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Abstract— This paper is concerned with the synthesis of diverse
rule bases for fuzzy classification. An immune-inspired approach
for combinatorial optimization, capable of controlling the size and
diversity of the population along the search, is applied to generate
multiple high-quality solutions. A preliminary comparison of
the obtained rule bases indicates the existence of inconsistency,
mainly characterized by the presence of rules with the same
antecedent part and distinct consequent parts. Based on a winner-
takes-all reasoning method, the effective portion of the input
space allocated to each rule will depend on a competitive proce-
dure. So rules with the same antecedent part in distinct rule bases
may fire at distinct portions of the input space, and possibly with
distinct consequent parts. This presumed disadvantage, when
interpretability issues are concerned, can be assertively explored
to produce an ensemble of fuzzy classifiers, with increment in
performance precisely for the same reason. High-quality and
diverse solutions are essentially the basic requisites for successful
implementation of ensembles. A qualitative disadvantage may
then become a quantitative advantage.

I. INTRODUCTION

Fuzzy Systems are fundamental methodologies to repre-
sent and process linguistic information, with mechanisms to
deal with uncertainty and imprecision. With such remarkable
attributes, fuzzy systems have been widely and successfully
applied to control, classification and modeling problems [1]
[2].

One of the most important tasks in the development of fuzzy
systems is the design of its knowledge base. An expressive
effort has been devised lately to develop or adapt methodolo-
gies that are capable of automatically extracting the knowledge
base from numerical data. Particularly in the framework of soft
computing, significant methodologies have been proposed with
the objective of building fuzzy systems by means of genetic
algorithms (GAs).

Genetic Algorithms have demonstrated to be a powerful tool
to perform tasks such as [3]: generation of fuzzy rule base,
optimization of fuzzy rule bases, generation of membership
functions, and tuning of membership functions. All theses
tasks can be considered as optimization or search processes.
Fuzzy system generated or adapted by genetic algorithms are
called Genetic Fuzzy Systems [4]. The combination of Fuzzy
Systems with Genetic Algorithms has great acceptance in the

scientific community, once these algorithms are robust and can
efficiently search large solution spaces [5].

However, a basic GA together with a significant portion
of its variants are not effective in dealing with multimodal
optimization [6]. And a simultaneous search for multiple high-
quality solutions is strongly desired in certain applications of
fuzzy classification systems [7].

A relatively novel computational paradigm, namely Artifi-
cial Immune System (AIS), was originated from attempts to
model and apply immunological principles to problem solving
in a wide range of areas such as optimization, data analysis,
computer security and robotics [8] [9]. As advantages of AIS
over other search strategies we have its ability to maintain
population diversity and to find many good solutions simulta-
neously, if they exist.

The authors have already investigated the application of an
AIS, namely Copt-aiNet [10], for generating at the same time
a pool of diverse and accurate fuzzy classification systems
designed to produce complementary aspects of the solution.
The results, advantages and usefulness of the proposal have
been reported in the literature [11].

Now, the authors analyze interpretability issues associated
with the fuzzy rule bases of the several fuzzy systems gener-
ated by the Copt-aiNet. The term incoherence here is designed
to represent scenarios characterized by fuzzy systems with
rules having the same antecedent part and distinct consequent
parts. In the competitive nature of the winner fuzzy rule
reasoning method [12], the rules of the same rule base
compete with each other to decide which one will be fired
at each portion of the input space. So rules with the same
antecedent part in distinct rule bases may fire at different
portions of the input space, and possibly with divergent con-
sequent parts. At a first moment, divergent rule bases are not
desired in fuzzy classification, since inconsistency represents a
disadvantage when interpretability issues are considered. The
authors show then how to turn this qualitative disadvantage
into a quantitative advantage, building an ensemble of fuzzy
classifiers, with improvement in performance. The successful
implementation of ensembles is related to the quality and
diversity of their components.



This paper is organized as follows. Section II shows
the fuzzy classification rule format and the fuzzy reasoning
method employed. Section III describes the Copt-aiNet algo-
rithm. Section IV presents the application of Copt-aiNet to
the generation of fuzzy rule bases. Experimental results are
presented and discussed in section V. Finally, section VI draws
some concluding remarks.

II. FUZZY CLASSIFICATION RULE FORMAT AND FUZZY
REASONING METHOD

This section describes the fuzzy rule format and fuzzy
reasoning method employed in this work.

