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A New Hybrid Method for Time Series Forecasting
Tiago A. E. Ferreira, Germano C. Vasconcelos and Paulo J. L. Adeodato

Abstract—This paper presents a new method — the Time-
delay Added Evolutionary Forecasting (TAEF) method —
for time series prediction which performs an evolutionary
search of the minimum necessary number of dimensions em-
bedded in the problem for determining the characteristic
phase space of the phenomenon generating the time series.
The method proposed is inspired in F. Takens theorem and
consists of an intelligent hybrid model composed of an arti-
ficial neural network (ANN) combined with a modified ge-
netic algorithm (GA). Initially, the TAEF method finds the
most fitted predictor model for representing the series and
then performs a behavioral statistical test in order to adjust
time phase distortions that may appear in the representa-
tion of some series. It is shown how this model proposed
can boost the performance of time series prediction of both
artificially generated time series and real world time series
from the financial market. An experimental investigation is
conducted with the TAEF method with five different rele-
vant time series and the results achieved are discussed and
compared with previous results found in the literature, ac-
cording to several performance measures, showing the ro-
bustness of the proposed approach.

Index Terms—Genetic Algorithms, Neural Network,
Time Series, Forecasting.

I. Introduction

New promising approaches based on artificial neural net-
works (ANNs) have been proposed for the non-linear mod-
eling of time series [1]. However, in order to define a so-
lution to a given problem, ANNs require the setting up of
a series of system parameters, some of them not always
easy to determine. The network topology, the number of
processings units, the algorithm for network training (and
its corresponding variables) are just some of the parame-
ters that require definition. In addition to those, in the
particular case of time series prediction, another crucial
element that demands definition is the relevant time lags
necessary to adequately represent the series.

In this work, a systematic procedure based on an hybrid
intelligent system approach is proposed for the automatic
search of the important system parameters that solve time
series prediction problems. The adopted method consists
of a combination of a standard neural network architecture
with a modified genetic algorithm (GA) [2] which efficiently
searches and defines 1. the minimum number of (and
the specific) temporal lags necessary to solve the problem,
based on F. Takens theorem [3], 2. the best neural network
structure in terms of the number of processing units to be
employed, 3. the most fitted training algorithm [4], [5], [6],
[7] that boosts the prediction performance, and 4. a be-
havioral statistical test carried out at the prediction model
output to fix relative phase distortions in the series repre-
sentation. The proposed procedure is described in Section
II. It is shown how this procedure can enhance prediction
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performance making use of a test bed composed of seven
relevant time series: Hénon, Sunspot, Dow Jones Indus-
trial Average, S&P500, Nasdaq, Petrobrás Stock Values
(Brazilian petroleum company) and a Artificial Random
Walk series.

II. The TAEF Method

The method proposed in this work — Time-delay Added
Evolutionary Forecasting (TAEF) method — tries to re-
construct the phase space of a given time series by carry-
ing out a search for the minimum dimensionality necessary
to reproduce, to a certain accuracy, the phenomenon gen-
erator of the times series and its subsequent values. The
proposed procedure is a intelligent hybrid system based
on an artificial neural network (ANN) architecture (multi-
layer perceptron network - MLP) trained with a modified
genetic algorithm (GA) [2] which not only searches for a
number of the ANN parameters but also for the adequate
embedded dimension represented in the lags. The accu-
racy of the prediction generated is initially set by the user
but is automatically changed by the training algorithm if
it finds a model with better accuracy.

The scheme describing the proposed algorithm is based
on the iterative definition of the three main elements nec-
essary for building an accurate forecasting system: 1. the
underlying information necessary to predict the series (the
minimum number of time lags adequate for representing
the series); 2. the structure of the model capable of repre-
senting such underlying information for the purpose of pre-
diction (the number of units in the ANN structure); and
3. the appropriate algorithm for training the model (the
most appropriate algorithm among several candidates).

It is important to consider the minimum possible number
of time lags in the representation of the series because the
larger the number of lags the larger the cost associated
with the model training.

