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Abstract 

 
Artificial Neural Networks (ANN) have been 

successfully used in a wide variety of real-world 
applications. However, ANN alone have not been fully 
employed in KDD (Knowledge Discovery in Databases) 
applications because they often produce 
incomprehensible models. Neuro-fuzzy systems and 
techniques for symbolic knowledge extraction have been 
increasingly used to represent the knowledge acquired 
by ANNs in a comprehensible form. This paper presents 
hybrid neural solutions for the KDD process, resulting 
from a detailed experimental investigation of three 
neural models (MLP, FuNN and FWD), four symbolic 
knowledge extraction techniques (AREFuNN, REFuNN, 
TREPAN and FWD) and two feature selection 
algorithms (FWD and the decision tree extracted by 
TREPAN). A large scale credit assessment application 
in a real-world situation was used as the test bed for the 
experimental investigations carried out. The results 
demonstrate that the benefits obtained from hybrid 
neural solutions are actual. 
 
 
1. Introduction 
 

In the last decades, institutions have experienced a 
great growth in their capacity of generating and 
collecting data from their daily operations. However, the 
traditional methods used to manipulate these data can 
generate only informative reports. Such methods are 
unable to analyze the data and automatically extract 
strategic knowledge. These difficulties contributed to the 
arising of the field known as Knowledge Discovery in 

Databases (KDD) [1]. KDD is a discovery process of 
previously unknown, valid, novel, potentially useful and 
understandable knowledge from databases [1]. KDD 
consists of an iterative sequence of data cleaning, data 
integration, data selection, data transformation, data 
mining, pattern evaluation and knowledge presentation. 
A wide variety of algorithms have been proposed for 
solving each one of these steps. Some of these 
techniques have been shown to efficiently solve some of 
the tasks involved but fail to accomplish some of the 
others. For example, Artificial Neural Networks (ANN) 
have been successfully used to perform data mining 
tasks but generally cannot easily present knowledge 
extracted in a comprehensible way to humans [1].  

Intelligent Hybrid Systems (IHS) is an Artificial 
Intelligence approach based on the idea of integrating 
different techniques into a whole structure, thus 
overcoming their limitations [2]. The dissemination of 
IHS has contributed to the emergence of Hybrid Neural 
Systems (HNS) whose main research focus has been the 
integration of ANN, a strongly data based technique, 
with symbolic techniques, such as Fuzzy Logic and 
conventional symbolic algorithms. Neuro-fuzzy systems 
are HNS that combine ANN with fuzzy systems [3]. 
Other approaches for extracting symbolic knowledge 
from ANN have also been proposed [4][5].  

The goal of this paper is to investigate hybrid neural 
solutions for the KDD process that are capable not only 
of performing data mining operations but also have the 
capacity to explain the knowledge embedded in the 
network. The proposed solutions resulted from an 
extensive experimental investigation of the Multi-Layer 
Perceptron network (MLP) [6]; neuro-fuzzy models 
FWD (Feature-Weighted Detector) [7] and FuNN 
(Fuzzy Neural Network) [8], together with their rule 



extraction techniques; and the TREPAN (Trees 
Parroting Networks) algorithm [4]. Two feature 
selection techniques (FWD and the decision tree 
extracted by TREPAN) were also investigated. The 
experiments were carried out in a large scale real-world 
credit risk assessment problem and the results 
demonstrate that the benefits obtained from hybrid 
neural solutions are actual. 
 
2. Data mining algorithms 
 

The FWD network [7] was proposed in order to solve 
simultaneously two major problems in pattern 
recognition: pattern classification and feature selection. 
This network attempts to select important features, while 
maintaining the maximum recognition rate. Moreover, 
the knowledge acquired by the network can be described 
as a set of fuzzy rules. Therefore, the FWD model 
comprises, within the same structure, three steps of the 
KDD process (data selection, data mining e knowledge 
presentation). 

The FuNN network [8] uses a MLP network and a 
modified backpropagation training algorithm. Its 
architecture facilitates the learning from data and 
approximate reasoning, as well as the fuzzy rule 
extraction and insertion. It allows for the combination of 
data and rules into one system, and several methods of 
adaptation from which the membership functions of the 
fuzzy predicates and the initial fuzzy rules may adapt 
and change according to new data.  

The MLP network was selected to be employed in the 
investigation as a reference model to be compared with 
the models FWD and FuNN and as the oracle for the 
TREPAN algorithm. 
 
