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Abstract 

 
This paper describes an identification procedure, 

based on Artificial Neural Network (ANN) to study the 
dynamic behavior of the continuous distillation column. 
The study was focused on an existing 10 trays, 12cm 
diameter pilot scale distillation column. The column was 
used to distillate methanol and water mixture. The 
dynamic model was developed and validated against pilot 
distillation column data and used to generate a large 
data set of operational variables. Open-loop responses 
were used to generate data. A multilayer feed forward 
network was chosen for the distillation column 
representation. Based on the theorectical results, the 
following strategy was adopted for the network 
architecture: the input layer was composed by four 
variables and the output layer was formed by the two 
variables. The number of nodes in the hidden layer was 
obtained from a trial-and-error procedure. The 
backpropagation method was used to the process 
training. It was observed that the network generalization 
capacity and the training time increased with the number 
of hidden neurons. This study can be able to develop a 
Multivariable Predictive Control (MPC) to be 
implemented in the column control system, using the ANN 
as internal model. The obtained ANN model agrees very 
well with the experimental and theorectical data then it 
could be used to simulate the real process with the 
control strategy.  
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1. Introduction 

 
The use of complex and more precise mathematical 

methods in systems engineering has been extensively 
encouraged by the introduction of low cost digital 

computers and high-speed processing. This new 
technology allows the Artificial Neural Networks 
methodology to be used for the identification and control 
of chemical systems. Any linear or non-linear chemical 
process can be simulated through a neural network 
modeling, even when the first principles of the process 
are unknown. Just input/output operational data are 
needed [1]. 

Several researches were already made based on ANN: 
Narendra, [2] summarizes the application of ANN in 
Process Control and describes the last advances in this 
area. This author compares ANN’s mathematical bases 
and some successful industrial applications are 
mentioned. In the processes identification area, Nikravesh 
et al. [3] applied the backpropagation training procedure 
to a CSTR reactor. De Souza Jr. [4] employed an ANN 
for process classification, where the network was used to 
predict the properties of a catalyst in function of the 
conditions of the manufacture process. The author also 
used the network for the identification of nonlinear 
reactors within a predictive control loop.  
 
1.1. Process Description 

 
The data used to train the ANN were obtained from 

the dynamic model from a continous distillation column 
in pilot scale. The dynamic model was validated against 
practical data [5]. The column scheme is showed in 
Figure 1. The distillation column has ten trays. Each tray 
has two bubble caps. The rig is well equipped with liquid 
sample points, rotameters and thermowells on the top and 
the bottom trays and feed stream. Numbering the column 
trays from top to bottom, the feed is on tray six. The 
column has a total condenser, reflux drum and a kettle 
reboiler. The column is lagged with glass wool to 
minimize heat loss. The mixture used was methanol and 
water. 

 
 



 
 
 

 

1.2. Artificial Neural Network 
 
The ANN is formed by processors elements 

denominated of neurons or nodes, interconnected by 
channels called of connections, forming a dense net [4]; 
[6]. The nodes are arranged in layers linking the input 
with the output. The connections tie the nodes of one 
layer with the nodes of another one. The way as the nodes 
are connected and its dispositions determine the 
architecture of the net. In the present study the net was 
configured as multilayer feedforward fully connected, 
with one hidden layer and without feedback connections. 
Hidden layers are used to extract, from the network, 
statistical results of high order [6]. 

 

 
Fig.1.  Continuous Distillation Column Scheme 

 
Mathematically, the behavior of a neuron in a generic 

layer can be represented by: 
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where: λ represents the output of the neuron ' j ', in the 
layer ' k+1 '; 

 S corresponds to the outputs or activation of all 
neurons of the layer ' k '; 
 w is the weight of the connections; 
 θ is the internal limit of activation of the 
corresponding neuron ' j ' (bias). 

