
Hybrid Neural Solutions for Automatic Knowledge Discovery from Databases

Bruno P. Amorim1, Germano C. Vasconcelos1, Lourdes M. Brasil2

1 Center of Informatics (CIn), Federal University of Pernambuco (UFPE)
Recife, PE, Brazil

Email: {bpa, gcv}@cin.ufpe.br

2 Post-Graduation Program in Knowledge Management and Information Technology,
Catholic University of Brasilia (UCB), Brasília, DF, Brazil

lmb@pos.ucb.br

Abstract

Artificial Neural Networks (ANN) have been

successfully used in a wide variety of real-world
applications. However, ANN alone have not been fully
employed in KDD (Knowledge Discovery in Databases)
applications because they often produce
incomprehensible models. Neuro-fuzzy systems and
techniques for symbolic knowledge extraction have been
increasingly used to represent the knowledge acquired
by ANNs in a comprehensible form. This paper presents
hybrid neural solutions for the KDD process, resulting
from a detailed experimental investigation of three
neural models (MLP, FuNN and FWD), four symbolic
knowledge extraction techniques (AREFuNN, REFuNN,
TREPAN and FWD) and two feature selection
algorithms (FWD and the decision tree extracted by
TREPAN). A large scale credit assessment application
in a real-world situation was used as the test bed for the
experimental investigations carried out. The results
demonstrate that the benefits obtained from hybrid
neural solutions are actual.

1. Introduction

In the last decades, institutions have experienced a
great growth in their capacity of generating and
collecting data from their daily operations. However, the
traditional methods used to manipulate these data can
generate only informative reports. Such methods are
unable to analyze the data and automatically extract
strategic knowledge. These difficulties contributed to the
arising of the field known as Knowledge Discovery in

Databases (KDD) [1]. KDD is a discovery process of
previously unknown, valid, novel, potentially useful and
understandable knowledge from databases [1]. KDD
consists of an iterative sequence of data cleaning, data
integration, data selection, data transformation, data
mining, pattern evaluation and knowledge presentation.
A wide variety of algorithms have been proposed for
solving each one of these steps. Some of these
techniques have been shown to efficiently solve some of
the tasks involved but fail to accomplish some of the
others. For example, Artificial Neural Networks (ANN)
have been successfully used to perform data mining
tasks but generally cannot easily present knowledge
extracted in a comprehensible way to humans [1].

Intelligent Hybrid Systems (IHS) is an Artificial
Intelligence approach based on the idea of integrating
different techniques into a whole structure, thus
overcoming their limitations [2]. The dissemination of
IHS has contributed to the emergence of Hybrid Neural
Systems (HNS) whose main research focus has been the
integration of ANN, a strongly data based technique,
with symbolic techniques, such as Fuzzy Logic and
conventional symbolic algorithms. Neuro-fuzzy systems
are HNS that combine ANN with fuzzy systems [3].
Other approaches for extracting symbolic knowledge
from ANN have also been proposed [4][5].

The goal of this paper is to investigate hybrid neural
solutions for the KDD process that are capable not only
of performing data mining operations but also have the
capacity to explain the knowledge embedded in the
network. The proposed solutions resulted from an
extensive experimental investigation of the Multi-Layer
Perceptron network (MLP) [6]; neuro-fuzzy models
FWD (Feature-Weighted Detector) [7] and FuNN
(Fuzzy Neural Network) [8], together with their rule

extraction techniques; and the TREPAN (Trees
Parroting Networks) algorithm [4]. Two feature
selection techniques (FWD and the decision tree
extracted by TREPAN) were also investigated. The
experiments were carried out in a large scale real-world
credit risk assessment problem and the results
demonstrate that the benefits obtained from hybrid
neural solutions are actual.

2. Data mining algorithms

The FWD network [7] was proposed in order to solve
simultaneously two major problems in pattern
recognition: pattern classification and feature selection.
This network attempts to select important features, while
maintaining the maximum recognition rate. Moreover,
the knowledge acquired by the network can be described
as a set of fuzzy rules. Therefore, the FWD model
comprises, within the same structure, three steps of the
KDD process (data selection, data mining e knowledge
presentation).