3. Knowledge presentation techniques 
 

The rule extraction technique of the FWD model is 
performed in a very simple way through the memory 
connections mji [7]. Each feature is associated with n 
memory connections (n is equal to the total of classes) 
which are used in the fuzzy predicates of the rules (e.g., 
nearly mij). The rule extraction process produces one 
rule for each class and all the relevant features must be 
present in the rules. 

REFuNN (Rule Extraction from a FuNN) and 
AREFuNN (Aggregated Rule Extraction from a FuNN) 
are two techniques proposed for extraction of fuzzy rules 
from the FuNN model [9]. These techniques use the 
architecture and weights of the FuNN network to extract 
the rules. 

The TREPAN technique [4] is an algorithm that 
makes queries, during the learning process, to an 
“oracle” using training and artificial examples. The 
oracle can be any classification algorithm and the 

answers to the queries are used to build a decision tree 
that approximates the knowledge represented by the 
oracle. TREPAN represents the knowledge in a 
comprehensible way; can be used in applications that 
have discrete and continuous features; is able to produce 
succinct decision trees from large networks; is able to 
produce decision trees that maintain a high level of 
fidelity with their respective oracles, while being 
comprehensible and accurate; is scalable with respect to 
the database size, model complexity and execution time; 
and does not impose any requirements on either the 
network architecture or its training method. 

 
4. Experimental investigation 
 
4.1. Problem domain and database 
 

The application of financial credit-risk evaluation was 
used as the test environment for the experiments carried 
out. This problem was chosen because it constitutes a 
large scale, real-life and complex application that 
provides a means for robust comparison between the 
algorithms studied. The situation consists of a 
classification problem that defines whether a credit will 
be given or not to an applicant. The database used was 
obtained from a Brazilian financial company and is 
composed of 27 input features (the database coded to the 
neural models has 68 input features), 2 classes (good and 
bad payers) and 60,141 records (48,218 good cases and 
11,923 bad cases). The database contains personal and 
financial data about credit applications and the history of 
defaulting on the credit approval. The database was 
divided into three sets (training, validation and test) with 
sizes of 50%, 25% and 25% of the records, respectively.  

 
4.2. Experimental methodology 
 

Initially, several neural model configurations were 
analyzed using the same initial weights and the best 
configuration found (lowest validation MSE – Mean 
Square Error) was used to perform 30 runs with different 
initial weights. The stopping criteria used considered the 
generalization loss (5% - training is stopped when the 
validation error increases 5% with respect to the smallest 
error up to the current epoch) and the maximum number 
of epochs (3000). 

In the experiments performed with the FWD model, 
the memory connections were initialized with random 
values and the weight connections were set to the unity 
(1). This model was composed of 68 input nodes, 
corresponding to the input features, and 2 output nodes, 
representing the good and bad payer classes. 

The topology used for the FuNN model consisted of 
68 input nodes (input features), 3 condition nodes 



(small, medium and large) for each continuous feature 
and 2 condition nodes (false and true) for each Boolean 
feature, 2 action nodes, representing the classes, and 1 
output node. The weights between the condition layer 
and rule layer, and the rule layer and action layer were 
initialized with random values. The weights between the 
input layer and condition layer were initialized with the 
values 0, 0.5 and 1 for continuous inputs and 0 and 1 for 
Boolean inputs. The weights between the action layer 
and output layer were initialized with the values 0 and 1.  

The MLP training was performed using 
backpropagation with momentum [6]. All the weights 
were randomly initialized in a network composed of 68 
input nodes, 2 output nodes and 1 hidden layer.  

Table 1 summarizes the training parameters for all the 
best model configurations. 
 
Table 1. Training parameters for the best configurations 

of the neural models 
 Temporal 

learning rate 
Fuzziness Learning 

rate 
 

FWD 0.1 0.7 0.5  
 Number of rule 

nodes 
Momentum Learning 

rate 
Gain 

coefficient 
FuNN 10 0.9 0.001 1 

 Number of 
hidden nodes 

Momentum Learning 
rate 

Gain 
coefficient 

MLP 2 0.9 0.01 1 

 
4.3. Generalization performance 
 
4.3.1. Test accuracy. Table 2 shows the classification 
results for each of the neural models. The values in the 
table represent the means obtained after 30 runs of the 
best configurations. This table shows the classification 
rate for each class and the total classification, together 
with the associated standard deviation. 
 

