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                               Abstract 
This paper proposes a new hybrid approach which 
combines simulated annealing and standard 
backpropagation for optimizing Multi Layer Perceptron 
Neural Networks (MLP) for time series prediction. 
Experimental tests were carried out on four simulated 
series with known features and on the Sunspot series. 
The results have shown that this approach selects the 
appropriate time series lags and builds an MLP with the 
minimum number of hidden neurons required for 
achieving good performance on the task. The 
performance attained was better than some results 
recently reported for hybrid systems combining Genetic 
Algorithms (GA) and MLPs for the same purpose 
presented here. 
 
 
1. Introdução  
 

In the last decade, there has been intense research on 
the application of neural networks for the problem of 
time series prediction. Part of this interest is due to some 
features of the Multi Layer Perceptrons not found 
altogether in the techniques traditionally used for this 
purpose. Neural networks are universal function 
approximators [1], non-parametric systems capable of 
mapping complex non-linear relations among input and 
output data, and achieve excellent generalization 
capacity. 

Nevertheless, despite its ability to learn without 
making any assumption on the data distributions, the 
performance of a Multi Layer Perceptron depends, 
among other factors, on the initial weights setting, on the 
training algorithm and on the network topology. 
Particularly in time series prediction problems, the 
selection of the relevant lags which define the network 
input space and the number of neurons in the hidden 
layers are fundamental matters in determining the 
generalizing power of the MLP. 

Berardi and Zhang [2] have experimentally shown 
that the selection of the input lags and of the number of 
hidden neurons affect differently the bias and the 
variance of the MLP models applied to time series data. 
In one hand, exceeding the appropriate number of lags in 
the input selection worsens the variance of the model 
while exceeding the appropriate number of hidden 
neurons worsens the model’s bias. On the other hand, 

selecting less lags and/or hidden neurons affects even 
more severely the model’s bias, thus strongly degrading 
the network performance. 

The above constraints imposed on the selection of the 
network topology produce a neural network architecture 
optimization problem which, usually, can not be 
efficiently tackled simply by the trial and error 
approach. For this type of problem, global search 
approaches such as simulated annealing (SA) [3] are 
more suitable. Simulated annealing is capable of 
systematically finding optimal or suboptimal solutions in 
complex search spaces through the generation of 
candidate solutions, a set of operators for searching the 
solution space and an adequate cost function for 
evaluating each candidate solution produced. 

In this paper, we propose a new hybrid approach for 
global optimization of neural networks’ topology and 
weight adjustment using alternately SA for the former 
and standard backpropagation for the latter, until 
convergence of the training process. This method 
comprises a series of cycles where SA produces 
candidate network topologies by activating or 
deactivating neurons with all their associated 
connections and the standard backpropagation algorithm 
gradually adjusts, during a short predefined number of 
epochs, the connections’ weights. These cycles continue 
until the optimal topology for the architecture and the 
optimal weight adjustment for the connections is found. 
This optimization is particularly suited for the 
application of MLP networks to the time series 
prediction problem since the lag detection becomes an 
automatic search inherent to the training process. 

The remainder of this paper is divided in three 
sections. Section-2 describes the proposed hybrid 
method. Section-3 presents the experimental results on 
four simulated series and on the sunspot series with 
comments on the performance. Finally, Section-4 
contains the final remarks stating the main advances 
achieved and the limitations of the approach to be 
tackled by further research. 
 
2. Proposed method 
 

The simulated annealing algorithm (SA) has been 
inspired by the physical annealing process and by 
Boltzmann [4] equation. It has been proposed by 



Kirkpatrick et al. [3] as an algorithm for solving 
combinatorial optimization problems. Besides ease of 
implementation, this algorithm presents the attractive 
feature of finding global optimal solutions due to its 
flexibility to investigate suboptimal solutions along the 
method execution. Opposed to SA, the backpropagation 
algorithm based on the Delta Rule [5] is a local search 
algorithm, thus not capable of finding global optimal 
solutions. The heuristics of gradient descent used in the 
backpropagation algorithm partly compensates in the 
target function optimization, particularly, for neural 
networks’ connection weights adjustment. 

