Concurrent Quantum Programming in Haskell

Juliana Kaizer Vizzotto and Antonio Carlos da Rocha Costa

Abstract—This paper applies established techniques for
concurrent programming in Haskell to the case of Concur-
rent Quantum Programming. The foundation of the ap-
proach is an extension to Concurrent Quantum Program-
ming of the technique of “virtual values” proposed by Amr
Sabry for quantum programming in Haskell. The basic
idea is to encapsulate quantum values within MVars, the
monadic variables that support thread synchronization and
mutually exclusive accesses to shared references. In this
way, quantum processes can be concurring to have access to
quantum values and we will be applying the now established
quantum programming paradigm of “control is classic, data
is quantum” to the concurrent and distributed quantum
programming domain: the case in focus is that the control
of concurrency is classical control, while shared data be-
tween quantum processes are quantum data. We illustrate
the use of the proposed approach by programming sample
algorithms for quantum teleportation, quantum leader elec-
tion, and quantum cryptographic key distribution.

Index Terms—Quantum programming, Concurrent

Haskell, Simulation of Quantum Algorithms.

I. INTRODUCTION

There is much effort being put into the development of
quantum programming languages, while quantum comput-
ers strive to open their way to become practical. Several
quantum programming languages have been developed (in-
cluding [17], [14], [16]), and the notion of computational
flow (yet classical - first discussed in [10]) was firmly in-
troduced in the description of quantum algorithms. That
notion is associated with the idea of an abstract quantum
computer operating with qubits, quantum registers, and
a small set of suitable operations on those elements. Ba-
sically, the operations consist of state preparation, some
unitary transformations and measurement.

On the other hand, several authors have noted the con-
nections between quantum programming and functional
programming. In [12], Bird and Mu present the applicabil-
ity of functional languages for writing quantum codes us-
ing a monad of probabilistic computations to deal with the
(nondeterministic) results of measurements. J. Karczmar-
czuk [9] takes advantage of the mathematical foundations
of functional languages to model quantum mathematical
entities (vector spaces, matrix algebra) in Haskell [7]. Also,
Amr Sabry [15] develops an elegant approach to quantum
programming in the purely-functional language Haskell.
The latter is sufficiently powerful for the (inevitably, expo-
nentially slowed down) simulation of quantum processing
and the observation of its results. It uses global side-effects
to shared references as a mechanism for observing compo-
nents of entangled data structure such that the result of

Instituto de Infomética/PPGC.
Universidade Federal do Rio Grande do Sul.
Porto Alegre/RS, Brazil. email: jkv@inf.ufrgs.br.
Supported by CNPq.
Escola de Informética
Universidade Catdélica de Pelotas.
Pelotas/RS, Brazil. email: rocha@atlas.ucpel.tche.br

an observation affects all entangled values. That scenario
is established in the context of a sequential programming
environment.

In this paper, building on the work of Sabry, we pro-
pose an approach to Concurrent Quantum Programming
in Concurrent Haskell [8]. Concurrent Haskell is an ex-
tension to Haskell that allows us to express explicitly con-
current computations. Basically, we represent a quantum
cell as a global reference with a kind of semaphore to con-
trol the access to it, and construe a quantum process as
a thread. In this way, the quantum processes will be con-
curring (non-deterministically) to have access to quantum
values.

We believe that this simple and conventional approach
to concurrent programming allows for a natural expres-
sion of some quantum algorithms executing in networks
with quantum resources, which need some notion of multi-
threaded programming, since they involve multiple (classi-
cal, non-quantum) agents and their communication strate-
gies (sometimes via sharing of quantum resources). Con-
crete examples of such algorithms are quantum teleporta-
tion [1], quantum leader election and distributed consensus
[4], and quantum cryptography [2], [3].

The paper is organized as follows. Section II presents
Sabrys’s approach to quantum programming in Haskell.
Section IIT provides an overview of Concurrent Haskell.
Our approach to Concurrent Quantum Programming is
presented in Section IV. We show in Section V how the
approach can be used to implement a quantum leader elec-
tion. In Section VI, we implement a simplified version of
a quantum key distribution algorithm. Finally, in Sec-
tion VII we present some conclusions and plans for future
works.