Table 2. Test set accuracy 
 Average (%) Standard deviation  

Model Total Good Bad Total Good Bad 
FWD 67.32 71.63 49.90 0.00 0.00 0.00 
FuNN 65.83 68.36 55.62 1.15 2.03 2.83 
MLP 66.44 69.41 54.43 1.17 2.13 2.79 

 
The neural models presented a very similar test set 

accuracy with the biggest difference observed in the 
classification rate of the bad payer class. 
 
4.3.2. ROC curves. In classification problems it is usual 
to analyze the generalization performance of the learning 
model considering the test accuracy only. As a result, 
this measure is very used to compare the performance of 
several models. However, comparisons based on the test 
accuracy omits two important aspects that must be 
considered, especially in real-world problems: usually 
the class distribution can not be precisely specified and 

the costs associated with the types of error (Type I and 
Type II) can be different and can change over time. For 
this reason, to improve a comparative analysis between 
the models, it is necessary to apply some technique that 
is able to determine the best model independently of the 
class distribution and costs associated with the types of 
error. The technique selected to this analysis was the 
ROC (Receiver Operating Characteristics) curves [10]. 

The ROC curves show the relation of the false 
positive rate with the true positive rate varying according 
to a threshold applied to the model outputs. The curves 
make possible a visual comparison of a set of models as 
well. A point in the ROC curve is better than another 
point if it is in a higher northwestern position. Figure 1 
depicts the ROC curves for the models studied. 
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Figure 1. ROC curves for the neural models 

 
The graph with the ROC curves was divided into 

seven regions (r1,r2,...,r7) for better analysis. In the 
regions r1 and r7, the model curves are overlaped, 
denoting similar model performance. In the regions r2, r4 
and r6, howerver, the results with the MLP and FuNN 
models are superior to those observed with the FWD 
model, because their curves are in a higher northwestern 
location. In the region r3, the MLP model is better than 
the models FuNN and FWD. In the region r5, the FuNN 
model presents the best performance among the models. 
In none of the regions, the FWD model can be elected as 
the best classifier. 
 
4.3.3. Portfolio of maintained clients. A 
complementary aspect of practical importance to the 
application domain of credit risk assessment is to observe 
how the model decision affects the number of clients 
(both good and bad) in the company’s client portfolio 
when a credit concession decision is taken (approval or 
rejection). This can be obtained by considering the 
continuous network responses and varying a threshold 
(from 0 to 100) as the cutpoint for credit approval. If an 
applicant receives a score (network response) above the 
threshold then its credit application is approved, 

r1 r2 r3 r4 r5 r6 r7 



otherwise it is rejected. This procedure allows a 
comparison between the hybrid neural models 
themselves and in relation to the previous classification 
decision taken by the financial company. Two curves are 
shown in the graph. The first represents the total number 
of clients (both good and bad) maintained in the portfolio 
as a function of the cutpoint, whereas the second 
accounts for the rate of bad payers reduced in the 
portfolio. The interpretation of the results is that if the 
curve of the bad payers decreases more consistently that 
the curve of the total number of clients it means that the 
classifier is being able to detect and reject many more 
bad clients than it is producing possible losses of good 
payers, when compared to the previous method for credit 
evaluation. In other words, the bad case curve is always 
below the curve of the total number of clients maintained 
in the portfolio. 

Figures 2, 3 and 4 show the curves of the clients 
maintained in the portfolio for the models MLP, FuNN 
and FWD, respectively. It can be observed that in none 
of the regions the curve of the bad payers is above the 
curve of the total number of clients, which means that 
the neural models presented a performance superior to 
the criterion used by the company to classify the clients.  

These results demonstrate that the application of the 
neural models to the company decision process would 
result in a better decision, especially when considering 
that the cost of accepting a bad payer is typically much 
higher than that of losing a good payer. 
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Figure 2. Portfolio of clients with the MLP model 
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Figure 3. Portfolio of clients with the FuNN model 
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Figure 4. Portfolio of clients with the FWD model 

 
4.4. Feature selection 
 

Two feature selection techniques were selected to be 
applied in conjunction with the neural models studied. 
The first method is the feature selection process 
embedded in the FWD which is accomplished from the 
analysis of the weight connection values that represent 
the feature relevance (from 0 to 1) for each class. The 
features with a relevance higher than a certain threshold 
(0.3 in the experiments carried out) are taken as relevant. 
The application of this procedure to the original 68 
features resulted in the selection of 26 final relevant 
features. The second feature selection method makes use 
of the TREPAN algorithm and is accomplished by 
defining the features not present in the tree as irrelevant 
[1]. From the original database composed of 27 features 
only 8 were selected as relevant. Table 3 shows the test 
set accuracy of the neural models after feature selection 
with the two methods examined. Since the test set 
accuracy has increased in some of the models, these 
results demonstrated the effectiveness of the feature 
selection techniques investigated. 
 