The FuNN network [8] uses a MLP network and a
modified backpropagation training algorithm. Its
architecture facilitates the learning from data and
approximate reasoning, as well as the fuzzy rule
extraction and insertion. It allows for the combination of
data and rules into one system, and several methods of
adaptation from which the membership functions of the
fuzzy predicates and the initial fuzzy rules may adapt
and change according to new data.

The MLP network was selected to be employed in the
investigation as a reference model to be compared with
the models FWD and FuNN and as the oracle for the
TREPAN algorithm.

3. Knowledge presentation techniques

The rule extraction technique of the FWD model is
performed in a very simple way through the memory
connections mji [7]. Each feature is associated with n
memory connections (n is equal to the total of classes)
which are used in the fuzzy predicates of the rules (e.g.,
nearly mij). The rule extraction process produces one
rule for each class and all the relevant features must be
present in the rules.

REFuNN (Rule Extraction from a FuNN) and
AREFuNN (Aggregated Rule Extraction from a FuNN)
are two techniques proposed for extraction of fuzzy rules
from the FuNN model [9]. These techniques use the
architecture and weights of the FuNN network to extract
the rules.

The TREPAN technique [4] is an algorithm that
makes queries, during the learning process, to an
“oracle” using training and artificial examples. The
oracle can be any classification algorithm and the

answers to the queries are used to build a decision tree
that approximates the knowledge represented by the
oracle. TREPAN represents the knowledge in a
comprehensible way; can be used in applications that
have discrete and continuous features; is able to produce
succinct decision trees from large networks; is able to
produce decision trees that maintain a high level of
fidelity with their respective oracles, while being
comprehensible and accurate; is scalable with respect to
the database size, model complexity and execution time;
and does not impose any requirements on either the
network architecture or its training method.

4. Experimental investigation

4.1. Problem domain and database

The application of financial credit-risk evaluation was
used as the test environment for the experiments carried
out. This problem was chosen because it constitutes a
large scale, real-life and complex application that
provides a means for robust comparison between the
algorithms studied. The situation consists of a
classification problem that defines whether a credit will
be given or not to an applicant. The database used was
obtained from a Brazilian financial company and is
composed of 27 input features (the database coded to the
neural models has 68 input features), 2 classes (good and
bad payers) and 60,141 records (48,218 good cases and
11,923 bad cases). The database contains personal and
financial data about credit applications and the history of
defaulting on the credit approval. The database was
divided into three sets (training, validation and test) with
sizes of 50%, 25% and 25% of the records, respectively.

4.2. Experimental methodology

Initially, several neural model configurations were
analyzed using the same initial weights and the best
configuration found (lowest validation MSE – Mean
Square Error) was used to perform 30 runs with different
initial weights. The stopping criteria used considered the
generalization loss (5% - training is stopped when the
validation error increases 5% with respect to the smallest
error up to the current epoch) and the maximum number
of epochs (3000).

In the experiments performed with the FWD model,
the memory connections were initialized with random
values and the weight connections were set to the unity
(1). This model was composed of 68 input nodes,
corresponding to the input features, and 2 output nodes,
representing the good and bad payer classes.

The topology used for the FuNN model consisted of
68 input nodes (input features), 3 condition nodes

(small, medium and large) for each continuous feature
and 2 condition nodes (false and true) for each Boolean
feature, 2 action nodes, representing the classes, and 1
output node. The weights between the condition layer
and rule layer, and the rule layer and action layer were
initialized with random values. The weights between the
input layer and condition layer were initialized with the
values 0, 0.5 and 1 for continuous inputs and 0 and 1 for
Boolean inputs. The weights between the action layer
and output layer were initialized with the values 0 and 1.

The MLP training was performed using
backpropagation with momentum [6]. All the weights
were randomly initialized in a network composed of 68
input nodes, 2 output nodes and 1 hidden layer.

Table 1 summarizes the training parameters for all the
best model configurations.