II. SABRY’S IDEA OF QUANTUM PROGRAMMING IN
HASKELL

Amr Sabry presents in [15] an approach to (sequen-
tial) quantum programming using the functional language
Haskell. He proposes to present quantum computing in a
way closer to a programmer’s usual vocabulary. In par-
ticular, he seeks to stimulate quantum programming with
other kinds of quantum data types, besides quantum bits.
So, in his approach quantum values are represented as a
special data type QV a, such that all nullary construc-
tors of for the type a are interpreted as unit vectors from
a specific base. A specific base a can be obtained by an
instantiation of a from the Basis class. We show this by
defining the qubits in the Binary basis through the follow-
ing declarations:

class (Eq a, Ord a) = Basis a where basis :: [a]
data Bin = Zero | One
instance Basis Bin where basis = [Zero, One]
Given unit vectors for type a, values of the type QV a

are finite maps of the library FiniteMap !, which associates
each unit vector of a specific basis with a probability am-
plitude:

type QV a = FiniteMap a PA

PA = Complex Double
having the following constructor:

qu :: Basis a = [(a,PA)] = QV a

qu = listToFM
and selector:

pr:Basisa= QV a—a— PA

pr v k = lookup WithDefaultFM v 0 k

Then, some specific values of QV Bin can be declared

as:
q¢Z,q90,qZ0 :: QV Bin
qZ = qu [(Zero,1)]
g0 = qu [(One,1)]
qZ0 = qu [(Zero,1 [sqrt{2}),
(One,1/ sqri{2})]

Moreover, one can construct pairs of values of type
QV (a,b), which builds on the basis of pairs of quantum
values, and allows for the representation of entangled val-
ues:

instance (Basis a, Basis b) = Basis (a,b) where

basis = [(a,b) | a + basis, b < basis]

427 ,900,qZZ00 :: QV (Bin,Bin)

qZ7Z = qu [((Zero, Zero),1)]

q00 = qu [((One, One),1)]

qZZ00 = qu [((Zero, Zero),1 [sqrt (2)),

((One, One), 1/ sqrt (2))]

The last vector describes an entangled quantum state
which cannot be separated into the product of independent
quantum states. The vector “qZZ00” is an EPR-pair,
where “EPR” refers to the initials of Einstein, Podolsky,
and Rosen who used such a vector in a thought experiment
to demonstrate some strange consequences of quantum me-
chanics [5].

Unitary transformations are implemented as functions
on quantum data types. For instance, the hadamardf func-
tion on quantum values in the binary basis is defined as
follows:

hadamardf :: QV Bin — QV Bin
hadamardf v =
let a = pr v Zero
let b = pr v One
in gv [(Zero,(a +b) / sqrt (2)),
(One,(a—b) / sqrt (2))]

The author also presents a matrix alternative for the
representation of quantum operations, which specifies how
each input amplitude contributes to each output ampli-
tude. Such matrices are also implemented by finite maps,
with the constructor below:

data Qop a b = Qop (FiniteMap (a,b) PA)
gop :: (Basis a,Basis b) = [((a,b), PA)] = Qop a b
gop = Qop.listToFM

Then, to apply an operation to a quantum value we mul-
tiply the matrix and the vector representing the value:

! The library FiniteMap is in the Haskell core libraries.

qApp :: (Basis a, Basis b) =
Qopab—>QVa—>QVb
gApp (Qop m) v =
let pa b= sum [pr m (a,b)* pr v a| a « basis]
in qu [(b,pa b) | b « basis]

For example, the hadamard operation can be defined
using the following matrix:

hadamard = qop [((Zero, Zero),1 / sqrt (2)),
((Zero, One),1 [sqrt (2)),
((One, Zero),1 [sqrt (2)),
((One, One),—1/ sqrt (2))]

The way to show quantum states to the outside world is
to measure them. The outcome of this operation is inher-
ently random and has side effects on the previous (possi-
bly entangled) quantum state. To model such side effects
Sabry uses explicit references to shared states. In this way,
quantum values can only be accessed via a reference cell
and any observation of the value results in the update of
the reference cell with the observed value. A quantum
reference QR a, which holds a quantum value QV a, is de-
fined on top of Haskell’s IORef. An IORef is a mutable
variable in the IO monad [6]:

data QR a = QR (IORef (QV a))

mkQR:: QV a — I0 (QR a)

mkQR v =do r < newlORef v
return (QR r)

