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Dynamic LVQ Models for Classification of
Spatiotemporal Patterns

Isaque Q. Monteiro, Guilherme A. Barreto, and Patŕıcia V. Nascimento

Abstract—This paper proposes the combination of three
short-term memory (STM) mechanisms with the Learning
Vector Quantization (LVQ) model for classifying spatiotem-
poral patterns. The goal is to investigate the ability of these
dynamic models to acquire neural representations of faces
that are invariant to changes in images caused by the move-
ment of the subjects. The proposed models are evaluated
by their ability to recognize faces in sequences of images,
as well as by their sensitivity to memory parameters and
image noise. A simple theoretical analysis for understand-
ing the discriminative power of the proposed spatiotemporal
classifiers is also provided. Through simulations, it is shown
that the dynamic variants of LVQ perform considerably bet-
ter than the static LVQ model, achieving classification rates
similar to those obtained by a dynamic MLP network.

Index Terms—Learning vector quantization, face recogni-
tion, spatiotemporal classifiers, short-term memory.

I. Introduction

A
long-standing problem in cognitive science has been
the formation of perceptual invariances, such as the re-

markable human ability to recognize objects (e.g. faces)
independently of variations in their spatiotemporal repre-
sentation, and their emergence in learning processes [1].
Despite recent advances in the computational intelligence
field, such an ability is still very difficult to be reproduced
by artificial learning systems, specially in real-time, un-
constrained and unpredictable environments (see [2], [3],
[4] for surveys). This explains in part why automated face
recognition is still an attractive domain of research.

From an engineering-oriented perspective, invariant face
recognition plays an important role in many applications,
such as building access control, suspect identification and
surveillance [5], [6]. All these promising applications have
resulted in a significant increase of research activities in
this area over the past few years. However, few can achieve
a completely reliable performance. The problem arises due
to the difficulty of distinguishing different individuals who
have approximately the same facial configuration and yet
contend with wide variations in the appearance of a par-
ticular face due to changes in pose, lighting, facial makeup,
facial expression and, in a very important degree in real-
world applications, temporal effects [7].

A key hypothesis that has been investigated to design ar-
tificial learning systems capable of building invariant rep-
resentations assumes that when a system is supposed to
recognize input patterns irrespective of certain transforma-
tions such as translation, rotation, and scaling, these trans-
formations are actually learned from natural sequences of
such patterns that are produced from each other by the
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same transformations [8]. Thus, it is important to inves-
tigate the possibility of learning, storing, and classifying
patterns that occur in sequence, because many tasks per-
formed by humans and animals involve decision-making
and behavioral responses to spatiotemporal stimuli.

Artificial Neural Networks (ANN) have been success-
fully applied to several pattern recognition applications
because of their powerful classification abilities and their
inherent abstraction/generalization properties, which re-
sult from learning [9]. Despite the vast majority of ANN
models have been concerned with the learning of static
(memoryless) patterns, there are smaller group of neural
algorithms that are able to deal with spatiotemporal (dy-
namic) patterns. The processing of these patterns differs
fundamentally from that of static ones in that the tempo-
ral order and/or temporal correlation of the patterns being
observed must be taken into account [10].

Some attempts showing how temporal correlations can
lead to invariant recognition of faces or objects by neural
networks are found in [11], [12], [13], [14], [7]. For exam-
ple, in [14], the authors have tested a competitive neural
method in recognizing invariance to pose (angle of rota-
tion related to the front image) and invariance to facial
expression, reporting classification rates ranging from 40%
to 100%. All of these studies, however, have essentially
used the same memory mechanism combined with simple
competitive neural models to capture current and past in-
formation from the input sequence, despite the existence of
many alternatives as reviewed in [10]. Furthermore, none
of them have provided a unifying theoretical framework for
analyzing and designing of spatiotemporal classifiers.