Table 1. Training parameters for the best configurations

of the neural models
 Temporal

learning rate
Fuzziness Learning

rate

FWD 0.1 0.7 0.5
 Number of rule

nodes
Momentum Learning

rate
Gain

coefficient
FuNN 10 0.9 0.001 1

 Number of
hidden nodes

Momentum Learning
rate

Gain
coefficient

MLP 2 0.9 0.01 1

4.3. Generalization performance

4.3.1. Test accuracy. Table 2 shows the classification
results for each of the neural models. The values in the
table represent the means obtained after 30 runs of the
best configurations. This table shows the classification
rate for each class and the total classification, together
with the associated standard deviation.

Table 2. Test set accuracy
 Average (%) Standard deviation

Model Total Good Bad Total Good Bad
FWD 67.32 71.63 49.90 0.00 0.00 0.00
FuNN 65.83 68.36 55.62 1.15 2.03 2.83
MLP 66.44 69.41 54.43 1.17 2.13 2.79

The neural models presented a very similar test set

accuracy with the biggest difference observed in the
classification rate of the bad payer class.

4.3.2. ROC curves. In classification problems it is usual
to analyze the generalization performance of the learning
model considering the test accuracy only. As a result,
this measure is very used to compare the performance of
several models. However, comparisons based on the test
accuracy omits two important aspects that must be
considered, especially in real-world problems: usually
the class distribution can not be precisely specified and

the costs associated with the types of error (Type I and
Type II) can be different and can change over time. For
this reason, to improve a comparative analysis between
the models, it is necessary to apply some technique that
is able to determine the best model independently of the
class distribution and costs associated with the types of
error. The technique selected to this analysis was the
ROC (Receiver Operating Characteristics) curves [10].

The ROC curves show the relation of the false
positive rate with the true positive rate varying according
to a threshold applied to the model outputs. The curves
make possible a visual comparison of a set of models as
well. A point in the ROC curve is better than another
point if it is in a higher northwestern position. Figure 1
depicts the ROC curves for the models studied.

ROC Curves

0.0
0.1
0.2
0.2
0.3
0.4
0.5
0.6
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive

MLP FuNN FWD

T
r
u
e

P
o
s
i
t
i
v
e

Figure 1. ROC curves for the neural models

The graph with the ROC curves was divided into

seven regions (r1,r2,...,r7) for better analysis. In the
regions r1 and r7, the model curves are overlaped,
denoting similar model performance. In the regions r2, r4
and r6, howerver, the results with the MLP and FuNN
models are superior to those observed with the FWD
model, because their curves are in a higher northwestern
location. In the region r3, the MLP model is better than
the models FuNN and FWD. In the region r5, the FuNN
model presents the best performance among the models.
In none of the regions, the FWD model can be elected as
the best classifier.

4.3.3. Portfolio of maintained clients. A
complementary aspect of practical importance to the
application domain of credit risk assessment is to observe
how the model decision affects the number of clients
(both good and bad) in the company’s client portfolio
when a credit concession decision is taken (approval or
rejection). This can be obtained by considering the
continuous network responses and varying a threshold
(from 0 to 100) as the cutpoint for credit approval. If an
applicant receives a score (network response) above the
threshold then its credit application is approved,

r1 r2 r3 r4 r5 r6 r7

otherwise it is rejected. This procedure allows a
comparison between the hybrid neural models
themselves and in relation to the previous classification
decision taken by the financial company. Two curves are
shown in the graph. The first represents the total number
of clients (both good and bad) maintained in the portfolio
as a function of the cutpoint, whereas the second
accounts for the rate of bad payers reduced in the
portfolio. The interpretation of the results is that if the
curve of the bad payers decreases more consistently that
the curve of the total number of clients it means that the
classifier is being able to detect and reject many more
bad clients than it is producing possible losses of good
payers, when compared to the previous method for credit
evaluation. In other words, the bad case curve is always
below the curve of the total number of clients maintained
in the portfolio.

Figures 2, 3 and 4 show the curves of the clients
maintained in the portfolio for the models MLP, FuNN
and FWD, respectively. It can be observed that in none
of the regions the curve of the bad payers is above the
curve of the total number of clients, which means that
the neural models presented a performance superior to
the criterion used by the company to classify the clients.