The I0-action mk@QR allocates a new quantum reference
cell and stores a quantum value in it. Therefore, to observe
a quantum value accessible via a reference QR a, we get
the reference’s content, observe that value, and update the
reference with the result of the observation. This is done
by the functions:

observeR :: QR a — IO a
observeR (QR 1) =
do v < readIORef r
obs < observeV v
writeIORef r (qu [(0bs,1)])
return obs

observeV :: QV a — 10 a
observeV v =
do probs = map ((x+2) o magnitude o (pr v)) basis
res < simulateCollapse probs basis
return res
where simulateCollapse is a function that simulates (in an
exponentially slowed down way) the reduction of the quan-
tum value due to the observation.

An important feature of quantum programming is that
we can operate on parts of a quantum data structure even
when that structure is entangled. To allow for such oper-
ations on registers of quantum bits, and in general on any
other kind of quantum data structure, Sabry proposed the
concept of virtual value, that is, a part of a data-structure
that is virtually separated from the rest of the structure 2.

A virtual value is specified by giving the entire data
structure to which it belongs and an adaptor that specifies

2 Virtual values seem to generalize the symbolic registers [13] and
the use of rotation operations [16] of the QPL and QCL quantum
programming languages, respectively.

VIZZOTTO AND ROCHA COSTA: CONCURRENT QUANTUM PROGRAMMING IN HASKELL 3

the mapping from the entire data structure to the part in
question, and back:
data Virt a na v = Virt (QR u) (Adaptator (a,nae) u)
data Adaptor p ds =
Adaptor{dec::ds — p,cmp::p — ds}

In the type (Virt a na u), u is the type of the entire (pos-
sibly entangled) data structure, a is the type of the virtual
value itself, and na is the type of the complementary part
of u that doesn’t belong to a. Finally to provide a uniform
programming model, it is suggested that all operations in
a quantum program be defined in terms of virtual values.
There is a way of forming virtual values from references to
quantum values:

virtFromR :: QR a — Virt a () a
virtFromR r =
Virt r (Adaptor{dec = Aa — (a,()),
cmp = A(a,()) = a})
and there is a function virtFormV that makes virtual val-
ues from other virtual values:
virtFromV :: Virt a na u — Adaptor (al,02) a
— Virt ol (a2,n0) u
virtFromV (Virt r
(Adaptor{ dec = gdec,cmp = gcmp }))
(Adaptor{dec = ldec,cmp = lemp }) =
Virt r (Adaptor
{dec = Au — let (a,na) = gdec u in
let (al,a2) = ldec a in
(al,(a2,na)),
emp =X al,(a2,na)) -
gemp (lemp (al,a2),na)})

There is also a way to create virtual values directly from

quantum values:
virtFrom@ = virtFromR o mkQR

The input and output of quantum operations should
now be virtual values, i.e., an operation with type Qop a b
should map virtual values of type Virt a na ua to virtual
values of type Virt b nb ub. Thus, the application operator
for matrices app is defined as:

app :: (Basis a,Basis b,
Basis nab, Basis ua, Basis ub) =
Qop a b — Virt a nab ua — Virt b nab ub — 10 ()
app (Qop m)
(Virt (QR ra)
(Adaptor{ dec = deca,cmp = cmpa }))
(Virt (QR rb)
(Adaptor{dec = decb,cmp = cmpb})) =
let m' = qop [((ua,ub),pr m (a,b)) |
uwa < basis, ub < basis,
let (a,na) = deca ua,
(b,nb) = decb ub,
in na = nb)
in do va < readIORef ra
let vb = (gApp m' va)
writeIORef rb vb

Note that since virtual values live in memory cells, the
application operator works quite as an assignment opera-
tor: vb < m (va).