The new optimization method proposed in this paper 
combines the ability of SA for finding global solutions 
with the ability of backpropagation for finely adjusting 
the MLP connection weights. The method, coined here 
SANNO (Simulated Annealing to Neural Networks 
Optimization), alternates the use of SA for topology 
optimization and standard backpropagation for weight 
adjustment, until the training process converges. This 
method comprises a series of cycles where SA produces 
candidate network topologies by activating or 
deactivating neurons with all their associated 
connections and the standard backpropagation algorithm 
gradually adjusts, during a short predefined number of 
epochs, the connections’ weights. The following 
subsections present the method details. 
 
2.1. Solutions’ representation 
 

According to SANNO method, each point in the 
solution space represents an MLP network with a single 
hidden layer and a single output neuron. All MLPs in the 
solution space are feedforward networks only with 
connections between adjacent layers. All hidden and 
output neurons have a bias parameter. 

Both the input and the hidden neurons have an 
associated Boolean variable indicating the neuron’s 
current activation state: TRUE for actively participating 
in the network topology and FALSE for inactive or out 
of the topology. When a neuron is inactive, all its input 
and output connections are disconnected. For instance, if 
a hidden layer neuron is inactive all its connections from 
the input layer and to the output layer are disconnected. 

The network topologies are only valid if they comply 
with all the following criteria: (a) have at least 1 active 
connection between the output layer and a neuron of the 
hidden layer Nh  and (b) have at least 1 active connection 
between the same neuron of the hidden layer Nh and a 
neuron of the input layer. 

The maximum neural network topology (initial) is 
always an MLP with a single hidden layer and a single 
output neuron. In this paper, the experiments were 
carried out with MLPs with up to 10 input neurons and 
10 hidden neurons. 
 
2.2. Generation of candidate solutions 
 

The specification of the operators for candidate 
solution generation is essential for the methods’ success. 
Differently from Yamazaki and Ludemir’s approach [6] 
and from some known pruning algorithms [7][8][9], the 
proposed method does not operate at the connection 
level for MLP topology optimization; it works at the 
neuron level, instead. This apparently simple change 
drastically reduces the size of the solution search space. 
For instance, an MLP with 10 input and 10 hidden 
neurons has 121 connections, including the bias. 
Topology optimization at the connection level, in one 
hand, represents a search space of 2121 possible solutions 
(all the states of 121 binary variables: active or inactive). 
Optimization at the neuron level, on the other hand, 
represents a search space of only 220 possible solutions, 
as there are only 10 input and 10 hidden neurons being 
tackled in the optimization problem. This search space 
reduction allows for the exploration of bigger network 
topologies which may be necessary for modeling more 
complex time series. 

Furthermore, the optimization at the neuron level is 
sufficient for capturing the fundamental aspects of 
neural networks topology for time series prediction: the 
time lags in the input layer and the function 
approximation complexity in the hidden layer. 

Executing the SANNO algorithm, at each iteration of 
the SA algorithm, a new candidate solution is produced 
by changing the neurons’ activation states of a previous 
solution. The generation follows the steps below: (1) a 
neuron of either the input or the hidden layer form the 
previous network is randomly selected; (2) that neuron’s 
activation state is changed according to a previously 
defined state reversal probability p (p<1). The execution 
of these 2 steps generates a neighbor topology with 
probability p or preserves the same topology with 
probability 1-p. In the experiments carried out here 
p=0.5 was the value used. After a new network solution 
has been generated, its validity is checked according to 
the criteria defined above. If the generated solution is 
not valid, the generation step is repeated until a valid 
solution is produced.  