Following this principle, the important parameters de-
fined by the algorithm are: 1. The number of time lags

to represent the series:initially, a maximum number of
lags (MaxLags) is defined by the user and a GA can choose
any number of lags in the interval [1, MaxLags] for each
individual of the population; 2. The number of units in

the ANN hidden layer: the maximum number of hidden
layer units (NHiddenmax ) is determined by the user and
the GA chooses, for each candidate individual, the num-
ber of units in the hidden layer (in the interval [1,NHid-

denmax ]); 3. The training algorithm for the ANN:

RPROP [4], Levenberg-Marquardt [5], Scaled Conjugate
Gradient [6], One Step Secant Conjugate Gradient [7] are
candidates for the best algorithm for training the ANN
and the GA defines these algorithms as individuals in the
population.

The algorithm starts with the user defining a minimum
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initial fitness value (MinFit) which should be reached by
at least one individual of the population in a given GA
round. The fitness function is defined as,

Fitness =
1

1 + MSE
(1)

where MSE is the Mean Squared Error of the ANN and
will be formally defined in the next section.

In each GA round, a population of M individuals is gen-
erated, each of them being represented by a chromosome
(in the experiments carried out here M = 10). Each indi-
vidual is in fact a three-layer ANN where the first layer is
defined by the number of time lags, the second layer is com-
posed of a number of hidden processing units (sigmoidal
units) and the third layer is composed by one processing
unit (prediction horizon of one step ahead).

Each individual has distinct network initialization and
cross validation. The stopping criteria for each one of the
individual are the number of epochs (NEpochs), the in-
crease in the validation error (Gl) and the decrease in the
training error (Pt).

The best repetition with the smallest validation error
is chosen to represent the best individual. Following this
procedure, the GA evolves towards a good fitness solution
(which may not be the best solution yet), according to the
stopping criteria: number of generations created (NGen)
and fitness evolutions of the best individual (BestF it).

After this point, when the GA reaches a solution, the
algorithm checks if the fitness of the best individual paired
or overcame the initial value specified for the variable Min-

Fit (minimum fitness). If this is not the case, the value of
MaxLags (maximum number of lags) is increased by the
unit and the GA procedure is repeated to search for a bet-
ter solution. The objective here is to increase the possible
number of lags in the lag set until a solution of minimum
fitness is reached.

However, if the fitness reached was satisfactory, then the
algorithm checks the number of lags chosen for the best in-
dividual, places this value as MaxLags, sets MinFit with
the fitness value reached by this individual, and repeats
the whole GA procedure. In this case, the fitness achieved
by the best individual was better than the fitness previ-
ously set and, therefore, the model can possibly generate a
solution of higher accuracy with the lags of the best indi-
vidual (and with the MinFit reached by the best individual
as the new target). If, however, the new value of MinFit

is not reached in the next round, MaxLags gets again the
same value defined for it just before the round that found
the best individual, increased by the unit (the maximum
number of lags is increased by one). The idea here is that
if the time lags found in the best individual were not ca-
pable of producing a higher fitness than the one previously
found this may be because some important lag (or lags)
was discarded. The state space for the lag search is then
increased by one to allow a wider search for the definition
of the lag set. This procedure goes on until the stop con-
dition is reached. After that, the TAEF method chooses
the best model found among all the candidates.

In order to conclude the definition of the method a last
aspect had to be considered. During the development and
test of the method, a peculiar prediction behavior was
observed in the prediction model. While the representa-
tions of some series were developed by the model with a
very close approximation between the actual series and the
predicted series (“in-phase” matching), the predictions of
some other series were always presented with a one step
shift (delayed) with respect to the original data (“out-of-
phase” matching). This out-of-phase behavior was always
found in the prediction of the financial series, whereas the
in-phase matching was observed in all the other types of
series (natural phenomena series). An interesting point to
observe is that this one step delay behavior with respect
to the actual series is similar to a random walk like model.
Since it is a common sense in finance and economics that fi-
nancial times series behave like random walks [8], as a first
approximation, it is not strange that predictor models gen-
erated for them show this one step time delay distortion.