An activation function, called Transfer Function of 
neuron, is applied to λ. In the present study was used the 
Sigmoid function, defined by [7]: 
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The learning procedure is the process where the 

weights and biases are modified [8]. The supervised 
training was used in this work. Known input and output 
data (patterns) are presented to the network. The network 
is then adjusted by changing the weights and bias with 
predefined rules. The patterns are initially normalized to 
avoid differences in the magnitude order of the input and 
output [9]. Due to the use of the sigmoid as transfer 
function, the normalization was made to obtain the 
patterns in the positive interval between 0.0 and 1.0. 
Indeed it was chosen a limit interval among 0.1 to 0.9 to 
allow, if necessary, small extrapolations [10]; [7]. The 
following relationship is used for the normalization 
procedure: 
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where: Pnor represents the normalized pattern; 

 Preal is pattern in the units of input/output and is 
obtained from the phenomenological model; 

 Pmin is the lower bound of the variable; 
 Pmax is the upper bound of the variable. 
 
The initial weights and biases were selected through a 

random routine that generates numbers between -1.0 and 
+1.0. The Training Algorithm used was Backpropagation, 
based on the error correction technique. In the 
optimization process, the strategy of the steepest descent 
was used [4]; [6].  

 
2. Methodology 

 
This section describes the Dynamic Model used to 

generate data to train and test the network and the ANN 
architecture. 
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2.1. The Dynamic Model 
 
A dynamic model used to generate the data used in 

the ANN training was such that the overall and 
component balance was solved for each tray. Additional 
algebraic model equations were needed for the steady-
state energy balance, vapour-liquid equilibrium 
relationships and Francis weir formula for liquid flow in 
the reboiler and liquid flow relationship for each tray. 
The column has ten real trays, Murphree efficiency of 
85%, total condenser and a kettle reboiler. A single feed 
stream, methanol and water mixture, is fed as a sub-
cooled liquid. The model assumptions are: constant 
pressure, constant molal overflow, negligible vapour 
hold-up, fast vapour flow dynamics and non-ideal 
equilibrium vapour-liquid. To describe the vapour-liquid 
equilibrium relationship for the more volatile component 
in a binary mixture, Dalton’s law is applied to the vapour 
phase and the liquid non-ideal deviation from Raoult’s 
law behaviour is accounted for by an activity coefficient. 
For a methanol-water mixture the two parameters can be 
fitted by the van Laar equations and the van Laar 
parameters used were from Kojima (apud [11]). All 
model equations are obtained in Sodré [11]. This model 
was validated against plant data and the results had a very 
good agreement. When the experiment starts, the column 
was allowed to reach the steady-state. When the steady-
state was reached the column was subjected to a step 
change. Perturbation in one of the following variables 
was made: reflux flow or steam flow to the reboiler. The 
step changes are bounded by the pilot distillation column 
limitation. Two cases were studied.  For the first case, a 
step changes in the reflux flow was made. This step 
change was close to (+) 20%, wait until the steady state 
was reached and then another step change of (-) 20% was 
made bringing the column back to the initial condition. 
For the second case, a step change in the vapour flow to 
the reboiler was made. The step change was around (+) 
17%. The temperature was used to inffer the top and 
bottom compositions products. The choosen variables to 
represent the process were the Top and Bottom Tray 
Temperatures. 

 
2.2. The Artificial Neural Network 

 
A multilayer feed forward network was chosen for the 

distillation column representation. The following strategy 
was adopted for the network architecture: the input layer 
is composed by four variables and the output layer was 
formed by the two variables. The number of nodes in the 
hidden layer was obtained from a trial-and-error 
procedure. The backpropagation method was used to the 
process training. It was observed that the network 

generalization capacity and the training time increased 
with the number of hidden neurons. This study can be 
able to develop a Multivariable Predictive Control (MPC) 
to be implemented in the column control system, using 
the ANN as internal model. The results from the Dynamic 
Model were used for training the ANN. All the 
simulations were made with open-loop system. The 
trained ANN was then validated with different values 
from the training. Once the ANN was trained and tested, 
it was used to simulate the real process. The ANN results 
were compared with the results from the dynamic model 
and the experimental results. The input variables for 
ANN training were Reflux Flow, Vapour Flow to the 
Reboiler, Top Tray Temperature and Bottom Tray 
Temperature in actual time. The output variables were 
Top Tray Temperature and Bottom Tray Temperature in 
future time.  