A virtual value can be observed by the function
observe V'V that first uses the adaptor to select the virtual
value from the whole data structure, and then uses the
function observeV , defined above, to observe the value:

observeVV :: Virt a na u — I0 a

observe VV (Virt (QV r)

(Adaptor{dec = dec,cmp = cmp })) =

do let pa a = sqrt (sum [((*%2) o magnitude o pr v)

(emp (a,na)) | na « basis])
let virtV = qu [(a,pa a) | a < basis]
obs < observeV virtV
let nv = qu [(u,pr v (cmp (0bs,na))) |

u < basis,

let (a,na) = dec u,

a = aobs]
writeIORef r nv
return obs

III. CONCURRENT HASKELL

Concurrent Haskell [8] is a concurrent extension to the
lazy functional language Haskell that introduces two main
new ingredients:

o threads, and a mechanism for thread initiation; and

« atomically-mutable state, to support inter-thread

communication and cooperation.

Firstly, the language provides a new primitive called
forkIO, which starts a thread. The type of forkIO is:

forkIO :: 10 a — IO Threadld
It takes an I/O action and arranges to run it concurrently
with the “parent” thread.

For communication between different threads, Concur-
rent Haskell offers a variety of concepts, all based on mu-
table variables (MVar). Mutable variables are embedded
in the IO monad [6], which guarantees that threads access
MVars only in a mutually exclusive way. This is necessary
because of the nondeterminism of the underlying interleav-
ing semantics. Different schedules may lead to different in-
teractions taking place and therefore to different results. In
this context, threads can create MVars, read values from
MVars and write values to MVars. If a thread tries to
read from an empty MVar or write to a full MVar, then it
is suspended until the MVar is filled or emptied (respec-
tively) by another thread. Using M Vars, a type of buffered
channels was defined [6]. A channel can be read or written
to by multiple threads, it in a safe way.

A. Communication and MVars

The basic set of operations on MVars is listed below.
data MVar a -- Abstract
newEmptyMVar :: 10 (MVar a)
newMVar :: a — 10 (MVar a)
takeMVar :: MVar a — I0 a
putMVar = MVar a — a — I0 ()
readMVar :: MVar o — 10 a
An MVar is (a reference to) a mutable location that
either can contain a value of type a, or can be empty.
The operation newEmptyMVar creates an empty M Var.

The function putM Var fills an empty MVar with a value,
and takeMVar takes the contents of an MVar out, leav-
ing it empty. If it was empty in the first place, the call
to takeM Var blocks until another thread fills it by calling
putMVar. A call to putMVar on an MVar that is already
full blocks the thread until the M Var becomes empty. Un-
like takeM Var, readM Var reads the value of an M Var, but
leaves it full.

B. Channels

A channel with unbounded buffering is defined using the
MVars [6]. The Channel type has the following interface:
type Channel a = (MVar (Stream a), -- read end
MVar (Stream a)) -- write end
type Stream a = MVar (Item a)
data Item a = Item a (Stream a)
newChan :: IO (Channel a)
putChan :: Channel a — a — I0 ()
getChan :: Channel a — 10 a
A channel permits multiple processes to write to it
(putChan), and read from it (getChan), safely. Concretely,
the channel is represented by a pair of MVars, that hold
the read end and write end of the buffer. The MVars in
a Channel are required so that channel put and get op-
erations can automatically modify the write and read end
of the channels, respectively. The data in the buffer are
held in a Stream, that is, an M Var which is either empty
(in which case there is no data in the Stream), or holds
an Item. An Item is just a pair of the first element of
the Stream together with a Stream holding the rest of the
data.

IV. CONCURRENT QUANTUM PROGRAMMING WITH
CONCURRENT HASKELL

The central idea of our proposal is to encapsulate quan-
tum values within concurrent Haskell’s M Var, that is, to
extend Sabry’s quantum registers with semaphores to con-
trol concurrent access. In this way, a scenario for multi-
threaded quantum programming arises where threads are
guaranteed to have mutually exclusive accesses to quantum
values.