The valid network is then submitted to a pre-specified 
number λ of training epochs with backpropagation. 
After training, with all its connection weights adjusted, 
the network is evaluated according to the adopted cost 
function. If the network cost decreases compared to the 
previous, the solution is promptly accepted. Otherwise, 
it can still be accepted with a probability P = 
exp(−�E/T), where �E is the increase in cost and T is the 
current temperature of the SA algorithm. This is the 
Metropolis criterion [4]. It states that the probability of 
acceptance of a higher cost solution decrease with its 
cost increase and with the temperature decrease. In the 
experiments carried out here λ = 2 backpropagation 
training epochs for the incremental weight adjustment 
before a new SA iteration. 
 
2.3. Update of the deactivated connection 
weights 



During the experiments, we observed that neurons 
which had been deactivated in the early stages of the 
training process had difficulties in being reactivated in 
later iterations. We detected that the weight vector norm 
of these neurons’ input connections was frequently one 
order of magnitude smaller than the norms of the input 
weight vectors of the active neurons. This is a direct 
consequence of the use of backpropagation for weight 
training: the norm of the active connections, in general, 
increases at each training epoch while the inactive 
neurons connections remain the same. 

For minimizing the drawbacks of this difference 
between the norms of the weights of active and inactive 
neurons, the weights of the inactive connections started 
being updated according to the following rule: wij (t+1) 
= wij (t) + ηδkjokj, where wij (t) represents the connection 
weight between neuron i and neuron j in time t, η is the 
learning rate of the backpropagation algorithm, δpj is the 
error term for the pattern k  in neuron j and okj is the 
output of neuron j for pattern k. This is the same as the 
original weight adjustment rule for the standard 
backpropagation [5]. However for deactivated neurons, 
the output okj is constant and equal to 0.5 corresponding 
to the response given by a sigmoid to the input of x = 0 
(or Σwijak = 0, since all the weights are deactivated). 
Thus, the connection weights of the deactivated neurons 
are updated by the following equation: wij (t + 1) = wij 
(t) + 0.5ηδkj 

This approach has efficiently solved the problem of 
the difference in magnitude between the norms of the 
weights of active and deactivated neurons. Experiments 
have shown that this procedure helped reactivating 
inactive neurons even at late stages of the training. 
 
2.4. Cost function 

 
At the end of each cycle, the candidate solution is 

evaluated based on a cost function proportional to the 
Mean Squared Error (MSE), calculated on the training 
set and proportional to the number of active neurons in 
the network topology. The cost function is given by the 
following equation: 
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where MSEcurrent is the current MSE error for the 

training set patterns, MSEinitial is the initial MSE 
calculated at the first iteration, �current is the number of 
neurons currently active, �initial is the number of neurons 
active at the first interaction, WMSE is the weight 
previously defined for the relation between MSE errors 
and W� is the weight also previously defined for the 
relation between the number of active neurons. 

This cost function drives the search for solutions 
towards neural networks with optimal topology and 

optimal performance. It is possible, however, to control 
the network topology and performance through the 
parameter setting of the weights Wβ and WMSE.  
 
2.5. Temperature control 
 

The SA algorithm performance is directly related to 
the temperature reduction scheme. In this paper, we have 
used the geometric cooling rate. According to this rule, 
the temperature is modified by the equation below: T(t + 
1) = αT (t), where T(t) is the temperature value at time t 
and α is temperature factor, a constant less than 1 and 
usually close to 1 [10]. In the experiments carried out 
here, we have used α = 0,9. The temperature was 
reduced at each 30 cycles and always initially equal to 1. 
 
2.6. Stopping criteria 
 

The algorithm execution is interrupted either if the 
maximum number of cycles is reached or if any 
substantial generalization loss is detected over an 
independent validation set. This loss is measured by the 
generalization (GL5) loss criterion described in Proben1 
[11]. More specifically: 
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where MSEcurrent is the current MSE error for the 
validation set and MSEmin is the minimum MSE error 
achieved so far during training. Training stops when 
GL5 ≥ 5%. The GL5 value is updated at every 30 cycles.  
 