This paper proposes three dynamic LVQ models for clas-
sification of faces appearing in close temporal proximity
and compare their performances. It is intended to investi-
gate the ability of each model to acquiring representations
that are tolerant to changes in the images. The proposed
models are also evaluated by their by their sensitivities
to memory parameters and image noise. In addition, a
first attempt in setting up a theoretical framework for un-
derstanding the discriminative power of the proposed spa-
tiotemporal classifiers is also provided. It is shown that
the dynamic variants of LVQ perform considerably better
than the static LVQ model, achieving classification rates
similar to those obtained by a dynamic MLP network.

The remainder of this paper is organized as follows. The
proposed dynamic LVQ models are described in Section II.
A theoretical analysis of the proposed models under the
framework of statistical pattern recognition is carried out
in Section III. In Section IV simulations with the three dy-
namic LVQ models are presented. The paper is concluded
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in Section V.

II. Dynamic Learning Vector Quantization

The Learning Vector Quantization (LVQ) comprises
an important family of neural classifiers built accord-
ing to competitive learning principles. Each neuron i
in LVQ models is associated with a weight vector wi =
[wi1,wi2, . . . ,win]T ∈ R

n and has a class-label Ci assigned
to it at the beginning of the learning process. Through
a supervised learning process, the output neurons become
tuned after several presentations of the input data vectors
x ∈ R

n and their corresponding classes. The basic learning
algorithm comprises two steps:

(i) The index of the winning neuron, i∗(t), is found by com-
puting the Euclidean distances between the current input
vector and all weight vectors:

i∗(t) = arg min
i
{‖x(t) −wi(t)‖} (1)

(ii) The weight vector of the winning neuron, wi∗(t) is
updated according to one of the following learning rules:

• If x(t) and wi∗(t) belong both to Ci:

wi∗(t + 1) = wi∗(t) + α(t)[x(t) −wi∗(t)] (2)

• If x(t) and wi∗(t) DO NOT belong both to Ci:

wi∗(t + 1) = wi∗(t) − α(t)[x(t) −wi∗(t)] (3)

where t is the discrete time instant. Weight updating is
usually done after the presentation of each input vector
x(t) and the initial values of wi(0) are usually random. For
better convergence of weights, the learning rate should de-

crease with time according to α(t) = α0 (αT /α0)
t/T

, where
α0 and αT are the initial and final values of the learning
rate, respectively. The maximum number of training it-
erations (T ) is the number of training epochs times the
number of training vectors.

Once training is completed, a new incoming vector x(t)
is then associated to the same class to which the nearest
weight vector wi∗(t) belongs. The learning procedure just
described is known as the LVQ1 algorithm. Variants of it,
called LVQ2 and LVQ3, can be found in [15], [16].

A. Short-Term Memory Models

The original LVQ classifiers are based on the matching
of static patterns alone. However, the input patterns may,
in addition to being spatially related, may occur in a se-
quence, as pointed out in the introduction. In this case, the
temporal order in which the patterns are observed plays a
major role and must be taken into account by the neural
model.

In order to represent temporal associations between con-
secutive patterns in a temporal sequence, the network must
be able to retain information about past sequence items.
This type of retention mechanism, usually called short-

term memory (STM), will be considered in this paper to

design LVQ-based spatiotemporal classifiers. STM mech-
anisms can be realized in a number of ways (see [10], [17]
for detailed reviews), but we will focus on just three pos-
sibilities.

Dynamic LVQ: Model 1

In object recognition applications, the conventional solu-
tion for the achievement of invariances in perception, such
as the invariance with respect to movements of an object, is
to provide a simple classifier with a heuristically designed
preprocessing stage that extracts a set of invariant features

from the primary signals [16]. In contemporary pattern
recognition, certain local features, such as pieces of sinu-
soidal waveforms called the wavelets have become popular
as invariant features. Classification, for instance by neural
networks, is then based on these features.

For the purposes of this paper, a preprocessing proce-
dure that captures the dynamic information in the input
sequence can be achieved as follows [18]:

x̄(t) = (1 − λ)x̄(t − 1) + λx(t) (4)

where the vector x(t) is the current sequence pattern, and
0 ≤ λ ≤ 1 is the memory parameter, which determines the
influence of past inputs. We usually set x̄(0) = 0 at the
beginning of each sequence of vectors.