We use fuzzy rules for pattern classification problems of the
following type:

Rk: IF X1 is Ak1 and . . . and Xn is Akn, THEN Classj

where Rk is the rule identifier, X1, . . . , Xn are attributes of
the input pattern, Aki is the linguistic term defined by a fuzzy
set used to represent the attribute Xi in rule Rk, and Classj

represents the class.
In a Fuzzy Classification System, the reasoning method is

based on fuzzy logic. It derives conclusions from a set of
fuzzy rules and a pattern. The Winner Fuzzy Rule Reasoning
Method [12] is adopted here to classify a new pattern as
described below.

Let ep = {ap1 , ap2 , ..., apn} be the pattern to be classi-
fied, ap1 , ..., apn

the values of the corresponding attributes
X1, . . . , Xn, and R = {R1, R2, ..., RS} the fuzzy rule set.
The Winner Fuzzy Rule Reasoning Method is performed by
the following steps:

Step 1: Calculate the compatibility degree, Compat(Rk,ep),
between the pattern ep and each rule Rk, k=1...S, applying a T-
norm [1] [2] to the membership degree of the pattern attribute
values, api

, in the corresponding fuzzy sets that appear in the
antecedent part of the rule Rk, Aki, i=1...n.

Compat(Rk, ep) = T (µAk1(ap1), ..., µAkn
(apn)) (1)

Step 2: Find the rule with higher compatibility degree with
the given pattern,

Max{Compat(Rk, ep) } , k=1...S (2)

Step 3: The pattern ep will be classified in the class Classj ,
such that Classj is the class of the rule Rk that possess the
highest compatibility degree with the pattern.

If two or more rules present the same compatibility degree
with the pattern, but different consequent parts, then the rule
with the smallest index will be fired. Although this fuzzy rea-
soning method seems too simple, it presents a satisfactory level
of accuracy and its simplicity may contribute to understand
how it derives the conclusions.

III. THE COPT-AINET ALGORITHM

This section presents the Copt-aiNet (Artificial Immune
Network for Combinatorial Optimization) algorithm and the
immune inspirations utilized to develop it.

The Copt-aiNet was proposed by Gomes et al. [10] for
solving combinatorial optimization problems. The authors
demonstrated empirically the suitability of the algorithm and
presented results with improvement in performance over other
approaches.

The Copt-aiNet is based mainly on two immune principles,
namely clonal selection [13] and immune network [14]. The
clonal selection theory states that when an antigen invades
the organism, some antibodies that recognize this antigen start
proliferating. The higher the affinity between an antibody and
an antigen, the more offsprings, called clones, will be gen-
erated. During proliferation, the clones suffer mutation with
rates proportional to their affinity with antigens: the higher
the affinity, the smaller the mutation rate, and vice-versa.
The other important theory is the so-called immune network
theory, which proposes that antibodies are not only capable of
recognizing antigens, but they are also capable of recognizing
each other. When an antibody is recognized by another one,
it is suppressed. These two theories are fundamental to the
maintenance of diversity in the population and to the search
for multiple good solutions based on automatic definition of
the population size at each generation.

The Copt-aiNet algorithm may be explained by the follow-
ing steps:

Step 1 - Generation of the initial population: the initial
population is constructed randomly. Each antibody represents
a feasible solution to the problem. Initially the population
contains 20 individuals and it is allowed to grow and shrink
dynamically.

Step 2 - Population evaluation: the fitness value of each
antibody is calculated using the objective function.

Step 3 - Clonal Selection: each antibody gives origin to a
number of clones, denoted by C. This number is proportional
to the antibody fitness value.

Step 4 - Hypermutation: the clones generated in the pre-
vious step suffer a mutation process. The mutation rate of
each clone is inversely proportional to its fitness: clones with
higher fitness will be submitted to lower mutation rates and
vice-versa.

Step 5 - Suppression: the antibodies interact with each
other in a network form by determining their similarity. If two
or more antibodies are similar within a similarity threshold,
the antibody with lower fitness value is eliminated from the
population. This process avoids redundancy and therefore
tends to preserve population diversity.

Step 6 - If none of the k best solutions is improved along
a predefined number of iterations, all the antibodies in the
population suffer a maturation process. During the maturation
process, the antibodies suffer a series of guided mutations in
order to better match the antigens. This process is implemented
by a local search heuristic. In Copt-aiNet, a tabu search
heuristic [15] is employed as a local search procedure.