This observation is also in accordance with some other
results reported in the literature. Sitte and Sitte [9] showed
that predictions of financial time series represented by an
ANN exhibit a characteristic one step shift with respect
to the original data (out-of-phase matching). They argued
that the financial series is represented by the ANN as it
were a random walk.

In any circumstance, in order to make the TAEF method
robust for representation of any time series, another ele-
ment was introduced in the method operation. After the
best model is chosen when training is finished, an statisti-
cal test is employed to check if the network representation
has reached an in-phase or out-of-phase matching. This
is conducted by comparing the outputs of the prediction
model with the actual series making use of the validation
data. If this test (for example the t-test) accepts the in-
phase matching hypothesis, the elected model is ready for
practical use. Otherwise, the method carries out a new
procedure to adjust the relative phase between the predic-
tion and the actual time series. The validation patterns
are presented to the ANN and the output of these pat-
terns are re-arranged to create new inputs that are both
presented to the ANN and set as the output (prediction)
target. The approximation results for both the in-phase
and out-of-phase models are measured and the best model
(smaller MSE error) is elected as the final model. Fig-
ure 1 depicts the complete algorithm for the TAEF model
construction.

III. Performance Evaluation

Most of the works found in the literatire of time series
prediction frequently employ only one performance crite-
rion for model evaluation. Most of the times, the measure
used is the MSE (mean squared error),

MSE =
1

N

N
∑

j=1

(targetj − outputj)
2

(2)
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Fig. 1. Algorithm for the TAEF method

where N is the number of patterns, targetj is the desired
output for pattern j and outputj is the predicted value for
pattern j.

Although the MSE measure may be used to drive the
prediction model in the training process, it cannot be con-
sidered alone as a conclusive measure for comparison of
different prediction models [10]. For this reason, other per-
formance criteria should be considered for allowing a more
robust performance assertiveness.

A second relevant measure is the MAPE (Mean Ab-
solute Percentage Error), given by

MAPE =
100

N

N
∑

j=1

∣

∣

∣

∣

targetj − outputj

Xj

∣

∣

∣

∣

(3)

where N, targetj , and ouytputj are the same MSE para-
meters, and Xj is the time series at point j.

A third performance measure is the U of Theil Statis-
tics, or NMSE (Normalized Mean Squared Error), which
is given by

Theil =

∑N

j=1
(targetj − outputj)

2

∑N

j=1
(targetj − targetj+1)

2
(4)

which associates the model performance with a random
walk model. If the U of Theil Statistics is equal to 1,
the predictor has the same performance of a random walk
model. If the U of Theil Statistics is greater than 1, then
the predictor has a worse performance than a Random
Walk model, and if the U of Theil Statistics is less than 1,
the predictor is better than a random walk model.

Another relevant evaluation measure considers the cal-
culation of the correctness of Prediction of Change in Di-
rection, or POCID for short,

POCID = 100

∑N

j=1
Dj

N
(5)

where

Dj

{

1 if(targetj − targetj−1)(outputj − outputj−1) > 0,

0 otherwise.

(6)

Since all measures above do not consider the freedom
degrees of the model, two last performance measures can
be taken into account. This is relevant because the larger
the number of free parameters, the larger the probabil-
ity of overfitting in the series estimation. The evaluation
measures that include the freedom degrees, penalizing the
models with additional parameters, are the Akaike (AIC)
and Bayesian (BIC) information criteria. The AIC and
BIC are approximated by

AIC = N ln(MSE) + 2p (7)

BIC = N ln(MSE) + p + N ln(p) (8)

where N is the number of time series points, MSE is the
Mean Squared Error and p is the number of freedom de-
grees.

IV. Experimental Results

A set of five times series was used as a test bed for eval-
uation of the method proposed. The first series is the
known Hénon series (artificial series without noise), and
the other series were drawn from real world situations:
Sunspot, Dow Jones Industrial Average (DJIA), Nasdaq
and Petrobrás Stock Options (Brazilian petroleum com-
pany).

