at a
given scale level.

Steps 1 and 2 of the algorithm described in section 3
resulted in 991 wavelets, a number which was reduced
to 457 by Step 3. Of these, 258 were discarded in step
(b) of the selection process with κ = 10−3. The use of
a threshold χ = 10 for the condition number caused the
algorithm to stop after selecting 11 wavelets.

Figure 3 displays the number of classification errors
on the modelling set as a function of the number of
wavelets added to the network during the selection pro-
cess. This graphic suggests the choice of six wavelets,
according to the principle that, given models with simi-
lar prediction capabilities, the one with fewest parameters
should be favored (Parsimony Principle). Interestingly,
these wavelets are equally distributed among the three
scale levels employed (m = −1, 0,+1), which justifies
the importance of using a multi-scale network structure.

As shown in Table 3, the six-wavelet model leads to 2
errors on the validation set. When compared to the multi–
layer perceptron obtained above, this wavelet network is

less successful in discriminating the training patterns, but
its performance on the validation set is better. The reason
may lie in the fact that, although the wavelet network has
43 parameters (6 wavelets × (1 scale + 5 translations) +
6 weights + 1 cut-off value), only 7 of them (weights and
cut-off value) are real-valued. Thus, on the overall, the
wavelet network structure is simpler then the multi–layer
perceptron, which had 22 real-valued parameters.
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Figure 3: Modelling errors as a function of the number
of wavelets employed. The arrow indicates the inflection
point used to select the number of wavelets.

Table 3: Results, wavelet netwok. Error types: I (failed
company classified as continuing) or II (continuing com-
pany classified as failed)

Data Type I Type II Total Percent
set errors errors errors accuracy

Modelling 1 1 2 95 %
Validation 0 2 2 89 %

Notice that, unlike the multi–layer perceptron train-
ing, the construction of the wavelet network does not
exhibit reproducibility problems, because it does not in-
volve a random generation of initial synaptic weights.

6. Conclusions

This paper proposed a constructive method for build-
ing a wavelet network classifier. Tests were carried
out in a financial distress prediction problem using data
from British firms. The results showed that both the
wavelet network and a conventional multi–layer percep-
tron yielded better results than a classifier obtained by
linear discriminant analysis. However, when compared
to the multi–layer perceptron, the wavelet network dis-
played the following advantages:

1. Better generalization ability, which can be at-
tributed to a more parsimonious model structure.
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2. Reproducibility of the training outcome, since the
construction of the wavelet network does not require the
random generation of an initial set of weights.

A possibility not explored in this paper is subjecting
the wavelet network to a backpropagation training after
selecting the wavelets to be included in the model. This
training could possibly improve the network performance
by fine-tuning the scale and translation parameters. How-
ever, the advantage of having a simple structure, mostly
parameterized by integer values, would be lost.

Finally, it is worth noting that the wavelet selection
algorithm, which was developed for a two-class prob-
lem, can be easily extended to the multi-class problem.
Suffice it to use a multi-class Fisher Discriminant Crite-
rion, defined as the ratio of a between-class and a within-
class scatter measures [29].
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Appendix: Linear Discriminant Analysis

The following linear discriminant function Z : Rn →
R can be derived for the case of binary classification [10]:

Z(x) = (µ1 − µ2)
T
S
−1
x (11)

where x = [x1 x2 · · · xn]
T is a vector of n classification

variables, µ1,µ2 ∈ Rn are the sample mean vectors of
each group, and Sn×n is the common sample covariance
matrix. Equation (11) can also be written as:

Z = w1x1 + w2x2 + · · ·+ wnxn = w
T
x (12)

where the vector of coefficients w = [w1 w2 · · · wn]
T is

obtained as w = S−1(µ1 − µ2).
The cut-off value zc for classification can be calcu-

lated as zc =
1

2
(µ1−µ2)

T
S
−1(µ1+µ2). A given vector

x should be assigned to population 1 if Z(x) > zc, and
to population 2 otherwise.
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