Step 7 - Return to Step 2 if the stopping condition was not
met.



IV. THE COPT-AINET ALGORITHM FOR FUZZY SYSTEMS
DESIGNING

This section describes the application of the Copt-aiNet
algorithm to fuzzy rule bases generation, once the automatic
building of fuzzy rules is usually interpreted as a combinatorial
optimization process [16]. Starting from a dataset representing
samples or examples of the problem and with membership
functions previously defined, the proposed method applies the
Copt-aiNet to find suitable fuzzy rule bases that correctly
classify these examples. Next, we detail the fuzzy membership
function generation, the rule bases coding scheme, the fitness
function, and the hypermutation and suppression operators
adopted in the present work.

• Definition of Membership Functions
In this work the linguistic terms associated with each input

attribute are represented by triangular membership functions
uniformly distributed in the universe of discourse. In Figure 1
there is an example of this kind of fuzzy partition, where the
variable is represented by 3 linguistic terms (fuzzy sets).

Fig. 1. Example of fuzzy partition

We adopted triangular membership functions for the sake
of simplicity though other shapes might have been defined.

• Coding of Fuzzy Rule Base
Each antibody encodes an entire fuzzy rule base while the

antigen represents the training patterns. The rules are coded
by integer numbers that represent the index of fuzzy sets that
appear in the antecedent and consequent part of the rule. The
number 0 is associated with the “don’t care” condition.

For instance, suppose a classification problem where the
patterns are described by three attributes - X1, X2, and X3

- and one class - Cj . The attributes are associated with the
domains D1 = {A11, A12, A13}, D2 = {A21, A22, A23}, and
D3 = {A31, A32, A33}, respectively and the classes are C =
{Class1, Class2, Class3}. Now, consider the following rule
base to this problem:

R1: IF X1 is A12 and X2 is A23 and X3 is “don’t care”,
THEN Class1

R2: IF X1 is A13 and X2 is A21 and X3 is A31, THEN
Class2

...
Rk: IF X1 is “don’t care” and X2 is A22 and X3 is A31,

THEN Class3

Figure 2 presents an antibody that encodes this rule base.
Each rule is represented by 4 genes, where the first three genes

indicate the index of the fuzzy sets of the attributes X1, X2,
X3, and the fourth gene represents the class.

Fig. 2. Example of antibody

The use of the “don’t care” condition provides better
generalization capability of correctly classifying new patterns.
Besides, the introduction of “don’t care” has also an important
effect on rule interpretability, once these rules have fewer
attributes on the antecedent part. Short rules can be more
easily understood by human beings than long rules with many
attributes [17].

• Initial Population
The initial population is randomly generated and each

individual adopts the representation depicted in Figure 2. At
each position in the string a random number from 0 to qi is
chosen,, where qi is the number of fuzzy sets to represent the
i-th attribute.

• Fitness Function
The fitness function is defined based on performance of

the fuzzy rule base, calculated as a function of the number
of training patterns correctly classified, using the fuzzy rea-
soning method presented in section II. The fitness function is
expressed by:

Fit (Abi) = NPC(Abi) (3)

where NPC(Abi) is the Number of Patterns Correctly Classi-
fied by the fuzzy rule base coded in the antibody Abi.

• Cloning
All antibodies of current population suffer a cloning process.

The number of clones per antibody is proportional to its fitness
value (affinity with antigen). Higher fitness corresponds to a
higher number of clones. The function used to implement this
procedure is presented in equation (4).

C(Abi) =


Min C if Fit(Abi) ≤ (Max Fit * 0.3)
Max C if Fit(Abi) ≥ (Max Fit * 0.7)
Fit(Abi)

β otherwise
(4)

where Min C and Max C are the minimum and maximum
number of clones, respectively. Fit(Abi) is the fitness value of
antibody Abi, Max Fit is the highest fitness value found in the
current iteration and β is a parameter that can vary during the
process. The values 0.3 and 0.7 were obtained empirically by
preliminary experiments.

