Is Kohonen under Nyquist rules?
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Abstract—Numerical experiments show that the organiza-
tion of the output layer in Kohonen networks is subjected to
the Nyquist theorem. This result was inferred by observing how
such an organization depends on the sampling rate chosen for
collecting the electrocardiograms used as input signals.
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I. Introduction

The self-organizing map, known as Kohonen neural
network[1], uses an unsupervised learning algorithm in
order to translate the similarities of the input data
into distance relationships among the neurons composing
its output layer. Thus, after appropriately training the
network, two input data with similar statistical features
stimulate either the same neuron or neighboring neurons.

The learning algorithm is given by:

wij(t + 1) = wij(t) + a(t)h(t)[z; (t) — wi;(t)]
it i€ V()
Wi (t =+ 1) = W;j (t) if ¢ ¢ V(’L*)

The integer number j labels the position of a neuron in the
one-dimensional input array. Each neuron in this array is
connected with all neurons of the output layer by synaptic
weights w;;, where ¢j expresses the position in the output
matrix. The value of the input corresponding to the neuron
j is given by z;. Thus, the vector #(t) represents the
complete input at the learning step t. For an input Z,
the output neurons compete among themselves for being
activated. The winner is the one presenting the maximum
value of the dot product Z.w; and it becomes labeled in this
step by i*. Such a winning neuron defines a neighborhood
V(i*) of radius r centered around it. At each step ¢, the
weights of all neurons pertaining to V(i*) are updated
according to the expressions above; the weights of the
neurons outside V' (#*) are not altered. This adaptation rule
modifies the weight vector of ¢* to more closely resemble
the input vector that just stimulated it. And the weight
vectors of the other neurons in V(i*) are modified in order
to be stimulated by similar vectors in the following steps,
leading to the formation of a topographic map of the input
data. The neighborhood function A attains its maximum
value at * and decays along the lateral distance of i*.
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The parameter « is called learning-rate factor and it is
usually taken in the range 0 < a < 1. The values of r and
a decrease as the learning process progresses.

In this paper, some computational properties resulting
from the organization of the neurons in the output layer
is investigated by using sampled electrocardiogram record
(ECG). An ECG shows the electrical activity of the heart,
which normally precedes its mechanical activity[2]. This
signal expresses the temporal variation of the potential
difference between two points on the body surface.

We performed experiments with the Kohonen network
where the inputs ¥ were sampled ECGs. Such a network
have been used for classifying ECGs[3-8]. Here our aim
was to find how the output layer of the trained network
is altered as a function of the ECG sampling rate.
Nyquist theorem[9] states that the sampling rate must
be equal to, or greater than, twice the highest frequency
component of the analog signal in order to such a signal be
accurately reconstructed from the samples taken at equal
time intervals. Is the output layer of the Kohonen network
qualitatively changed around the minimum sampling rate
established by Nyquist?

II. Experiments

We recorded ECGs from four adult individuals (a,
b, ¢, d) at a sampling rate of 500Hz. Four different
conditions were imposed to the subjects: lying down-
breathing normally; lying down-tachypnea; lying down-
breath holding; exercising. The four time series of each
individual were used for training the network during 1000
adaptation steps. At each step, a series was randomly
selected and it was considered the input signal. We chose:
dimension of the input array = 1000; dimensions of the
output matrix = 4 X 4; initial learning-rate factor a(0) =
0.1; initial neighborhood radius r(0) = 4. The begining
of the P-wave was taken as the first point of each array.
At each 100 steps, the learning-rate factor was reduced of
0.01, and at each 250 steps the neighborhood radius was
diminished of 1. The function A linearly decreases with r
and its maximum value holds 1. The connection strengths
were randomly initialized. For each individual, the network
was trained 10 times; and, for each one, a characteristic
pattern in the output layer was formed in the 10 training
processes. This typical pattern was qualitatively always
the same, but it was different from individual to individual.