These results demonstrate that the application of the
neural models to the company decision process would
result in a better decision, especially when considering
that the cost of accepting a bad payer is typically much
higher than that of losing a good payer.

 Portfolio of clients graph

0
20
40
60
80

100

0 6 12 17 23 29 34 40 46 51 57 63 69 74 80 86 91 97
Cutpoint

P
e
r
c
e
n
t
a
g
e

Bad payers Total clients

Figure 2. Portfolio of clients with the MLP model

 Portfolio of clients graph

0
20
40
60
80

100

0 6 12 17 23 29 34 40 46 51 57 63 69 74 80 86 91 97
Cutpoint

Bad payers Total clients

P
e
r
c
e
n
t
a
g
e

Figure 3. Portfolio of clients with the FuNN model

 Portfolio of clients graph

0
20
40
60
80

100

0 6 12 17 23 29 34 40 46 51 57 63 69 74 80 86 91 97
Cutpoint

Bad payers Total clients

P
e
r
c
e
n
t
a
g
e

Figure 4. Portfolio of clients with the FWD model

4.4. Feature selection

Two feature selection techniques were selected to be
applied in conjunction with the neural models studied.
The first method is the feature selection process
embedded in the FWD which is accomplished from the
analysis of the weight connection values that represent
the feature relevance (from 0 to 1) for each class. The
features with a relevance higher than a certain threshold
(0.3 in the experiments carried out) are taken as relevant.
The application of this procedure to the original 68
features resulted in the selection of 26 final relevant
features. The second feature selection method makes use
of the TREPAN algorithm and is accomplished by
defining the features not present in the tree as irrelevant
[1]. From the original database composed of 27 features
only 8 were selected as relevant. Table 3 shows the test
set accuracy of the neural models after feature selection
with the two methods examined. Since the test set
accuracy has increased in some of the models, these
results demonstrated the effectiveness of the feature
selection techniques investigated.

Table 3. Test set accuracy after the feature selection
 Technique Model Average (%) Standard deviation

 Total Good Bad Total Good Bad
FWD 67.32 72.10 47.99 0.00 0.00 0.01
FuNN 66.04 68.84 54.72 1.16 2.16 3.02

FWD

MLP 66.54 69.72 53.68 0.37 0.70 1.04
FWD 65.13 67.58 55.19 0.57 0.89 1.07
FuNN 65.00 67.75 53.89 0.00 0.00 0.00

Using the
decision

tree MLP 65.15 67.70 54.82 0.66 1.26 2.08

4.5. Symbolic knowledge extraction

After studying the classification accuracy of the
neural models, the knowledge extraction capacity of the
techniques was evaluated [11]. Table 4 shows the rules
extracted from the FWD model. Although the FWD
ability to remove irrelevant features contributed to
obtaining simpler rules, the FWD rule extraction
technique produced extensive rules for the high

dimensional credit concession problem. This is because
all the relevant features must be present in the rules.
Another problem in this model is the semantic
representation of Boolean features. According to [7],
since the linguistic term nearly is associated with each
feature, all the features are manipulated as numerical and
the semantic representation of Boolean variables
becomes inappropriate.

Table 4. Rules extracted from the FWD model
IF sex is nearly 0.587 AND marital_status1 is nearly 0.285 AND

… num_additional_cards is nearly 0.537
THEN client is good payer

IF sex is nearly 0.135 AND marital_status1 is nearly 0.731 AND
... num_additional_cards is nearly 0.763

THEN client is bad payer

Table 5 shows some examples of rules extracted by

the AREFuNN and REFuNN techniques applied to the
FuNN model. Two types of rules are shown: weighted
and simple. In Case 1, degrees of importance and
certainty are associated with the conditions and
conclusion, respectively. In Case 2, the degrees are
omitted.