All series investigated were normalized to lie within the
interval [0,1] and divided in three sets, training set (50%
of the points), validation set (25% of the points) and test
set (25% of the points). The AG parameters are the same
for all the series, with a mutation probability of 10%, and
crossover and mutation operations, as those reported in
Leung et al [2], composed of father genes and the maxi-
mal and minimal parameters allowed for the chromosomes
that speeds up the search. For all the experiments carried
out, the following system parameters were employed: ini-
tialization parameters — MinFit = 0.99 (∼ 1% of error),
MaxLags = 4 and NHiddenmax = 20; stopping condi-
tions for the GA — NGen = 1000 and BestF it ≤ 0.0001;
Stopping conditions for each individual — NEpochs =
1000, Gl ≤ 5% and Pt ≤ 10−6.

A. Hénon Series

The Hénon series is a very popular example of time se-
ries investigated by several researchers due to its complex
nature and chaotic dynamics. An interesting work that em-
ployed this series was conducted by D.B.Murray [11]. Such
as in the present work, Murray was interested in propos-
ing a model to represent the phase space of the tempo-
ral lags. He developed his approach based on the idea of
building this phase space of embedded dimensions from a
metric tensor whose components are adjusted in order to
the minimize the prediction error (root mean square error,
RMSE). The best prediction results obtained by Murray
corresponded to 3.7e-3 (RMSE), or 1.4e-5 (1.4e-3 %), if
considered the mean square error (MSE) .

The Hénon series considered in this work was the same
as that used by Murray, being composed of 10.000 points
generated from Equation (9) with parameters a = 1.4 and
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b = 0.3. This series is generated without the inclusion of
any noise (the r terms are null) .

Xt = 1 − a(Xt−2 − rt−2)
2 + b(Xt−4 − rt−4) + rt (9)

For the prediction of Henon series (with 1 step ahead
of prediction horizon), the TAEF method identified the
lags 2, 3, 5 and 7 as the relevant to the problem, defined
14 processing units in the hidden layer of the network,
elected the Levenberg-Marquardt algorithm as the most
fitted for the ANN training and classified the prediction
model as “in-phase” matching. Table I shows the results
with all the performance measures presented in Section III
for both cases: “in-phase” matching and if the prediction
model had been chosen as “out-of-phase” matching. The
prediction results obtained by the proposed method were
significantly better than those reported in the work of D.B.
Murray, with an MSE prediction of 3.1678 · 10−11 for the
test set.

Figure 2 shows a comparative graph of the actual Henon
series (solid lines) and the prediction generated by the
TAEF method (dash lines) for the last 100 points of the
test set, for both cases of prediction hypotheses (in-phase
matching and out-of-phase matching).

TABLE I

Experimental Results for the Hénon Series

In-phase Matching Out-of-phase Matching
MSE 3.1678 · 10−11 1.0445

MAPE 0.0061 % 305.09%
U of Theil 1.9836 · 10−10 0.9996
POCID 100.00% 41.51%

AIC -55251.0 556.7
BIC -53722.6 2085.0
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Fig. 2. Prediction results for the Hénon series (test set): actual
values (solid lines) and predicted values (dashed lines).

B. Sunspot Series

The sunspot series used consisted of the total annual
measures of the sun spots from the years of 1700 to 1988,
generating a database of 289 examples.

N.Terui and H.K.Van Dijk [12] developed a work where
a combination of some linear and non-linear models were

TABLE II

Experimental Results for the Sunspot Series

In-phase Matching Out-of-phase Matching
MSE 8.600 · 10−3 0.3070

MAPE 34.03 % 82.55 %
U of Theil 0.3218 1.2225
POCID 84.29% 65.22%

AIC -289.6 -195.9
BIC -211.3 -117.9

employed for times series prediction. Among the series
investigated, Terui and Van Dijk employed the sunspot
series from the years 1720 to 1989 to test their method
based on the combination of the AR, TAR and ExpAR
models The best experimental results reported with their
proposed method (best model combination) corresponded
to an MSE error of 0.0390.