• Hypermutation
The clone mutation rate is inversely proportional to its

affinity with antigen. The mutation rate is given by:



Pmut(Abi) = Max Pmut ∗
(Max Fit− Fit(Abi)
(Max Fit−Min Fit)

(5)

where Pmut(Abi) is the mutation rate for i-th clone,
Max Pmut is the highest value that mutation rate can assume,
Fit(Abi) is the fitness of clone i, Max Fit is the highest
fitness value found in the current iteration, and Min Fit is
the lowest fitness value found in the current iteration.

• Suppression
In this phase, similar antibodies are eliminated in order to

avoid redundancy and thus maintain diversity. The degree of
similarity between the antibodies is measured based on their
individual outputs. If two or more classifiers classify correctly
the same patters and also misclassify the same patterns, the
degree of similarity is maximum. Antibodies with a degree
of similarity above a certain threshold are eliminated from
population, being kept only the one with higher fitness.

• Stopping Condition
A maximum number of generations is adopted here as the

stopping condition.

V. EXPERIMENTAL RESULTS

This section outlines empirical evidences to support
similar performance of divergent fuzzy rules when applied
to the same classification problem. We applied the Copt-
aiNet algorithm, presented in section IV, to generate fuzzy
classification systems for an artificial dataset, available on
http://www.lbic.fee.unicamp.br/homepage/downloads/artif.txt,
and for two well-known classification problems from UCI
Repository of Machine Learning Databases [18].

Table I summarizes the knowledge domain characteristics
giving the total number of instances, the number of attributes,
and the number of classes per dataset. The Bupa and Iris
datasets are well-known and frequently used in machine learn-
ing tasks.

TABLE I
DATASET CHARACTERISTICS

Dataset # Instances # Attributes # Classes
Artificial 3000 2 3
Bupa 345 6 2
Iris 150 4 3

The Artificial dataset was created to perform preliminary
experiments. Figure 3 gives a graphical representation of this
dataset.

Each dataset was partitioned as follows: 80% for training
and 20% for validation. This partitioning was performed
randomly in each run of the algorithm. For each dataset, we
applied the algorithm 10 times so that you have 10 distinct
partitions at each execution.

Firstly, we demonstrate the ability of Copt-aiNet to design
fuzzy classification systems. For all experiments, the maxi-
mum number of generations was 1000. Table II presents an

Fig. 3. Artificial Dataset

average of the results over 10 executions for test data using
the best classifier obtained in each execution. The 4th column
of Table II is the average number of rules per rule base. Note
that the rule bases are composed of a few number of fuzzy
rules.

TABLE II
EXPERIMENTAL RESULTS

Dataset Classif.(%) Std. Dev. # Rules
Artificial 97.1 1.87 5
Bupa 72.4 1.24 9
Iris 93.5 0.96 6

From Table II we can see that the immune algorithm is able
to generate fuzzy systems with a satisfactory level of accuracy.
For Bupa and Iris datasets, the results obtained are better or
very close to results from other fuzzy classification systems
reported in the literature. A fuzzy system generated by an
AIS in Alves et al. [19] achieved 57.4% of accuracy in Bupa
dataset. A genetic fuzzy system was applied to Iris dataset
classifying correctly 96.4% of test patterns in Ishibuchi and
Yamamoto [20].

As expected, the Copt-aiNet found not only one but many
high-performance fuzzy classification systems in a single run.
Table III shows the average individual performance of seven
fuzzy classifiers generated by Copt-aiNet for the Iris dataset.

TABLE III
INDIVIDUAL RESULTS FOR THE IRIS DATASET

Fuzzy Classifier Classification rate
a 89.1 %
b 91.7 %
c 90.3 %
d 92.4 %
e 92.4 %
f 93.5 %
g 93.0 %

From Table III we can see that the seven fuzzy classifiers
present similar performance. Intuitively, this would make us
believe that the rules would be similar and agree with each



other. However, as it is shown in Figure 4 this actually does
not happen. Although we can see some similar rules, the
number of incoherent rules is high. We also observed that this
phenomena occurred not only for Iris but for all the datasets
studied here.

Fig. 4. Rule bases produced by a single run of Copt-aiNet

In Figure 4, each box represents a fuzzy rule base. The first
four columns correspond to the antecedent parts (sepal length,
sepal width, petal length, and petal width) of the rules, and
the last column, the classes. In the antecedents, H means that
the value of this attribute is HIGH, M means that the value is
MEDIUM and L means that it is LOW. In the consequent, 1, 2
and 3 means class setosa, virginica and versicolor, respectively.
The symbol “#” represents the “don’t care” condition. The
connected rules indicate some of the incoherences found in the
rule bases (same antecedent and different consequent parts).