A. Defining Quantum Semaphores and Related Structures

A quantum semaphore QM Var a, that holds a quantum
value QV a, is defined as:
data QMVar a = QMVar (MVar (QV a))
Operations to allocate a new QM Var, and to read and
write its quantum value can be given as:
mkQMVar:: QV a — I0 (QMVar a)
mkQMVar v =do p < newMVar v
return (QMVar p)

putQMVar :: QMVar a = QV a — 10 ()

putQMVar (QMVar p) v = putMVar p v

takeQMVar:: QMVar a — I0 (QV a)

takeQMVar (QMVar p) = do v + takeMVar p
return v

Because of the mechanism of MVArs, the operation
Put@QMVar on a full QM VAr blocks until other thread fills
that QMVAr with a quantum value. In the same way
take@QM Var blocks if the QM VAr is empty.

Note that QM Vars provide the necessary mechanism for
mutual exclusion during the observation of quantum val-
ues, for when a value inside an QM Var is being observed
by a thread, all other threads should be blocked until the
former updates the value with the observed value:

observeQMVar :: Basis a = QMVar a — 10 a
observeQMVar (QMVar r) =
do v « takeMVar r
res <— observeV v
putMVar r (qu [(res,1)])
return res

We saw in the section IT that Sabry’s proposal is that
all computation with quantum values be performed with
virtual values built upon reference cells. Therefore, we
upgrade the reference cell with MVars to allow mutual
exclusion.

data Virt a na v =
Virt (QMVar u) (Adaptor (a,na) u)
virtFromQMVar :: QMVar a — Virt a () a
virtFromQMVar r =
Virt r (Adaptor{dec = Aa — (a,()),
emp = Xa,() - a})

Analogously, we redefine observe VV to work with quan-

tum semaphores.

V. PROGRAMMING QUANTUM LEADER ELECTION

In the course of a distributed computation, it is often
useful to be able to designate one and only one process as
the coordinator of some activity. This selection of a coordi-
nator is known as the “leader election problem”. In anony-
mous networks, where there is no unique naming scheme
for processes, purely deterministic classical leader election
is impossible. If each process has a coin then they can elect
a leader by tossing the coin. If they get a head they are the
leader. This is not guaranteed to work: there may be more
than one leader or no leaders. In this section we implement
the leader election (fair and terminating) quantum algo-
rithm for anonymous network proposed in [4]. The pro-
tocol is very simple. Essentially, in such an algorithm the
processors share a special quantum entangled state called
W -state 3:

Wn = Xn: |29).
j=1

For instance
wy =
normalize (qu [((Zero, Zero, Zero, One), 1),
((Zero, Zero, One, Zero), 1),
((Zero, One, Zero, Zero), 1),
((One, Zero, Zero, Zero),1)])

3 Here using the “bracket” Dirac notation.

VIZZOTTO AND ROCHA COSTA: CONCURRENT QUANTUM PROGRAMMING IN HASKELL 5

The idea is that each process p; initially owns the ¢ qubit
from W. Then each process carries out the following pro-
tocol:

pi gmv = do putStrLn ("Pi")
result < newEmptyM Var
let qi = virtFromQM Var gmu
let vgi = virtFromV qi ad_quadi
meas < observeVV vgqi
if meas = One
then do putMVar result "1eader"
else do putMVar result "follower"
res < takeM Var result
print (res)
if it observers One then it is the leader otherwise is in the
follower state.

We simulate a leader election in a network with four
process using a parent thread which sparks the four process
defined as above.

leader _election =

do gmv + mkQM Var wy
01 < myForkIO (p1 gmv)
02 < myForkIO (p2 gqmv)
03 myForkIO (ps gmv)
04 < myForkIO (py gmv)
mapM _ (Amvar — readM Var mvar) [01,02,03,04]
print "The end!"
An example of output would be:

* Conc@QComp > leader _election

Pt

"follower"

P2

"follower"

P3

"leader"

Py

"follower"

"The end!"

* Conc@Comp >

VI. PROGRAMMING A QUANTUM KEY DISTRIBUTION
ALGORITHM

In 1984 Bennet and Brassard described the first quan-
tum key distribution algorithm [2], [3]. Quantum key dis-
tribution (QKD) is a protocol by which private key bits can
be created between two parties over a public channel. The
basic idea behind QKD is the following fundamental obser-
vation [11]: an eavesdropper cannot gain any information
from observing a quantum channel, where quantum values
are transmitted from the sender to the receiver, without
disturbing the states of such values because of the effects
that observations have on quantum states.

