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An edge-based crossover for the capacitated
minimum spanning tree problem

E. G. M. de Lacerda and Manoel Firmino de Medeiros Junior

Index Terms—genetic algorithms, spanning tree, capacitated minimum
spanning tree problem

Abstract—This work describes a Genetic Algorithm for the Capacitated
Minimum Spanning Tree (CMST) problem that appears in Telecommu-
nications. We suggest a new crossover operator, applied directly on the
tree (phenotype) instead of on the chromosome. Without needing repairing
techniques, this crossover is capable to produce feasible trees and presents
excellent locality and heritability besides other properties that misses in
many other tree representations. The new crossover proved to be effective
when compared with the Genetic Algorithm of Raidl and Drexel (on bench-
mark data sets), which presented better performance than various classical
methods of the literature. Another characteristic of the new crossover is its
flexibility for adaptation in problems with constraints, as for instance, the
Degree-Constrained Minimum Spanning Tree Problem.

I. I NTRODUCTION

The Capacitated Minimum Spanning Tree Problem (CMST)
appears in the design of telecommunication networks [12].
ConsiderG = (V, E) as being a connected and undirected
graph, whereV = 1,2, . . . ,n is the set of nodes ofG andE is
the set of edges. The special nodei = 1 is named central node
in which is root of the tree. The other nodes are called client
nodes. Consider the following components of the problem:

• For each client nodei ∈ V \ {1}, there is an associated
demanddi > 0, representing the flow from the central node
to the nodei;

• For an edge(i, j) ∈ E, there is a costci,j > 0 associated;
• For all edges(i, j) ∈ E, there is a maximum capacityK >

0 that limits the flow on(i, j).
The problem is to find a spanning treeT onG that minimizes

the cost:
C(T ) =

∑
(i,j)∈T

ci,j

satisfying the constraint:

dj +
∑

k∈Sub(j)

dk ≤ K ∀(i, j) ∈ T

whereSub(j) represents the set of all of the nodesk 6= j that
contains the nodej in the path that takes them to the central
node.

For example consider a graph with nodesi = 1, . . . , 5 and
demandsd2 = 1, d3 = 4, d4 = 2 andd5 = 1. Consider the max-
imum capacityK = 5. The Figure 1(a) displays one unfeasible
tree on this graph. The required flow on the edge(2,4) (which
is equal tod3 + d4 = 4 + 2 = 6) exceeds the maximum capac-
ity. Therefore, this tree does not satisfy the capacity constraints.
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(b) Feasible tree

Figure 1. Examples of trees for CMST problem

The tree of Figure 1(b) is feasible, satisfying all of the capacity
constraints.

II. PREVIOUS WORKS

Amberg et al [4] presents a survey of several algorithms
for the problem of CMST in which it involves heuristics and
metaheuristics such as Tabu Search and Simulated Annealing.
Sharaiha et al [29] and Ahuja et al [2], [3] propose efficient
Tabu Search algorithms for this problem. Metaheuristics like
Ant Colony [26], GRASP [10] and adaptive reasoning tech-
nique [20] were also proposed to solve the CMST problem. The
CMST problem was proved to be NP-complete by Papadim-
itriou [19].

In spite of the literature of Genetic Algorithms disposal sev-
eral works for problems related with spanning trees, few of them
were dedicated to the specific CMST problem (for example, the
Raidl and Drexel’s GA [25]).

To proceed, will be presented several representations of trees.
Throughout the text, the algorithms use the pseudocode notation
from [9]. We will begin describing relevant criteria for a good
tree representation choice.