A possible explanation for similar performance of diverse
rule bases lies on the interaction established by the rules in
each rule base. Considering two distinct rule bases, each one
containing a rule with the same antecedent part, nothing can
be anticipated about the effective portion of the input space
that will be allocated to those rules, because each rule will
compete with the remaining ones. So, even with the same

antecedent part, rules may fire at distinct portions of the rule
space, given the rule base. Under this circumstance, rules with
the same antecedent part, but belonging to distinct rule bases,
may contain distinct consequent parts.

At a first glance, these divergences between rule bases
become a disadvantage when interpretability issues are consid-
ered. On the other hand, in terms of classification performance,
obtaining diverse fuzzy classifiers to the same problem give us
the possibility of building ensembles of classifiers. An ensem-
ble [21] [22] is a computational paradigm where alternative
proposals, called components of the ensemble, combine their
individual outputs into a single one to derive a solution to a
given problem. The reasons for combining multiple proposals
are compelling, because they may implicitly represent different
useful aspects of the intented solution.

Figure 5 depicts a general ensemble framework. Suppose
it is operating as an ensemble of classifiers. Each component
of the ensemble is a fuzzy classifier independently proposed
and they can operate in isolation. For each input x, the output
yi, i=1,...,M, generated by the M components is combined
using the majority voting method to produce the output of the
ensemble, y. In this combination method, a pattern is classified
in the class Cj if Cj is the individual output of the majority
of components.

Fig. 5. Scheme of an ensemble

The good performance of an ensemble relies on the quality
and diversity of its components. We have presented previously
that high-performance and diverse fuzzy classifiers were ob-
tained, what leads us to build an ensemble, aiming to achieve
an improvement in performance. The results obtained for each
dataset are shown in Table IV.

TABLE IV
RESULTS USING ENSEMBLES

Dataset Classif.(%) Std. Dev.
Artificial 98.8 0.90
Bupa 74.4 0.78
Iris 97.2 1.02

As expected, we can see from Table IV that the ensemble of
fuzzy classifier systems improved the classification accuracy,



outperforming the single best classifier for all datasets.
Even presenting results that outperform similar approaches

(devoted to fuzzy classification systems that adopt the same
reasoning method and the same partition of the data set for
training and testing), the purpose here is not to surpass every
other approach to solve the classification problems considered.
For example, a Takagi-Sugeno version of a genetic fuzzy
system proposed in Delgado et al. [23] outperforms our
approach in the Iris data set and may possibly produce superior
results in the other data sets too.

The main contribution here are: i) the proposal of a system-
atic way to generate diversity in genetic-like fuzzy systems
by means of an immune-inspired combinatorial optimization
procedure; and ii) the proper exploration of this diversity using
ensembles of fuzzy classification systems.

An interesting aspect of the Copt-aiNet algorithm is that
the diversity level can be fine-tuned by the adjustment of the
suppression threshold.

VI. CONCLUDING REMARKS

This work presented an immune-based learning method for
obtaining fuzzy classification systems. From numerical data
and with membership functions defined previously, the algo-
rithm evolves a population of fuzzy rule bases using the clonal
selection, hypermutation and immune network principles. The
multimodal feature of the presented algorithm allows many
high-performance and diverse solutions to be achieved.

Experiments on three datasets have demonstrated that the
immune algorithm presented here is able to generate accurate
and diverse fuzzy systems on each run. Being a disadvantage
in qualitative aspects, mainly in terms of interpretability and
consistency, diversity may represent a clear quantitative ad-
vantage, mainly in terms of performance. The high-quality and
diverse rule bases can compose an ensemble of classifiers with
significant gain in performance when the individual outputs are
combined using majority voting.

The experimental results can be further improved in several
aspects. Formal analysis and statistical methods could be
applied to derive more robust conclusions. For example, we
expect that the comparison of several fuzzy rule bases can
help to identify which variables are more relevant/irrelevant to
the classification task, observing the quantity of “don’t care”
conditions present in each rule base. We also intend to use
other formats for the membership functions, together with
different fuzzy reasoning methods, and apply the proposed
methodology to datasets with higher dimensionality, in order
to verify the scalability of the algorithm.
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