If λ = 1, no past information is available and the system
remains static (memoryless). If λ < 1, the actual input
vector presented to the network x̄(t) mixes information
about the present λx(t) with information from the past
(1−λ)x̄(t− 1). By using this type of STM model, Equa-
tions (1) and (2), which define the search for the winning
neuron and the updating of its weight vector, remain the
same.

Dynamic LVQ: Model 2

The previous STM model is indeed a preprocessing
method, since the network itself remains static. The main
advantage of this STM mechanism is that it can be used
by practically every neural network model to process tem-
poral data.

An appealing alternative to extract information from se-
quence of vectors consists in modifying the neural network
algorithm to directly cope with spatiotemporal informa-
tion. Thus, the following STM mechanism can be equally
used to design spatiotemporal LVQ classifiers [19]:

ai(t) = (1 − λ)ai(t − 1) −
1

2
‖x(t) −wi(t)‖

2 (5)

where ai(t) is called the temporal activation of neuron i,
wi(t) is its weight vector, and x(t) is the current input
vector. As previously, 0 ≤ λ ≤ 1 is the memory parameter.
We assume ai(0) = 0, ∀i, at the beginning of each sequence
of input vectors.

It is worth noting that the winning neuron i∗(t) is now
chosen as follows:

ai∗(t) = max
∀i

{ai(t)} (6)
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or, equivalently:

ai∗(t) > ai(t), ∀i 6= i∗(t) (7)

while, the weight updating equation (2) remains un-
changed.

Dynamic LVQ: Model 3

The DLVQ-2 model modified only the procedure of
search for the winning neuron. In [20], the authors pro-
posed an STM model that captures temporal information
by modifying both Equations (1) and (2). Thus, the win-
ning neuron is now selected as follows:

i∗(t) = arg min
∀i

‖yi(t)‖ (8)

where yi(t) is the difference vector of neuron i, which is
given by:

yi(t) = (1 − λ)yi(t − 1) + λ[x(t) −wi(t)] (9)

where wi(t) is the weight vector of unit i, and 0 ≤ λ ≤ 1 is
the memory parameter, which weighs the influence of past
difference vectors in relation to the current input vector
x(t). Accordingly, the weight vector of the winning neuron
should be updated as a function of yi(t) as follows:

• If x(t) and wi∗(t) belong both to Ci:

wi∗(t + 1) = wi∗(t) + α(t)yi∗ (t) (10)

• If x(t) and wi∗(t) DO NOT belong both to Ci:

wi∗(t + 1) = wi∗(t) − α(t)yi∗ (t) (11)

III. A Simple Theoretical Insight

The goal of this section is to give some insight about
what kind of computation is being performed by the pro-
posed DLVQ classifiers. For that, we will use the frame-
work of statistical pattern recognition. Under this frame-
work, a given feature vector x is said to belong to class Ck,
if the following general condition is observed:

gk(x) > gi(x), ∀i 6= k (12)

where gi(·) is the discriminant function associated to class
Ci [21]. This condition is generally implemented through
Fisher’s criterium for optimal classification:

p(Ck|x) > p(Ci|x), ∀i 6= k (13)

where p(Ci|x) is a posterior density function defining the
probability that, given the feature vector x, it belongs to
class Ci. With the help of Bayes rule, we rewrite (13) as
follows:

p(x|Ck)p(Ck) > p(x|Ci)p(Ci), ∀i 6= k (14)

where p(x|Ci) is the likelihood function of class Ci, which
gives the probability that, given a certain class, it is this
class that better “explain” the vector x. The density func-
tion p(Ck) gives the prior probabilities of selecting class
Ci.

Fig. 1. Sample of the 100 images used in the simulation.