III. D ESIRABLE PROPERTIES OFTREE REPRESENTATIONS

The performance of the genetic algorithm depends crucially
on the representation and on how the genetic operators interact
with this representation. Researchers [16], in general, agree that
the following properties are desirable in a good representation:

• Space:chromosomes should not occupy great amount of
memory;

• Time: the complexity of time to decode, to apply crossover
and mutation should be small;

• Feasibility: the population and the chromosomes generated
by crossover and mutation should represent only feasible
solutions;

• Coverage: the representation should be capable to repre-
sent all the feasible trees;
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• Locality: chromosomes that suffer small mutations should
represent solutions (trees) similar to the original chromo-
some. In other words, similar chromosomes should repre-
sent similar solutions;

• Constraints: the representation should allow the incorpo-
ration of constraints. For instance, constraints that limits
the degree of the nodes of the graph;

• Heritability: chromosomes should be formed through the
combination of substructures of the parental solutions. For
instance, most of the edges of a tree should belong to its
parents;

• Hibrids: the representation should allow the incorporation
of heuristics (as for instance, heuristic that favor the low
cost edges);

• Nonredundancy:the mapping between genotypes and trees
must be made one-to-one. If many-to-one mapping occurs,
the number of genotypes exceeds the number of trees. In
this case, the GA wastes time in searching, because one or
more trees may be duplicated in the genotype space.

IV. T REE REPRESENTATIONS

A. Characteristic Vectors

A characteristic vector is a bit string of length equal tom
(number of edges ofG). Each bit of the string corresponds to
an edge of the graphG and indicates whether the edge ofG is
or not present in the solution represented by the string. In this
representation, not every string represents a spanning tree.

In a complete graph, there existsm = n(n− 1)/2 edges, and
therefore, the string can represent2n(n−1)/2 solutions. It can
be proved that a complete graph hasnn−2 different spanning
trees [6]. So the fraction of feasible solutions (spanning trees)
in relation to the number of solutions representing by the string
is:

nn−2

2n(n−1)/2
, (1)

The value of the Equation (1) is small for bign and it becomes
infinitesimally small asn grows. Because of this, the character-
istic vector has poor feasibility once the most of its solutions are
unfeasible, in spite of having good locality and heritability. Be-
sides, the traditional crossover between two feasible solutions,
in general, generates an unfeasible solution.

B. Predecessor

In this representation, it is designated arbitrarily a root node.
The chromosome is a arrayP . P stores, in positioni, the
predecessor node of the nodei of the tree, in other words, if
P [i] = j then j is the first node of the path that goes from
i to the root. The valueP [i] can assume any node, that is,
P [i] ∈ {1, 2, 3, . . . , n}. Because a tree hasn− 1 edges, then
the length of the chromosomeP is n− 1. The tree of the Fig-
ure 2 has the following representation (assuming that the root is
the nodei = 1):

P = (1, 5, 7, 2, 7, 5, 7)

The chromosomeP is capable of representingn− 1 different
solutions. Therefore, the fraction of feasible solutions in rela-

5 7 8
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3

2 6

Figure 2. Tree represented by vectorP = (1,5,7,2,7,5,7) by using the pre-
decessor representation. The same tree can be represented by a smaller vector
P = (2,5,5,7,7,7) by using Prüfer Numbers.

tion to the number of solutions represented byP it is given by

nn−2

nn−1
=

1
n

in which it is a great improvement in relation to the character-
istic vector. But there is still a lot of unfeasible solutions. Be-
sides, the crossover can also generate unfeasible solutions. The
Predecessor encoding was used in [1], [8], [5], [7].

C. Prüfer Numbers

The Cayley’s formula [6] shows that there arenn−2 trees in
a complete graph ofn nodes. Prüfer [22] presented a proof of
Cayley’s formula by inventing one string (the Prüfer number)
with n− 2 digits that determines uniquely one tree.