Table 3. Test set accuracy after the feature selection 
 Technique Model Average (%) Standard deviation 

  Total Good Bad Total Good Bad  
FWD 67.32 72.10 47.99 0.00 0.00 0.01 
FuNN 66.04 68.84 54.72 1.16 2.16 3.02 

 
FWD 

MLP 66.54 69.72 53.68 0.37 0.70 1.04 
FWD 65.13 67.58 55.19 0.57 0.89 1.07 
FuNN 65.00 67.75 53.89 0.00 0.00 0.00 

Using the 
decision 

tree MLP 65.15 67.70 54.82 0.66 1.26 2.08 

 
4.5. Symbolic knowledge extraction 
 

After studying the classification accuracy of the 
neural models, the knowledge extraction capacity of the 
techniques was evaluated [11]. Table 4 shows the rules 
extracted from the FWD model. Although the FWD 
ability to remove irrelevant features contributed to 
obtaining simpler rules, the FWD rule extraction 
technique produced extensive rules for the high 



dimensional credit concession problem. This is because 
all the relevant features must be present in the rules. 
Another problem in this model is the semantic 
representation of Boolean features. According to [7], 
since the linguistic term nearly is associated with each 
feature, all the features are manipulated as numerical and 
the semantic representation of Boolean variables 
becomes inappropriate. 
 

Table 4. Rules extracted from the FWD model 
IF sex is nearly 0.587  AND marital_status1 is nearly 0.285 AND    

… num_additional_cards is nearly 0.537 
THEN client is good payer 

IF sex is nearly 0.135  AND marital_status1 is nearly 0.731 AND 
...  num_additional_cards is nearly 0.763 

THEN client is bad payer 

 
Table 5 shows some examples of rules extracted by 

the AREFuNN and REFuNN techniques applied to the 
FuNN model. Two types of rules are shown: weighted 
and simple. In Case 1, degrees of importance and 
certainty are associated with the conditions and 
conclusion, respectively. In Case 2, the degrees are 
omitted. 
 
Table 5. Examples of rules extracted by REFuNN and 

AREFuNN 
Case 1    IF marital_status1 is false (0,81) AND 
                   marital_status4 is false (0,77) AND 
                   residencial_city2 is false (0,53) AND  
                   residencial_ddd1 is false (0,64) AND 
                   zip_code1 is high (0,85) AND 
                   zip_code2 is medium (0,63) AND 
                   type_client1 is true (0,85) AND 
                   spouse_income is high (0,66) AND 
                   income is small (0,82) 
        THEN client is good payer (0,62) 

Case 2    IF marital_status5 is true AND  
                   residencial_ddd4 is false AND 
                   income is small AND 
                   zip_code2 is medium AND 
                   employment_time is small   
        THEN client is bad payer 

 
REFuNN extracted 5 rules and AREFuNN extracted 

9 rules. Although the rule set extracted by AREFuNN 
was larger than the set extracted by REFuNN, the rules 
obtained by AREFuNN are simpler. Despite theses 
techniques use thresholds to simplify the rules, the 
extracted rule sets were larger than that extracted from 
the FWD network. This characteristic is not necessarily a 
disadvantage because the rule set size is not the only 
aspect to be considered. In order to make the 
comprehension easier, it is also important that a small 
number of conditions per rule are generated (a 
characteristic not observed in the FWD method). 

The knowledge extracted by TREPAN can be 
represented in two forms: decision tree and if-then rules. 

Initially, TREPAN extracts a decision tree. The main 
advantage of this representation is the capacity of 
visually presenting the mined knowledge, making 
comprehension and application easier. From the decision 
tree, a rule set can be obtained. Table 6 shows some 
examples of the rules obtained from the decision tree 
extracted by TREPAN from the MLP network. 
 