A. Defining Quantum Channels

A quantum channel is a Haskell channel that holds quan-
tum values, together with operations to write to it, and
read from it.

data QChan a = QChan (Chan (QV a))

mkQChan :: I0 (QChan a)

mkQChan = do r + newChan
return (QChan r)

writeQChan :: QChan a - QV a — IO ()
write@QChan (QChan chan) qu = writeChan chan qu

read@Chan :: QChan a — I0 (QV a)
read@Q Chan (QChan chan) = do v « readChan chan
return v

B. Implementing the BB84 QKD Protocol

The algorithm we implement in this section is the BB84
protocol. The protocol is as follows: Alice begins with a
(the key) and b (codifying basis), two strings each of 4 n
random classical bits. She encodes each data bit of a as
{]0),] 1)} (called X base) if the corresponding bit of b
is 0 or {|+),|—)} (called Z base) if b is 1. Alice sends
the resulting quantum states to Bob and tells when she
finishes. Bob receives the 4n quantum values, announces
this fact, and measures each of them in the X or Z bases
at random. Alice announces b. Alice and Bob discard
any bits where Bob measured a different basis than Alice
prepared. With high probability, there are at least 2n bits
left (if not, abort the protocol). Alice selects a subset of n
bits that will serve as check bits on Eve’s interference, and
tells Bob which bits she selected. Alice and Bob announce
and compare the values of the n check bits. If some bit
disagree they abort the protocol *.

In this context, there is a classical channel chan which is
used for classical communication between Alice and Bob.
This channel may hold single strings for the acknowledg-
ments, and lists of classical bits for the announcement of
the basis:

data Protocol = Single String | Multiple [Bit]

The parent thread creates a quantum channel QChan,
and a classical channel Chan, and forks the two child
threads alice and bob. We also use here the function
outForkIO that generates an output, allowing the parent
thread to force the program to wait for child threads to
finish:

gkeyd = do putStrLn ("Beginning BB84")
gchan < mkQChan
chan < newChan
01 < outForkIO (alice gchan chan)
02 « outForkIO (bob gchan chan)
map (Amvar — readM Var mvar) [o1,02]
-- wait for the children
putStrLN ("The End")

Alice generates the two random bit lists (bits and
bases - a and b above, respectively) using the function
randomBitList®. The argument of this function is the
number of key bits. Then, the function quList builds the
list of (key) quantum values according to the basis list
(basis). Next, Alice puts the list of quantum values in the
QChan and informs this fact to Bob with an "ASend_0k".

4 The phases of information reconciliation and privacy amplifica-
tion on the remaining bits are left away from this paper.

5 Because of lack of space we don’t show here the coding of some
auxiliary functions.

The function wishGet has a channel and a value as argu-
ments. It observes the channel until getting the desired
value. After observing "Ack_Bob" in the classical channel,
Alice writes her basis in this channel. Finally, Alice re-
ceives Bob’s basis and checks with her basis to confirm the
generation of the secret key ©.
alice qchan chan =
do putStrLn ("Alice started")

basis < randomBitList 36

bits < randomBitList 36

< quList bits basis

putQVChan gchan x

writeChan chan (Single "ASend_0k")

wishGet chan (Single "Ack_Bob")

writeChan chan (Single "ASend_0k")

writeChan chan (Multiple basis)

wishGet chan (Single "Ack_Bob")

Multiple bbasis <+ readChan chan

result < compBasis basis bbasis bits

putStrLn ("Alice’s key:")

print (result)

putStrLn ("Alice Finished")

bob qchan chan =
do putStrLn ("Bob started")

wishGet chan (Single "ASend_0k")
qul < getQVChan qchan
writeChan chan (Single "Ack_Bob")
basis < randomBitList 36
obs < bitList qul basis
wishGet chan (Single "ASend_0k")
Multiple abasis < readChan chan
writeChan chan (Single "Ack_Bob")
writeChan chan (Multiple basis)
result < compBasis abasis basis obs
putStrLn ("Bob’s Key:")
print (result)
putStrLn ("Bob finished")

After reading an "ASend_0k" from the classical channel,
Bob gets all quantum values from the quantum channel by
the operation getQVChan, that gets quantum values from
the channel until it is empty. Then he announces this fact
to Alice by putting the message "Ack_Bob" in the Chan.
Next, Bob creates his random base list and observes the
quantum values according to the basis. Then, after reading
the message "ASend_0k" and Alice’s basis, he writes his
basis in the Chan. Finally, Bob also defines the secret key
comparing his basis with Alice’s basis.