Unlike Predecessor encoding and the Characteristic Vector,
the chromosomes codified with the Prüfer number only gener-
ate feasible solutions. It happens because the mapping between
a treeT and its corresponding Prüfer numberP (T ) is one-to-
one. We will just show the conversion of one tree into one Prüfer
number. Details of the conversion in the opposite direction are
in [30]. This algorithm generates the Prüfer numberP (T ) start-
ing from the treeT :

1. StartP (T ) with n− 2 empty positions of digits;
2. Leti be the leaf node of lowest number inT . Consider the

nodej as being the predecessor ofi. Thenj will occupy
the leftmost empty position ofP (T );

3. Removei and the edge(i, j) of the treeT ;
4. If there are only two nodes in the tree, stop. Otherwise, go

to the step 2.
For instance, the Prüfer number for the tree of the Figure 2 is

determined as follows. As their leaves are{1,3,6,4,8} then the
lowest numbered leaf is 1 and its predecessor is 2, which it occu-
pies the empty leftmost position ofP (T ) = (2,2,2,2,2,2).
In the step 3, it occurs the removal of node 1. Repeating the step
2, the leaves ofT are now{2,3,6,4,8} whose lowest numbered
leaf is 2 (with predecessor 5). Then,P (T ) = (2,5,2,2,2,2).
In the step 3, it occurs the removal of node 2. Repeating the step
2, the leaves ofT are now {3, 6, 4, 8} whose lowest numbered
leaf is 3 (with predecessor 5). ThenP (T ) = (2,5,5,2,2,2).
Continuing to repeat the steps 2 and 3 until remaining only two
leaves inT , we will obtainP (T ) = (2,5,5,7,7,7).

Researchers [13] pointed out that the Prüfer number has poor
locality and heritability. A poor locality means that similar
chromosomes generate very different solutions. For instance,
the Figure 3(a) illustrates the Prüfer numberP1 = (1, 2, 5, 3)



LACERDA AND FIRMINO: AN EDGE-BASED CROSSOVER FOR THE CAPACITATED MINIMUM SPANNING TREE PROBLEM 3

1 2

354

6

(a)P1 = (1,2,5,3)
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(b) P2 = (1,2,5,2)

Figure 3. The locality problem in Prüfer numbers

KRUSCALRST(V,E)
1 T ←∅, A← E
2 while |T |< |V | − 1
3 do choose an edge(i, j) ∈A at random
4 A←A−{(i, j)}
5 if i andj are not yet connected inT
6 then T ← T ∪{(i, j)}
7 return T

Figure 4. The KruscalRST Algorithm

and its associated tree. In the Figure 3(b), the Prüfer number
suffer a small mutation (in the last position) and its associated
tree becomes very different from the original tree. Futhermore,
Prüfer number do not also allow the incorporation of constraints
in which is required in many spanning problems.

There are many other one-to-one mappings [21] among
strings ofn− 2 digits and trees. Some exhibits better locality
than the Prüfer number as, for instance, the Blob Code. This ex-
plains the Blob Code’s better performance in comparison to the
Prüfer number mentioned in [13]. In spite of its proven inferior-
ity, the Prüfer number have been used in several problems [30],
[11].

D. Edge-Sets

The code Edge-sets [23] is a direct tree representation be-
cause the chromosome is simply the set of edges of the tree.

Each chromosome from the initial population is generated
through a slightly modified version of the classic Kruscal al-
gorithm [9]. This version is denominated KruscalRST [9] (Kr-
uscal Random Spanning Tree). The difference between the Kr-
uscal algorithm and the KruscalRST is that the first chooses an
edge in agreement with its cost and the second chooses an edge
randomly. The algorithm KruscalRST is shown in the Figure 4.

The crossover operator is denominated KruscalRST
crossover. It generates a child starting from two parents,T1 and
T2, applying the KruscalRST algorithm in the graph formed by
the union of the edgesT1 andT2, i.e.,G′ = (V,T1 ∪ T2). See
an example in the Figure 5. This operator has high heritability
once the children are generated using just the parental edges.