Then, we took the ECG signals and read them in such
a way that they would correspond to a signal sampled
at rates of 250 Hz (500/2), 167 Hz (500/3), 125 Hz
(500/4) and so on, up to 10 Hz (500/50). We trained the
network 10 times for each one of these “sampling rates”
and noticed that the characteristic patterns (obtained in
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Fig. 1.  Output layers of the individual a for 500 Hz (top) and
38 Hz (bottom). His output layer is not qualitatively changed for
frequencies above 38 Hz (N: lying down-breathing normally; T: lying
down-tachypnea; H: lying down-breath holding; E: exercising).

the rate of 500 Hz) of the four individuals became altered
below the following critical rates: a) 38 Hz (500/13),
b) 45 Hz (500/11), ¢) 36 Hz (500/14), and d) 50 Hz
(500/10). An example is shown in the Fig. 1, where the
output layers of the individual a are presented for the
sampling rates of 500 Hz and 38 Hz (his critical rate).
Notice that by reducing the sampling rate, the correlation
between successive samples of the ECG signal, which are
the components of the input vector, is also reduced. Thus,
the ECG signals tend to become similar to each other.
Consequently, the Kohonen map loses its discriminative
ability, clustering the signals very close to each other, as
can be seen in Fig. 1.

There is a direct relationship between the coefficients
of the Fourier series of a continuous-time signal and the
coefficients of the Fourier series of such a signal sampled in
a given frequency[9]. Thus, from the discrete-time series
(the ECGs sampled at 500 Hz), we can determine the
amplitude corresponding to each frequency appearing in
the time-continuous Fourier series and plot its spectrum.

The spectrum of a signal provides a picture of its
frequency composition. We found that the spectra of all
16 signals present a peak in the range of 1-10 Hz and
decrease with increasing the frequency. Around 50-60 Hz,
all spectra vanish. Fig. 2 presents an example.

We verified that each ECG waveform of each individual
can be reconstructed with a good approximation by taking
into account the frequencies appearing in the spectra up
to the value corresponding to 10% of the peak amplitude
(see Fig. 2). For the four individuals, we determined that
the maximum frequencies with amplitude corresponding
to 10% of the peak amplitude are: a) 20+2 Hz, b) 21+3 Hz,
¢) 19+4 Hz, d) 21+3 Hz. These values indicate the mean
maximum frequency and its standard deviation concerning
the signals recorded in those four different conditions.

Truncation criteria of 1% and 10% lead to reconstructed
signals that are quite alike. Consider the expression d;gy, =
>-i(z; —yi)?, where z; are the points of the original signal
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Fig. 2. Top: the original signal (sampled at 500 Hz) for the individual
a in exercising. Middle: the corresponding spectrum. Bottom: one
period of the original signal and the reconstructed signal by using
the criterion of 10%.

and y; are the points of the reconstructed one by using
the criterion of 10%. Thus, d;qy% measures the “Euclidean
distance” between these two signals. A corresponding
expression can be defined for d;y,. We calculated dyq9 /d; o
for the 16 ECGs and found that the average value of this
quotient holds 0.934+0.04. Therefore, both criteria produce
similar reconstructed signals.

By dividing each critical frequency (where the char-
acteristic patterns in the output layer disappear) by
its respective mean maximum frequency (related to the
criterion of 10%), we obtained: a) 1.94+0.2, b) 2.1£0.3, ¢)
1.9+0.3, d) 2.4 £0.3. Notice that the organization of the
output layer in the Kohonen network is altered when the
sampling rate is approximately two times the maximum
frequency composing the signal. This result is according to
the Nyquist theorem. When a truncation criterion of 1%
is adopted, we found that the results of such divisions are:
a) 1.24+0.2,b) 1.5+0.1,¢) 1.0£0.2,d) 1.3+£0.1. That is,
the frequency related to the modification of the output
layer would be approximately the maximum frequency
presenting in the reconstructed signal.

I1I. Conclusion

The sampling rate determines the number of points
constituting the time series. The higher the value of this
rate, the higher the memory space used for storing the
data. Here we showed that if we intend to employ these
data for training a Kohonen network, then we can choose
the sampling rate between once and twice the value of the
highest frequency component, a result that is supported by
the Nyquist theorem. Higher rates imply higher processing
times for training the network without improving the
quality of the final topographic map.
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