For the prediction of the Sunspot series (with 1 step
ahead of prediction horizon), the TAEF method identified
the lags 1 to 4 as the relevant to the problem, defined 4
processing units in the hidden layer of the network, elected
the Levenberg-Marquardt algorithm as the most fitted for
the ANN training and classified the model as “in-phase”
matching. Table II shows the results with all the perfor-
mance measures for both cases: “in-phase” matching and
if the prediction model had been chosen as “out-of-phase”
matching.

It can be seen that the proposed method produced a
prediction error of 8.600 · 10−3, consistently better than
that observed in the work of Terui and Van Dijk (0.0390).

Figure 3 shows a comparative graph of the actual
Sunspot series (solid lines) and the prediction generated
by the TAEF method (dash lines) for the test set, for both
cases of prediction hypotheses (in-phase matching and out-
of-phase matching). It is seen that the “in-phase” match-
ing model chosen by TAEF method was the correct choice.
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Fig. 3. Prediction results for the Sunspot series (test set): actual
values (solid lines) and predicted values (dashed lines).

C. Down Jones Series

The Dow Jones Industrial Average Index (DJIA) series
corresponds to daily observations from 1st January 1998
to 26th of August 2003 of the DJIA index, constituting a
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database of 1420 points.

The hybrid model proposed automatically chose the lags
2, 4, 8, 6, 9 and 10 as the relevant lags for the series repre-
sentation, defined 10 processing units for the hidden layer
of the ANN, once again selected the algorithm Levenberg-
Marquardt as the most fitted for the ANN training and
classified the model as “out-of-phase” matching. Table III
shows the results with all the performance measures for
both cases: out-of-phase matching and if the prediction
model had been chosen as “in-phase” matching. Of partic-
ular interest to this financial series are the measures shown
by the statistics U of Theil (0.03), denoting a far better
result than a random walk (see Section III), and by the
POCID which presents a 97% of series approximation.

TABLE III

Experimental Results for the DJIA Series

In-phase Matching Out-of-phase Matching
MSE 8.4183 · 10−4 2.6841 · 10−5

MAPE 1.15 % 0.20%
U of Theil 1.0006 0.0318
POCID 47.58% 97.14%

AIC -2206.1 -3408.5
BIC -1510.6 -2713.4

Figure 4 shows a comparative graph of the actual DJIA
(solid lines) and the prediction generated by the TAEF
method (dash lines) for the last 100 points of the test set,
for both cases of prediction model classification (in-phase
matching and out-of-phase matching). It is seen that the
“out-of-phase” matching model chosen by TAEF method
was the correct choice.
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Fig. 4. Prediction results for the DJIA series (test set): actual values
(solid lines) and predicted values (dashed lines).

D. Nasdaq Series

The Nasdaq series (National Association of Securities
Dealers Automated Quotation) corresponds to daily ob-
servations from 2nd February 1971 to 18th of June 2004 of
the Nasdaq index, constituting a database of 8428 points.

For the prediction of the Nasdaq series (with 1 step
ahead of prediction horizon), the TAEF method identi-
fied the lags 3, 4 6 and 8 as the relevant to the problem,

defined 11 processing units in the hidden layer of the net-
work, elected the Levenberg-Marquardt algorithm as the
most fitted for the ANN training and classified the model
as “out-of-phase” matching. Table IV shows the results
with all the performance measures for both cases: “out-
of-phase” matching and if the prediction model had been
chosen as “in-phase” matching. Of particular interest to
this financial series are the measures shown by the statis-
tics U of Theil (0.17), denoting a far better result than a
random walk (see Section III), and by the POCID which
presents a 89.6% of series approximation.