Table 5. Examples of rules extracted by REFuNN and

AREFuNN
Case 1 IF marital_status1 is false (0,81) AND
 marital_status4 is false (0,77) AND
 residencial_city2 is false (0,53) AND
 residencial_ddd1 is false (0,64) AND
 zip_code1 is high (0,85) AND
 zip_code2 is medium (0,63) AND
 type_client1 is true (0,85) AND
 spouse_income is high (0,66) AND
 income is small (0,82)
 THEN client is good payer (0,62)

Case 2 IF marital_status5 is true AND
 residencial_ddd4 is false AND
 income is small AND
 zip_code2 is medium AND
 employment_time is small
 THEN client is bad payer

REFuNN extracted 5 rules and AREFuNN extracted

9 rules. Although the rule set extracted by AREFuNN
was larger than the set extracted by REFuNN, the rules
obtained by AREFuNN are simpler. Despite theses
techniques use thresholds to simplify the rules, the
extracted rule sets were larger than that extracted from
the FWD network. This characteristic is not necessarily a
disadvantage because the rule set size is not the only
aspect to be considered. In order to make the
comprehension easier, it is also important that a small
number of conditions per rule are generated (a
characteristic not observed in the FWD method).

The knowledge extracted by TREPAN can be
represented in two forms: decision tree and if-then rules.

Initially, TREPAN extracts a decision tree. The main
advantage of this representation is the capacity of
visually presenting the mined knowledge, making
comprehension and application easier. From the decision
tree, a rule set can be obtained. Table 6 shows some
examples of the rules obtained from the decision tree
extracted by TREPAN from the MLP network.

Table 6. Examples of rules extracted by TREPAN
 IF age > 0.26 AND flag_residencial_phone ≠ 0

 THEN client is good payer (support = 39.99%, confidence =
87.16%)

 IF age <= 0.26 AND sex ≠ 0 AND flag_residencial_phone = 0
THEN client is bad payer (support = 2.12%, confidence = 38.09%)

A small and very comprehensible tree was produced

from which 13 rules were derived. Although the rule set
given by TREPAN was larger than the set extracted by
the other techniques, the number of conditions per rule is
small and the rule application is very direct.

The fidelity rate between the decision tree and the
MLP network and the accuracy of the tree on the test set
are showed in the Table 7. The fidelity measures the
percentage of examples whose decision tree
classification is equal to the network classification.

Table 7. Test set results for the TREPAN technique
Accuracy (%) Fidelity (%)

Total Good Bad Total Good Bad

66.51 71.20 47.52 85.78 88.81 79.14

5. Hybrid neural solutions proposed for the
KDD process

Although the FWD model has presented a similar
performance to those achieved by the MLP and FuNN
models, it has a serious practical limitation: capacity of
solving only linearly separable problems. In addition to
this, the rules extracted from a FWD model are very
extensive, making difficult the comprehension of the
extracted knowledge. However, the feature selection
ability of the FWD model is a most relevant
functionality. In the credit problem examined, which
uses a large scale database, 61% of the features were
considered irrelevant. These results demonstrated the
effectiveness of the FWD feature selection technique,
making it a serious candidate for application in the data
selection step of the KDD process.

Differently from the FWD, the MLP and FuNN
models are able to solve non-linearly separable
problems. These models, therefore, are suitable for
application in the data mining step. With respect to the
rule extraction of the FuNN model, AREFuNN was
superior to REFuNN, presenting simpler rules.

The feature selection made with the decision tree
extracted by TREPAN presented satisfactory results
when applied to the FuNN and MLP models.
Considering the aspect of symbolic knowledge
extraction, TREPAN produced a very simple decision
tree. As a result, the interpretation and direct application
of the knowledge extracted are made easier, making
TREPAN appropriate for use in both the knowledge
presentation step and data selection step.

The observations of the advantages and disadvantages
of each technique lead to the proposition of two hybrid
neural solutions for the KDD process. In the first
solution, the FWD feature selection technique is used in
the data selection step. After, the reduced database is
applied to the FuNN model as the data mining algorithm.
Later, the rule extraction techniques REFuNN and
AREFuNN are used individually or unified in the
knowledge presentation step. In the second solution, the
feature selection technique based on the decision tree
defined by TREPAN is used in the data selection step.
The MLP and FuNN models are used in the data mining
step. In the knowledge presentation step, four
alternatives can be applied. The TREPAN technique can
be used with the FuNN or MLP models, or the FuNN
model can be employed together with the rule extraction
techniques REFuNN and AREFuNN (alone or unified).