3. Experimental results 
 

Five time series were used for testing the proposed 
method focusing on its power to optimize the MLP 
topology and to adjust its connection weights and on its 
performance for time series prediction. Four of these 
series are artificially produced by known generating 
functions: two of them reproduce AR(p) models and the 
others, ARMA(p,q) models. The fifth series is the 
annual sunspot series. 

The latter series has been chosen because of its 
unique features which suggest a non-linear, non-
Gaussian and non-stationary process. Due to these 
particular features, the annual sunspot time series has 
been widely used as reference for comparison and 
evaluation of several works in the field [12]. 

In all of the experiments, the values of the series were 
normalized in the interval [0,1], before being used for 
training the MLP networks. All the series have also been 
divided in three sub series: 80% for optimization and 
training, 10% for validation and 10% for testing the 
models. The parameters for SANNO algorithm were 
defined for each series also after a previous test section. 
 



3.1. Simulated series 
 

The following auto-regressive models were 
considered in the study of simulated time series: AR(3), 
AR(4), ARMA(3,1) and ARMA(4,4). These models are 
given by: 

 
AR(3) yt = 0.3yt-1 + 0.6yt-3 + ε t 
AR(4) yt = 0.3yt-1 + 0.6yt-3 − 0.5yt-4 + ε t 
ARMA(3,1) yt = 0.3yt-1 + 0.6yt-3 + 0.5ε t-1+ ε t 

ARMA(4,4) yt = 1− 1.4(yt-2 − ε t-2)
2 +  

       0.3(yt-4 − ε t-4)+ε t 

3 

 
where yt is the current value for the series and yt-k are the 
past observations with lag-k. εt represents the uniformly 
distributed noise in the interval [-0.01, 0.01] and εt-k are 
temporal dependences on the current noise with a k time 
lag. 

For all the simulated series, 400 values were 
generated from which the first 200 were discarded for 
preventing any initial effect caused by the artificial 
generation. The remaining 200 values were used for 
training, validation and testing of the forecasting 
systems. 

The ARMA (4,4) model, defined above, is known in 
the literature as Hénon series. As well as the sunspot 
series, Hénon series is very popular and has been used in 
several works for investigating predictive models due to 
its complexity and chaotic dynamics. 

For the AR(3), AR(4) and ARMA(3,1) models, 
SANNO algorithm started with a topology of 5 input 
and 5 hidden neurons. The connection weights were 
initially set at random values uniformly distributed in the 
interval [-10-4, 10-4]. 

The probability of neuron activation reversal was set 
to p = 0.5. At each cycle, the topology currently selected 
by the SANNO system was trained with 
backpropagation for 2 epochs with a learning rate of η = 
0.01 and a momentum of 0.8. The SA algorithm initial 
temperature was set equal to 1 and was gradually 
reduced at each 30 cycles by a temperature factor of α = 
0.9. 

For the Hénon series, the system used the same initial 
topology and same parameters except for the weights of 
the cost functions. While the other auto-regressive 
models used WMSE = W� = 1, Hénon series used WMSE = 
5 and W� = 1. 

For all the simulated series, the topology optimization 
and the weight training were interrupted when GL5 ≥ 5% 
or when 1000 training cycles was reached. 

The training process for all the four simulated series 
was repeated 30 times. The best 10 and the worst 10 
networks in terms of MSE on the validation set were 
discarded. The remaining 10 results were used for the 
final results presented here. Table-1 presents the average 
final topologies for all auto-regressive models after 
optimization with the proposed method. 