 
3. Results and Conclusions 

 
Some ANN architectures were tested in attempt to 

describe the dynamic model. The chosen ANN 
architecture was 4x12x2 (Input x Hidden x Output layer). 
The obtained results from this ANN were compared with 
the dynamic model and practical results.  The results are 
showed from figures 2 to 11. The first case studied was 
the step change in the reflux flow Figure 2, [5].  When 
the step change reaches the tray, the composition of the 
tray starts to change and so the temperature. This will 
occur from tray to tray until the whole column is in the 
new steady-state. 

 
 

Fig. 2 Step change in the Reflux Flow [5] 
 
Figures 3 and 4 show the comparative results between 

Dynamic Model and ANN in the choosen architecture.  
Figure 3 shows the comparison between the results for 
the Top Tray Temperature for both Dynamic Model and 
ANN results. Although the Top Tray Temperature change 
seems small, this represents close to 1% variation in top 
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composition response. There is a very good agreement 
between the ANN results and the Dynamic Model results. 
 

 

Fig. 3. Comparative Results between Dynamic 
Model and ANN for the Top tray temperature. Step 

change in reflux flow 
 
Figure 4 shows the comparison between the results 

for the Bottom Tray Temperature for both dynamic model 
and ANN. Again there is a very good agreement between 
the ANN results and the Dynamic Model. 

 

 

Fig. 4. Comparative Results between Dynamic 
Model and ANN for the Bottom Tray Temp. Step 

change in reflux flow 
 

Figure 5 shows the comparison between the 
experimental data and the ANN data. As can be seen 
there is a very small shift in the graphic. This could be 
happened due the thermowell calibration or environment 
changes during the experiment.  
 

 

Fig. 5. Comparative Results between Experimental results and 
ANN with for the Top Tray Temperature. Step change in reflux 

flow. 
 

The graphic in Figure 6 shows the comparative values 
between experimental and ANN data for the Bottom Tray 
Temperature. Again the shift was observed using a 
different thermowell. This suggests that probably the 
environmental change, for example atmospheric pressure 
variation, could be charged by this phenomenon. 

 
 

Fig. 6. Comparative Results between Experimental 
and ANN results for the BottomTray Temperature. 

Step change in reflux flow 
 

The second case studied was the step change on the 
vapour flow to the reboiler close to (+) 17%. Figure 7 
illustrate this step change. A positive step change in the 
reboiler heat input acts through the reboiler and a fast 
first order response is then impressed on all trays nearly 
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simultaneously.  The composition on the tray starts to 
decrease. This gives a higher temperature profile. 

 

 
Fig. 7  Step change in the vapour flow [5]. 

 
Figure 8 shows the comparison between the results 

for the Top Tray Temperature for both dynamic model 
and ANN results when the step change in the vapour flow 
was made. It can be seen that there is a very good 
agreement between the ANN results and the Dynamic 
Model results. 

 
 

Fig. 8 Comparative results between Dynamic 
Model and ANN for the Top Tray Temperature. Step 

change on vapour flow 
 

Figure 9 shows the comparison between the results 
for the Bottom Tray Temperature for both dynamic model 
and ANN when the same step change on the vapour flow 
was made. Again the the dynamic model was well 
represented by the ANN model. 

Fig. 9 Comparative results between Dynamic 
Model and ANN for the Bottom Tray Temperature. 

Step change on vapour flow. 
 

Figures 10 and 11 show the comparative values 
between experimental and ANN data for both Top and 
Bottom Trays temperatures. The network results agree 
very well with the practical data in both cases. 
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Fig. 10. Comparative Results between 

Experimental and ANN results for the Top Tray 
Temperature. Step change in vapour flow. 
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Fig. 11. Comparative Results between 

Experimental and ANN results for the Top Tray 
Temperature. Step change in vapour flow. 

 
All the graphics show a very good agreement between 

the ANN and the compared data.  The chosen ANN 
architecture 4x12x2 (IxHxO) simulates the experimental 
distillation process in all tested cases and could be used to 
simulate the real process with the control strategy. 
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