A classifier designed according to (14) is called a Bayes

Optimal Classifier [9]. Assuming equal probability for each
class and Gaussian likelihood functions for all classes, we
get:

p(x|Ci) =
1

(2π)
n

2 |Ci|
1

2

exp

{

−
1

2
(x − µi)

T C−1

i (x − µi)

}

(15)
where µi = E[x|Ci] is the mean vector and Ci = E[(x−
µi)(x−µi)

T ] is the covariance matrix of a given class Ci,
respectively. The factor |Ci| is the determinant of the co-
variance matrix.

Taking the natural logarithm of both sides of (15) and
eliminating terms that are independent of the index i, we
can write the discriminant function of class Ci as:

gi(x) = ln p(x|Ci) = −
1

2
ln(|Ci|)−

1

2
(x−µi)

T C−1

i (x−µi)

(16)
If we further assume a diagonal form for Ci and a common
variance σ2 for all components of x, i.e. Ci = σ2I, the
discriminant function reduces to:

gi(x) = −
1

2σ2
(x − µi)

T (x − µi) = −
1

2σ2
||x − µi||

2 (17)

where || · || is the Euclidean vector norm.
By comparing the discriminant function in (17) with the

second term on the right-hand side of (5), we easily note
that they are the same, except for the standard-deviation
σ, which can be set to 1 without loss of generality. The
first term on the right-hand side of (5) is responsible for the
memory of past activations. Hence, the proposed DLVQ
models, specially DLVQ-2 and DLVQ-3, are building time-

dependent discriminant functions, i.e., discriminant func-
tions which are sensitive to temporal dependencies! Fur-
ther developments should be made to better understand
the computational power of the proposed spatiotemporal
classifiers, but a first insight has been given here.

IV. Simulations

The simulations to be shown in this section aim to eval-
uate the three DLVQ models in the following tasks: (i)
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Fig. 2. Classification performance as a function of the memory
parameter λ.

classification performance, (ii) dependence of the classifi-
cation rate on the memory parameter λ, and (iii) sensitiv-
ity of the models to noise in the input images. Data for
these simulations consisted of 80 images of faces undergo-
ing a change in pose. There were sixteen individuals at
each of five poses, ranging from −30o to +30o, as the sub-
ject change pose from left to right (Figure 1). Image set
was provided by Marian Bartlett [14] with permission of
David Beymer [22]. The faces were automatically located
in the frontal view image by using the feature-based tem-
plate matching algorithm proposed in [22]. The location of
the face in the frontal view image defined a window for the
other images in the sequence. Each input sequence then
consisted of a single stationary window within which the
subject moved the head. The images were normalized for
luminance and scaled to 60× 60 pixels.

Each 60×60 image within a sequence was then converted
to a 3600-dimensional vector by concatenating each column
of the original image one below the other. In order to re-
duce the dimension of the input vectors, they were prepro-
cessed by the well-known Principal Component Analysis

(PCA) method [21]. The dimension of each transformed
input vector was chosen to be 2000, a value that corre-
sponds to approximately 95% of the variance of the data.

For training the DLVQ models, we adopt a procedure
different from that usually employed to train the static
LVQ classifier. For the static case, the winning neuron is
found after the presentation of each image in a sequence,
and its weight vector is immediately updated according to
(2). For the dynamic LVQ models, the winning neuron is
found only at the end of a given sequence of images, i.e.,
only after the presentation of the 5-th image of a sequence.
This is equivalent to say that the weights are updated only
at the end of a sequence.

For comparison purpose, we trained a Multilayer Per-
ceptron (MLP) network using the STM model described
in (4). We refer to the MLP network thus trained as
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Fig. 3. Classification performance as a function of noise variance.

the Dynamic MLP (DMLP) model. The DMLP had 10
neurons in the hidden layer (found by trial-and-error) and
4 neurons in the output layer (simple binary encoding of
the 16 output classes), all of them using logistic activation
functions. The usual backpropagation algorithm with mo-
mentum term was used to adjust the weights of the DMLP
model, only after the presentation of the 5-th image of a
sequence of faces.