 

Table 1. MLP topologies selected by the 
SANNO method on the four artificial auto-

regressive models. 
Hidden Neurons MSE (test) Model Lags 

Mean S Mean S 
AR(3) 1, 3 1 0 0,0243  1,7E-05 
AR(4) 1, 3, 4 1 0 0,0193 8,3E-04 
ARMA(3,1) 1, 3 1 0 0,0092 3,6E-05 
ARMA(4,4) 2, 4 2,3 0,48 0,0028 1,4E-04 

 
The results presented on Table-1 show that the 

proposed method is able to efficiently select all relevant 
time lags for each time series, independently of its 
complexity. As expected, none of the fundamental lags 
belonging to the series generating process was out of the 
selection. Furthermore, no extra lags were selected 
either. This capability of only selecting the relevant lags 
complies with the topology constraints reported by 
Berardi and Zhang [2]. 

The amount of hidden neurons selected by the 
proposed method is coherent to the complexity of the 
specified tasks. The topologies with a single hidden 
neuron represent the minimum complexity possible 
because of the imposed constraint of having at least 1 
neuron in the hidden layer for the MLP to exist. In fact, 
apart from the effects of noise, the AR(3), AR(4) and 
ARMA(3,1) present only linear dependencies on past 
observations and could possibly be tackled by a simple 
perceptron. 

After the SANNO method found the optimized 
topologies for each task, MLP networks with such 
topologies were trained by the standard backpropagation 
algorithm from the start. Their performance was then 
compared to that achieved with SANNO method. 

While the SANNO method had to optimize network 
topology and connection weights, the MLP with 
backpropagation had only to optimize the connection 
weights for the optimal topology. 

For having balanced conditions for both approaches 
in the comparison, the MLP networks trained solely by 
the backpropagation algorithm were subjected to the 
same weight initialization methodology, were trained 
with the same learning rate and same momentum term as 
they had been trained with the SANNO method. The 
only difference was in the maximum allowed number of 
training epochs which was doubled to 2000 for the 
SANNO method runs 2 epochs for each of the 1000 
training cycles. 

For three of the tasks listed SANNO approach found 
a unique network topology for the problem. For the 
ARMA(4,4) task there was a small variation on the 
topology found by SANNO. Therefore the 
corresponding optimal MLP network was that with only 
two hidden neurons (the closest to the average 2.3). 

 



Table 2. MSE on the test set for the SANNO 
method and for MLP networks with optimal 

topology trained with standard 
backpropagation (BP). 

Model Using SANNO Only using BP 
 Mean S Mean S 
AR(3) 0,0243 1,7E-05 0,0247 3,3E-08 
AR(4) 0,0193 8,3E-04 0,0196 4,9E-08 
ARMA(3,1) 0,0092 * 3,6E-05 0,0094 1,4E-08 
ARMA(4,4) 0,0028 * 1,4E-04 0,0569 2,2E-06 

 
The t-test was applied to each of the ten pairs of 

measurements in all four tasks for detecting statistical 
significance at 95% confidence level in the comparison 
of both approaches. Table-2 shows the MSE for both 
approaches applied to the independent test sets (SANNO 
vs. using only backpropagation on optimal topology 
MLP). The values with statistically significant 
difference are marked with an asterisk (*). 

From table-2, there is no difference between the 
approaches for the models AR(3) and AR(4) (linear 
models). For the ARMA(3,1) and ARMA(4,4) models, 
the SANNO algorithm performed significantly better 
than the MLP with backpropagation, even considering 
that the latter had started training from an already 
optimal topology. 

In the case of the ARMA(4,4) model, the results of 
SANNO are one (1) order of magnitude better than that 
of optimal topology MLP trained with backpropagation. 
This more complex task brings global optimization 
techniques to the fore which might more easily find 
local minima deeper than those found by local 
optimization techniques. 

These results show that the proposed method is 
capable of optimizing both the neural network topology 
and its connection weights yet preserving or even 
improving its performance measured by the MSE. 
 
3.2. Sunspot series 
 

In 1849, Wolf [12] introduced the sunspot number as 
a yearly index for measuring the sun’s activity. Every 
year new readings of data are gathered by the Swiss 
Federal Observatory and published on the Journal of 
Geophysical Research. In this paper, the data set 
consisted of the annual measurements observed between 
1700 and 1988 (289 observations). 