This operator can be adapted to deal with spanning tree prob-
lems with restrictions as, for instance, the Degree-Constrained
Minimum Spanning tree (DegMST). In the DegMST problem
the maximum number of adjacent edges to any node is limited.
However, Raidl and Julstrom [23] showed that, in this case, the
KruscalRST crossover can generate unfeasible trees. To over-

(a) T1

(parent)
(b) T2

(parent)
(c) T1 ∪T2 (d) KruscalRST

Figure 5. Example of KruscalRST Crossover

TABLE I

SOME PROPERTIES OFTREE REPRESENTATIONS

RepresentationFeasib. Local. Herit. Constraints

Char. Vector worst high high avg.
Predecessor poor high high avg.
Prüfer Num-
bers

poor low low poor

Blob Code yes avg. avg. poor
link-&-node
biased

yes avg. avg. good

Network ran-
dom Keys

yes avg. avg. good

Edge Sets yes high high good

come this problem, the crossover should use edges that do not
belong to the parents to turn feasible the child (losing, however,
a little of heritability).

In [23] is described several variants of this crossover and
heuristics for improving its performance. In [17], a different
crossover is proposed for this same representation.

E. Other Representations

Several other representations has been used in the literature.
Knowles and Corne [15] described an efficient representation
for the DegMST problem. Others examples are Link-&-Node
Biased [18], Blob Code [14], and Network Random Keys [28].

In Table I is shown some properties of tree representations
(see [23] for details). The properties also depend on the genetic
operators. For example, the Predecessor representation has poor
feasibility if it is used with traditional operators. However if it is
used with specialized operators such as Edge-crossover [25] and
Pred-Crossover (see Section V) then it will have high feasibility.

V. A GENETIC ALGORITHM FOR THECMST PROBLEM

In this section, a new crossover, called Pred-Crossover, will
be described. The tree representation is the Predecessor one
whose root is the central node (i = 1). A chromosomeP is
an array with elementsP [2], P [3], . . . , P [n] whereP [i] is the
predecessor of the client nodei (as seen in Section IV).

The algorithm to create the initial population (with feasible
trees) and the mutation operator (the edge-mutation) were taken
from Raidl and Drexel’s GA [25]. The Pred-Crossover creates
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a child by swapping parental edges (on the condition that this
is possible). Because the crossover is performed on phenotype
space, it is not limited to the Predecessor representation, that is,
it can be used in other representations too. Edge-mutation and
Pred-Crossover are described as follows.

A. Edge-Mutation

The Edge-Mutation [25] replaces a predecessor of the nodei
with a random predecessor node (as long as the resulting tree is
feasible).

The Edge-Mutation algorithm is described in Figure 6. In
line 2, the algorithm removes the edge(P [i], i) from the tree
represented inP by assigning an invalid value to the predeces-
sor of nodei. The consequence of this is the tree divided into
two unconnected components. One of the components is con-
nected to root (central) node. The other component is connected
to nodei. The functionGetNodesConnectedToRoot(P) (line
3) gets all nodes connected to the root node. This can be done
using depth first-search (including the node root). The remain-
ing lines of the algorithm (lines 5 to 10) are a loop to select a
random node fromS until it finds a feasible predecessor nodej
for nodei. In line 6, the functionrandom(S) selects a random
node from the setS.

EDGEMUTATION(P,i)
1 j← P [i]
2 P [i]← NULL
3 S←GetNodesConnectedToRoot(P )
4 S← S−{j}
5 while S 6= ∅
6 do j← random(S)
7 P [i] = j
8 if isFeasible(P )
9 then return P

10 else S← S−{j}

Figure 6. The Edge-Mutation

As a local heuristic, the low-cost edges are favored when
selecting a random node from the setS (line 6). This is done by
selecting first the predecessor nodes of then/8 cheapest edges
to nodei.