Sixteen neurons (one for each individual) were used for
the classification task. The weight vector of a given neuron
is initialized to an image randomly selected from the five
available for the class it represents. The training param-
eters common to all neural models are the following: 200
epochs, α0 = 0.1, αT = 0.0001 and T = 200 ∗ 20 = 4000.
The task of all the DLVQ classifiers is to recognize that a
sequence of face images (feature vectors), corresponding to
sequential views of a person’s face, contains images of the
same person (class), irrespective to changes caused by the
movement of the subjects.

The first set of simulations evaluates the classification
performance of the proposed DLVQ models as a function
of the memory parameter λ. With these tests we want to
confirm that the DLVQ models perform better that the
static LVQ classifier on spatiotemporal data, as well as
to find an optimal value for the memory parameter λ, if
possible, that is common to all DLVQ models. Figure 2
shows the results for λ ranging from 0 to 1.

According to this figure, the DLVQ-2 model performed
better than the other two DLVQ models, i.e., its classi-
fication rate is 100% for a wider range of values of the
memory parameter (λ ∈ [0.05,0.7]). A 100% rate means
that the classifier indicated correctly the class (individual)
that a given sequence of images belongs to. The worst
classifier was the DLVQ-1 model (100% classification rate
only for λ ∈ [0.4,0.5]). We can observe that exactly for
this range all DLVQ models have a 100% classification
rate. The DLVQ-3 model had a 100% classification rate
for λ ∈ [0.1,0.5]).
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λ LVQ DMLP DLVQ-1 DLVQ-2 DLVQ-3

0.05 −− 95% 50% 100% 95%
0.25 −− 100% 90% 100% 100%
0.50 −− 100% 100% 100% 100%
0.65 −− 100% 95% 100% 95%
0.80 −− 100% 90% 90% 90%
1.00 90% 95% 90% 90% 90%

TABLE I

Classification rates for the DLVQ and DMLP models.

From Figure 2 one can also note that the static case,
corresponding to λ = 1 for all DLVQ models, achieved a
90% classification rate. Table I shows numerical values of
the classification rates of the DLVQ and DMLP models for
some values of λ. From this table that the DLVQ mod-
els performed similarly to the powerful DMLP model for
almost the entire range of variation of λ. Furthermore,
it is important to emphasize that the DMLP is compu-
tationally much more expensive than the proposed DLVQ
models. Thus, the DLVQ models are more suitable for
real-time face recognition applications than the DMLP.

The last set of simulations evaluates the robustness of
the DLVQ models with respect to the presence of gaussian
white noise in the input images. Based on Table I we adopt
λ∗ = 0.5 as the optimum value of λ. The classification rates
were computed for the standard deviation (σ) ranging from
0 to 10. For each value of σ, 100 independent classification
tests were performed and the resulting classification rates
were averaged to give the final rate. Figure 3 shows the
results for the three dynamic classifiers. From that we
conclude that the DLVQ-3 model is less sensitive to noise
than the others, since its classification rates remain the
highest for all the range of interest. Again, the DLVQ-
1 model had the worst performance. By combining the
results of Figures (2) and (3), we elect the DLVQ-3 model
as the best one, suggesting its use also for classifying other
spatiotemporal data sets.

V. Conclusion

This paper proposed three dynamic Learning Vector
Quantization (LVQ) models for classifying spatiotemporal
patterns. The goal was to investigate their abilities to ac-
quire neural representations of faces that are invariant to
changes in images caused by the movement of the subjects.

The proposed models were evaluated by their ability to
recognize faces in sequences of images, as well as by their
sensitivity to memory parameters and noise. A first step
into the proposal of a theoretical framework to describing
the discriminative power of the proposed spatiotemporal
classifiers under the framework of statistical pattern recog-
nition was also provided. All the dynamic variants of LVQ
were shown to perform considerably better than the static
LVQ model, achieving classification rates similar to those
obtained by a dynamic MLP network.
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