A running without an eavesdropper would always give
Bob and Alice finishing with the same key.

VII. CONCLUSIONS AND FUTURE WORK

We presented an approach to Concurrent Quantum Pro-
gramming in Concurrent Haskell building on Amr Sabry’s
proposal of storing quantum values as global references for

6 Actually, at this point, this is not the real secret key because Alice
and Bob should also perform some tests to determine how much noise
or eavesdropping happened during their communication.

modelling side effects of measurements, and casting quan-
tum data structures as virtual values for supporting the
separate handling of their parts. The basic idea is to em-
bed quantum values in MVars, to guarantee mutually ex-
clusive accesses to them by concurrently running quantum
threads. The approach was demonstrated by the imple-
mentation of three sample quantum algorithms, namely,
quantum teleportation, quantum leader election and quan-
tum key distribution. Basing the work on the slogan “con-
trol is classic, data is quantum” we were able to use sim-
ple and conventional concurrent programming constructs
to support Concurrent Quantum Programming. The full
range of applicability of the approach still remains to be
determined. In particular, the problem of distribution and
parallelization of conventionally sequential quantum algo-
rithms, and the determination of the advantages of doing
that, seems to be interesting motivation for further work.

REFERENCES

[1] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and
W. Wootters. Teleporting an unknown quantum state via dual
classical and EPR channels. Phys Rev Lett, pages 1895-1899,
1993.

[2] C.H. Bennett and G. Brassard. Quantum cryptography: Public
key distribution and coin tossing. In Proceedings of IEEE In-
ternational Conference on Computers Systems and Signal Pro-
cessing, pages 175-179, December 1984.

[3] Charles H. Bennett and Gilles Brassard. Quantum public key
distribution reinvented. SIGACT News, 18(4):51-53, 1987.

[4] Ellie D’Hondt and Prakash Panangaden. Leader election and
distributed consensus with quantum resources. 2005.

[5] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-
mechanical description of physical reality be considered com-
plete? Phys. Rev., 47:777-780, 1935.

[6] Simon Peyton Jones. Tackling the awkward squad: monadic in-
put/output, concurrency, exceptions, and foreign-language calls
in haskell.

[7] Simon Peyton Jones. Haskell 98 Language and Libraries. Cam-
bridge University Press, 2003.

[8] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Con-
current Haskell. In Conference Record of POPL ’96: The 234
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 295-308, St. Petersburg Beach,
Florida, 21-24 1996.

[9] Jerzy Karczmarczuk. Structure and interpretation of quantum

mechanics: a functional framework. In Proceedings of the ACM

SIGPLAN workshop on Haskell, pages 50-61. ACM Press, 2003.

E. Knill. Conventions for quantum pseudocode, 1996.

Isaac L. Chuang Michael A. Nielsen. Quantum Computation

and Quantum Information. Cambridge University Press, 2000.

S.-C. Mu and R. Bird. Functional quantum programming. In

Second Asian Workshop on Programming Languages and Sys-

tems, KAIST, Korea, 2001.

B. Omer. A procedural formalism for quantum computing. PhD

thesis, Dept. Theor. Physics, Technical University of Vienna,

1998.

B. Omer. Procedural quantum programming. In Computing

Anticipatory Systems: CASYS 2001 - 5th International Con-

ference, AIP Conference Proceedings 627, pages 276-285, 2001.

Amr Sabry. Modeling quantum computing in haskell. In Pro-

ceedings of the ACM SIGPLAN workshop on Haskell, pages

39-49. ACM Press, 2003.

Peter Selinger. Towards a quantum programming language.

Mathematical Structures in Computer Science, 14(4):527-586,

2004.

Paolo Zuliani. Quantum Programming. PhD thesis, University

of Oxford, 2001.

(14]

[15]

[16]

(17]