Table 6. Examples of rules extracted by TREPAN 
    IF age > 0.26 AND flag_residencial_phone ≠ 0  

    THEN client is good payer (support = 39.99%, confidence = 
87.16%) 

     IF age <= 0.26 AND sex ≠ 0 AND flag_residencial_phone = 0 
THEN client is bad payer (support = 2.12%, confidence = 38.09%) 

 
A small and very comprehensible tree was produced 

from which 13 rules were derived. Although the rule set 
given by TREPAN was larger than the set extracted by 
the other techniques, the number of conditions per rule is 
small and the rule application is very direct. 

The fidelity rate between the decision tree and the 
MLP network and the accuracy of the tree on the test set 
are showed in the Table 7. The fidelity measures the 
percentage of examples whose decision tree 
classification is equal to the network classification. 
 

Table 7. Test set results for the TREPAN technique 
Accuracy (%) Fidelity (%) 

Total Good  Bad Total Good Bad 

66.51 71.20 47.52 85.78 88.81 79.14 

 
5. Hybrid neural solutions proposed for the 
KDD process 
 

Although the FWD model has presented a similar 
performance to those achieved by the MLP and FuNN 
models, it has a serious practical limitation: capacity of 
solving only linearly separable problems. In addition to 
this, the rules extracted from a FWD model are very 
extensive, making difficult the comprehension of the 
extracted knowledge. However, the feature selection 
ability of the FWD model is a most relevant 
functionality. In the credit problem examined, which 
uses a large scale database, 61% of the features were 
considered irrelevant. These results demonstrated the 
effectiveness of the FWD feature selection technique, 
making it a serious candidate for application in the data 
selection step of the KDD process. 

Differently from the FWD, the MLP and FuNN 
models are able to solve non-linearly separable 
problems. These models, therefore, are suitable for 
application in the data mining step. With respect to the 
rule extraction of the FuNN model, AREFuNN was 
superior to REFuNN, presenting simpler rules.  



The feature selection made with the decision tree 
extracted by TREPAN presented satisfactory results 
when applied to the FuNN and MLP models. 
Considering the aspect of symbolic knowledge 
extraction, TREPAN produced a very simple decision 
tree. As a result, the interpretation and direct application 
of the knowledge extracted are made easier, making 
TREPAN appropriate for use in both the knowledge 
presentation step and data selection step. 

The observations of the advantages and disadvantages 
of each technique lead to the proposition of two hybrid 
neural solutions for the KDD process. In the first 
solution, the FWD feature selection technique is used in 
the data selection step. After, the reduced database is 
applied to the FuNN model as the data mining algorithm. 
Later, the rule extraction techniques REFuNN and 
AREFuNN are used individually or unified in the 
knowledge presentation step. In the second solution, the 
feature selection technique based on the decision tree 
defined by TREPAN is used in the data selection step. 
The MLP and FuNN models are used in the data mining 
step. In the knowledge presentation step, four 
alternatives can be applied. The TREPAN technique can 
be used with the FuNN or MLP models, or the FuNN 
model can be employed together with the rule extraction 
techniques REFuNN and AREFuNN (alone or unified). 

 
6. Conclusions 
 

This paper has presented a thorough investigation of 
several feature selection, data mining and knowledge 
presentation techniques for the development of hybrid 
neural solutions for KDD applications. These solutions 
resulted from a detailed experimental investigation of 
three neural models (MLP, FuNN and FWD), four 
symbolic knowledge extraction techniques (AREFuNN, 
REFuNN, TREPAN and FWD) and two feature 
selection techniques (FWD and the decision tree 
extracted by TREPAN). The experiments were 
performed using a large scale credit assessment database 
extracted from a real-world operational situation. The 
experimental investigation provided a practical 
contribution since it has demonstrated that the use of 
HNS for accomplishing several steps of a KDD solution 
is both feasible and attractive. Therefore, HNS can be 
considered an alternative to the traditional neural 
models, without performance loss and with the 
additional functionality of representing knowledge in a 
comprehensible form.  

There are many options for further works. Some 
examples are the test and validation of the proposed 
solutions in other real-world problems, and the 
investigation of other neural models, techniques for 
feature selection and extraction of symbolic knowledge 
from ANNs. An additional important research would be 

the investigation of extensions to the FWD model in 
order to make it able to solve non-linearly separable 
problems, to produce more than one rule per class and to 
support more than one membership function per feature.  
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