B. Pred-Crossover

The Pred-Crossover takes two parentsP andQ and builds a
setS with all client nodesi ∈ {2, . . . ,n} such thatP [i] 6= Q[i].
Next it selects a random client nodea ∈ S and swapsP [a] for
Q[a] (as long as the resulting tree is feasible). If it is possible,
this operation is repeated untill = |S|/2 valid swaps have been
done. If onlyk < l swaps were done, build a setB with all
nodesi ∈ S such thatP [i] andQ[i] were not swapped before.
Next l− k mutations are carried out in random nodesa ∈ B.
The Pred-Crossover algorithm is described in Figure 7. Given
two parentsP andQ, two childrenC1 andC2 are created as
follows:

C1← PredCrossover(P,Q)
C2← PredCrossover(Q,P )

The additional mutations in the end of the Pred-Crossover are
optional (lines 18 to 21). However, this method increased the
diversity of the GA and improved its performance in several
benchmark CMST problems.

PREDCROSSOVER(P,Q)
1 S = {i : P [i] 6= Q[i]}
2 l← |S|/2, k← 0, B←∅
3
4 � Carry outl swaps if it is possible
5 while S 6= ∅ andk < l
6 do a← random(S)
7 swap(P [a],Q [a])
8 if isFeasible(P )
9 then S← (S ∪B)−{a}

10 B←∅
11 k← k +1
12 else � Undo the invalid swap
13 swap(P [a],Q [a])
14 S← S−{a}
15 B←B ∪{a}
16
17 � Carry outl− k mutations inP
18 for i← k to l
19 do a← random(B)
20 P ← EdgeMutation(P ,a)
21 B←B−{a}
22
23 return P

Figure 7. The Pred-Crossover

As a local heuristic, the low-cost edges are favored when
selecting a random node from the setS (line 6). This is done
by a tournament that works as the tournament selection. It uses
a group withn/4 nodes from the setS. Next the tournament
selects a nodea from the group such that the edge(Q[a], a) is
the cheapest edge.

C. Constraints

The constraints are handled by the subroutineisFeasible()
in line 8 (Figure 7). It searches for violating of capacity con-
straints and for cycles in the graph. In order to check violation
of capacity constraints efficiently can be useful to store, in each
nodei, the current flow required in the edge (P [i],i).

It is worth noting that the subroutineisFeasible() is indepen-
dent one of the Pred-Crossover algorithm. SoisFeasible() can
be modified to deal with other types of constraints. Because of
this the Pred-Crossover can be applied to other spanning tree
problems such as the Degree-constrained minimum spanning
tree (DegMST) problem [30] [16] and the Bounded-Diameter
Minimum Spanning Tree Problem (BDMST) [24].

For example, the DegMST problem has the following con-
straint: the maximum number of edges adjacent to any node
is limited. If Pred-Crossover is applied to DegMST then the
isFeasible() subroutine is modified to check the number of
edges adjacent to a node (instead of capacity constraints).
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TABLE II

COMPARING THE PROPOSEDGA WITH THE RAIDL AND DREXEL’ S GA ALGORITHM

GA with Pred-Crossover Raidl and Drexel’s GA
Problem K Copt Best Avg σ Best Avg σ t-test (α)