6. Conclusions

This paper has presented a thorough investigation of
several feature selection, data mining and knowledge
presentation techniques for the development of hybrid
neural solutions for KDD applications. These solutions
resulted from a detailed experimental investigation of
three neural models (MLP, FuNN and FWD), four
symbolic knowledge extraction techniques (AREFuNN,
REFuNN, TREPAN and FWD) and two feature
selection techniques (FWD and the decision tree
extracted by TREPAN). The experiments were
performed using a large scale credit assessment database
extracted from a real-world operational situation. The
experimental investigation provided a practical
contribution since it has demonstrated that the use of
HNS for accomplishing several steps of a KDD solution
is both feasible and attractive. Therefore, HNS can be
considered an alternative to the traditional neural
models, without performance loss and with the
additional functionality of representing knowledge in a
comprehensible form.

There are many options for further works. Some
examples are the test and validation of the proposed
solutions in other real-world problems, and the
investigation of other neural models, techniques for
feature selection and extraction of symbolic knowledge
from ANNs. An additional important research would be

the investigation of extensions to the FWD model in
order to make it able to solve non-linearly separable
problems, to produce more than one rule per class and to
support more than one membership function per feature.

References
[1] Han, J., and M. Kamber, Data Mining: concepts and
techniques, Morgan Kaufmann, 2001

[2] I.G.L. Silva, B.P. Amorim, P.G. Campos, and L.M. Brasil,
“Integration of Data Mining and Hybrid Expert System”, In
Fifteenth International Florida Artificial Intelligence
Research Society Conference (FLAIRS), Florida, 2002, pp.
267-271

[3] Jang, J.R., C. Sun, and E. Mizutani, Neuro-Fuzzy and soft
computing: a computational approach to learning and
machine intelligence, Prentice Hall, 1997

[4] M.W. Craven, and J.W. Shavlik, “Extracting tree-
structured representations of trained networks”, In: D.S.
Touretzky, M.C. Mozer, and M.E. Hasselmo (eds.): Advances
in Neural Information Processing Systems, MIT Press,
Denver, 1996, pp. 37-45

[5] I.A. Taha, and J. Ghosh, “Symbolic Interpretation of
Artificial Neural Networks”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 11, n. 3, 1999, pp.
448-461

[6] D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
“Learning Representations by Backpropagation Errors”,
Nature, Vol. 323, 1986, pp. 533-536

[7] R. Li, M. Mukaidono, and I.B. Turksen, “A fuzzy neural
network for pattern classification and feature selection”, Fuzzy
Sets and Systems, Vol. 130, 2002, pp. 101-108

[8] N. Kasabov, J.S. Kim, M. Watts, and A. Gray, “FuNN/2 –
A Fuzzy Neural Network Architecture for Adaptative
Learning and Knowledge Acquisition”, Information Sciences -
Applications, Vol. 101, n. 3-4, 1997, pp. 155-175

[9] N. Kasabov, J. Kim, R. Kozma, and, T. Cohen, “Rule
Extraction from Fuzzy Neural Networks FuNN: A Method and
a Real-World Application”, Journal of Advanced
Computational Intelligence, Vol. 5, n. 4, 2001, pp. 193-200

[10] F. Provost, and T. F. Fawcett, “Analysis and visualization
of classifier performance: Comparison under imprecise class
and cost distributions”. In Proceedings of the Third Int. Conf.
on Knowledge Discovery and Data Mining (KDD-97), AAAI
Press. Menlo Park, 1997, n. 3, pp. 43-48

[11] B.P. Amorim, G.C. Vasconcelos, and L.M. Brasil, “A
Comparative Analysis of Techniques for Extraction of Fuzzy
and Boolean Rules from Artificial Neural Networks”, In
International Conference on Fuzzy Systems (AFSS), Hanoi,
Vietnam, 2004