For this data series, the initial MLP topology had 10 
input and 10 hidden neurons, an amount slightly greater 
than typically needed for this task. The training rate was 
η = 0.005 and the ratio of costs was W� / WMSE = 1/100. 
All the other training parameters had the same values as 
in the simulated series above. 

The proposed training process has been executed 
30 times resulting thus, in 30 networks with their 
respective performance indicators. The 10 best and 10 
worst performance results have been discarded. In all 
cases, training stopped with GL5 ≥ 5%, which happened 

in average after 2000 cycles of training totaling around 
4000 backpropagation epochs (2000x2). 

Despite the excess of neurons in the initial network 
topology for this task, the SANNO approach converged 
to a topology which detected the same input lags for all 
the 10 trials namely lags 1, 2, 3, 9 and 10. In the hidden 
layer, the network topologies ended up with an average 
of 7.7 and a standard deviation of 1.16 neurons. 

Both results agree with those reported on the 
literature. Weigend et al.[7], after network pruning, 
found strong connections corresponding to lags 1, 2 and 
9. Later, Pi and Peterson’s [13] δ-test, based on 
conditional probabilities, have selected the lags 1, 2, 3, 
4, 9 and 10 as the most relevant for this series 
prediction. Pi and Peterson have also shown that an 
MLP network with only those input lags and 8 hidden 
neurons is sufficient for high level prediction 
performance on this time series. 

In term of prediction performance, the SANNO 
method has also produced good results. The MSE 
(average error) obtained for the independent test set was 
0.0087 (with standard deviation = 4.25E−08). This result 
is substantially superior to other results recently reported 
on the use of GAs for time series prediction. Leung et al. 
[14] used a modified GA for training MLP networks and 
their solution attained an MSE error equivalent to 0.061 
for the test set. Terui and Dijk [15] employed a method 
which combined the AR, TAR and ExpAR models and 
obtained an MSE error equivalent to 0.039 for the test 
set. More recently, Ferreira et al. [16] used a hybrid 
system based on F. Takens theorem and obtained an 
MSE error of 0.016 for the test set. 
 
4. Final remarks 
 

This paper has presented a new hybrid method 
(SANNO) which uses simulated annealing for topology 
optimization and backpropagation for connection weight 
training in neural networks for time series prediction. 
The approach has been tested on 4 simulated time series 
and on the sunspot series 

The experimental results on the simulated series 
(AR(p) and ARMA(p,q) models) and on the annual 
sunspot series have shown that this approach generates 
near optimal MLP network topologies that both identify 
the time lags for the input layer and provide the required 
function approximation complexity in the hidden layer. 
For the simulated series, in all cases, the network model 
has selected exactly the time lags specified on the series 
generating functions. For the sunspot series, the model 
has selected time lags that agree, to a large extent, with 
those reported on the literature, particularly with Pi and 
Peterson’s [13] results with the non-parametric δ-test. 

In terms of performance, the proposed approach is 
also outstanding. For the simulated time series, SANNO 
has been compared to the MLP network topologically 
optimized for each of the four tasks and trained with 
standard backpropagation. For the two AR series there 
was no significant difference in performance. For the 



two ARMA series, the SANNO approach has achieved 
significantly better (t-test at 95% confidence). For the 
sunspot series, SANNO has been compared to several 
recent hybrid MLP approaches and has performed far 
better than what they have reported [14] [15] [16]. 

Despite all these promising results, the SANNO 
approach has just been proposed and there is a lot yet to 
be investigated for consolidating this method. As seen in 
this paper, performance does not seem to be a problem 
but the system’s performance sensibility to the training 
parameters and the training algorithm need to be 
evaluated. Further research also involves the extension 
of SANNO method to recurrent neural networks such as 
Elman and Jordan networks aiming at improving the 
system’s performance for times series prediction. 
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