TABLE IV

Experimental Results for the Nasdaq Series

In-phase Matching Out-of-phase Matching
MSE 2.1449 · 10−5 3.2374 · 10−6

MAPE 0.20 % 0.08%
U of Theil 1.1441 0.1720
POCID 52.71% 89.63%

AIC -22342.4 -26310.1
BIC -21391.2 -25358.9

Figure 5 shows a comparative graph of the actual Nas-
daq series (solid lines) and the prediction generated by the
TAEF method (dash lines) for the last 100 points of the
test set, for both cases of prediction hypotheses (in-phase
matching and out-of-phase matching).It is seen that the
“out-of-phase” matching model chosen by TAEF method
was the correct choice.
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Fig. 5. Prediction results for the Nasdaq series (test set): actual
values (solid lines) and predicted values (dashed lines).

E. Petrobrás Stock Values Series

The Petrobrás series corresponds to the daily records of
the Brazilian Petroleum Company stock values from the
1st of January 1995 to the 3rd of July 2003, totalizing
2060 points.

For the prediction of the Petrobrás series (with 1 step
ahead of prediction horizon), the TAEF method identi-
fied the lags 3, 4 and 7 as the relevant to the problem,
defined 17 processing units in the hidden layer of the net-
work, elected the Levenberg-Marquardt algorithm as the
most fitted for the ANN training and classified the model
as “out-of-phase” matching. Table V shows the results
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with all the performance measures for both cases: “out-
of-phase” matching and if the prediction model had been
chosen as “in-phase” matching. Of particular interest to
this financial series are the measures shown by the statis-
tics U of Theil (0.30), denoting a far better result than a
random walk (see Section III), and by the POCID which
presents a 97.7% of series approximation.

TABLE V

Experimental Results for the Petrobrás Series

In-phase Matching Out-of-phase Matching
MSE 7.5951 · 10−5 1.9049 · 10−5

MAPE 0.55 % 0.29 %
U of Theil 1.2077 0.3023
POCID 52.79% 97.68%

AIC -4286.4 -4997.7
BIC -2589.4 -3298.4

Figure 6 shows a comparative graph of the actual
Petrobrás series (solid lines) and the prediction generated
by the TAEF method (dash lines) for the last 100 points
in the test set, for both cases of prediction hypotheses
(in-phase matching and out-of-phase matching).It is seen
that the “out-of-phase” matching model chosen by TAEF
method was the correct choice.
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Fig. 6. Prediction results for the Petrobrás series (test set): actual
values (solid lines) and predicted values (dashed lines).

V. Conclusions

This paper has presented an intelligent hybrid system
approach, the Time-delay Added Evolutionary Forecast-
ing (TAEF) method, which consists of an artificial neural
network combined with a modified genetic algorithm and a
behavior test of phase match hypotheses carried out at the
model’s output for the solution of time series forecasting
problems.

The experimental results using a set of consistent per-
formance measures composed with six different metrics
(MSE, MAPE, U of Theil Statistics, POCID, AIC and
BIC) showed that this system can boost the performance
of time series prediction on both artificially generated time
series and real world (financial market and natural phe-
nomena) time series. The experimental validation of the
method was carried out on five complex and relevant time

series: four real world time series (with all their depen-
dence on exogenous and uncontrollable variables) and the
artificially generated Hénon series (with its non-linear re-
lations and chaotic characteristics).

With the introduction of the behavior test for identify-
ing whether the prediction model is “in-phase” or “out-of-
phase” with the series to be forecasted, the TAEF method
was able to classify if a given time series tends or not to a
Random Walk like model, thus adjusting the model if ne-
cessary. Such adjustment is conducted on the model cons-
tructed without the use of any additional training phase
nor the use of any additional training data (the same origi-
nal validation data is employed). Only one additional
epoch is used for presenting the original validation data
and deciding which of the models generated (in-phase or
out-of-phase) produces the best series approximation.

When compared to the best (most recent) results found
in the literature, the TAEF Method presented a superior
performance in all the comparisons made. However, a sys-
tematic study is yet necessary to determine any possible
limitations of the method when dealing with other types
of components found in other different real world time se-
ries such as trends, seasonality, impulses, steps, and other
non-linearities. Taking that into account, other time series
with those components are being collected to carry out a
broader investigation.
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