tc40-1 5 586 opt 586 587.6 1.84 586 587.0 1.05 0.185%
tc40-2 5 578 lb 578 580.0 2.94 579 579.2 0.63 0.200%
tc40-3 5 577 opt 577 577.2 0.63 577 577.0 0.00 0.158%
tc40-4 5 617 opt 617 619.4 2.55 617 617.1 0.32 0.002%
tc40-5 5 600 lb 603 603.0 0.00 602 604.5 1.08 0.000%
tc40-1 10 498 opt 498 498.0 0.00 498 498.0 0.00 0.500%
tc40-2 10 490 opt 490 491.1 3.48 490 490.4 0.84 0.268%
tc40-3 10 500 opt 500 500.0 0.00 500 501.8 2.90 0.025%
tc40-4 10 512 opt 512 512.0 0.00 512 512.4 0.70 0.035%
tc40-5 10 504 opt 504 504.0 0.00 504 504.0 0.00 0.500%
te40-1 5 830 lb 834 838.8 5.07 830 833.9 2.18 0.002%
te40-2 5 792 lb 793 798.1 4.53 792 797.4 8.11 0.406%
te40-3 5 797 lb 800 806.0 4.14 801 806.0 3.77 0.500%
te40-4 5 814 lb 815 820.7 4.24 814 822.0 4.81 0.261%
te40-5 5 784 lb 784 788.6 3.03 784 784.4 1.26 0.000%
te40-1 10 596 lb 596 601.7 5.54 596 599.4 4.99 0.165%
te40-2 10 573 lb 577 578.8 1.55 581 581.0 0.00 0.000%
te40-3 10 568 lb 568 571.0 2.54 568 569.1 1.66 0.024%
te40-4 10 596 lb 596 597.2 1.03 596 597.6 0.84 0.171%
te40-5 10 572 opt 572 573.4 1.26 572 575.2 1.93 0.007%

VI. EXPERIMENTAL RESULTS

The experimental results were obtained on a benchmark data
set from the OR-Library of J. E. Beasley1. This data set has been
used in several works [4]. All client nodes have unit demands
(di = 1). There are two categories of problem instances named
tc andte. In the categorytc, the root node is centered among the
client nodes whereas in the categoryte the root node is located
near the border of the convex hull of the client node set. In both
categories, there are five cost matrices forn = 40 nodes and two
different values for edge capacityK. So there are2×5×2 = 20
problem instances.

The GA uses the so-called steady-state replacement. In this
scheme, only one child is created in each generation. Such a
child replaces the worst individual of the population. In order
to avoid loss of diversity, the child is discarted if it is already in
the population.

The parents are selected by the probabilistic binary tourna-
ment selection in which the better parent wins the tournament
with probability equal top > 0.5. If p = 1.0, it is identical to
the traditional binary tournament selection.

The remaining parameters of GA are described as follows.
• The population size is equal to 500;
• The crossover is always carried out;
• The mutation is carried out in each edge with mutation rate

equal to 0.05;
• The population initial is created using the same parameters

as Raidl and Drexel’s GA [25];

1 http://mscmga.msc.ic.ac.uk/info.html

• The probabilistic binary tournament selection usesp = 0.6
(for low selection pressure);

• Stopping criterion: if no progress had been made in 20000
individual evaluations then the GA stop.

Table II shows the results fortc and te problem instances.
10 runs were performed per instance. The columnCopt shows
optimum objective values or lower bounds according to [27].
Other columns show the best values, the average values and the
standard deviations for each GA. The last column lists the error
probabilities int-test of hypotheses that differences exist among
the two GAs. Hence we may conclude with high confidence the
two GA are similar in most of the problem instances.

VII. C ONCLUSIONS ANDFUTHER WORK

This work described a crossover (the Pred-Crossover) using
the Predecessor encoding. This crossover was designed to avoid
the drawbacks found in other representations that do not allow
the incorporation of constraints or that have lack of feasibility,
locality, or heritability. The Pred-Crossover presented good per-
formance on a benchmark data set. Despite the result obtained
was similar to the Raidl and Drexel’s GA, the Pred-Crossover
is more flexible in sense that it can be applied to other differ-
ent spanning tree problems (whereas the Raidl and Drexel’s GA
is specific for the CMST problem). It occurs because the con-
straint checking of the Pred-Crossover algorithm is an indepen-
dent subroutine and because of this it can be adapted for differ-
ent types of constraints.

It is worth mentioning the experiments was dramatically
improved by local heuristics for mutation, crossover and ini-
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tial population. Hence future work should explore other local
heuristics for the CMST problem. Future work should also ap-
ply the Pred-Crossover in other categories of CMST problems
and in other constrained problems such as the DegMST and the
BDMST problems.
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