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Abstract –This work presents a state observer based on Artificial
Neural Networks (ANN’s) and a Programmable Architecture to esti-
mate an Induction Machine (IM ) speed . Indirect measurement system
is the observer’s physical accomplishment formed by hardware com-
ponents, voltage/current meters and digital circuit, by the software
and the estimation algorithm. Speed obtained by simulation based
on mathematical models and by estimation algorithm implementation
in PSoC programmable circuit is compared to machine’s speed mea-
sured values by a tachometer.
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I. INTRODUCTION

Electromechanical sensors replacement for indirect mea-
surements systems is an alternative to improve induction mo-
tor performance. In our case, the tachometer is replaced by
a state estimator that computes Induction Machine,IM, rotor
speed through stator voltages and currents. This action can
be characterized as an indirect measurement signal processing
because the desired or estimated measurement is a function of
direct measurements. In general terms, the proposed indirect
measurement system is assembled based on a hardware and
software components set. Set elements are voltage and current
meters and an programmable architecture that is in charge for
managing estimation algorithm trough voltage and current sig-
nal processing. Generally, in this text, observer term is used
more often in design and indirect measurement systems in the
implementation steps of the speed estimation system.

State observer models developed to estimate an induction
machine speed have as input the voltage and current measured
values [1]. Starting from these measured values, non electric
variables such as speed, angular displacement and induction
machine torque are considered. Replacement of traditional

speed measurement mechanisms for electronic devices which
perform indirect measurements, contributes to increase induc-
tion motor´s operational robustness, as to the tachometer con-
cern, and to reduce implementation costs in control project and
in non electric variables supervision.

An indirect measurement system to obtainIM speed values
is implemented on a Programmable System on Chip (PSoC).
A non-conventional observer based on Neural Networks es-
timates speed for a machine’s wide operational range and
its results are compared to measurements which came from
tachometer. Following the guidelines practical implementation
aspects are considered and discussed [2].

Besides general training abilities, by increasing the capac-
ity to prepare the observer when working with adverse opera-
tion situations and faults tolerance, due to the high relationship
degree between the involved variables in estimation process,
specific qualities which justify Neural Networks application in
IM are emphasized. Most of real systems present some non
linearity and those systems linear modelling doesn’t represent
system’s total dynamics, and limitations of linear models also
limit accuracy range of indirect measurements. In this work,
one of the considerations used in the estimation is an unknown
system´s existence which is linear or whose behavior can be
linearized within certain operation area. Artificial Neural Net-
works (ANN’s) have a quite promising use in the identification
of non linear dynamical systems.ANN’scome to be a proper
tool for non-linear systems modelling due to their learning abil-
ity [3], [4] and [5].

II. PLANT AND ARTIFICIAL NEURAL NETWORK
MODELS

Plant and Artificial Neural Network models representIM
and state estimator, respectively. These models main charac-



teristics are discussed in subsections A and B.
A. Induction Machine Model

Plant model inputs are voltage and current in a stationary
dq0reference system and the output is rotor flux. Model equa-
tions in terms of the vectorial quantities are specified in [6]-[9].
Model main equations are written as induced voltages:

~̇λd =
Lr

Lm
(~vs −Rs

~is − σLs
~̇is) (1)
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+ ωrj) ~λa +
Lm

Tr

~is (2)

B. Artificial Neural Networks Model
ANN’sare the indirect measurement system´s software core

and they are trained to obtain the rotor flux estimation. Es-
timated flux error and model flux are used for tuning speed
estimator weights.

Training procedure represents the system´s direct dynamics
is show in Fig. 1. Neural model is coupled in parallel with the
plant and prediction error is used as a signal to tune neural net-
work weights. In this structure, the plant directly supplies its
output values to be used in neural estimator adaptive learning.
If ANN’s are a multilayer perceptron type, prediction error is
the start point to derive the training algorithm[4].

ANN models plant dynamics and its input is a sequence of
delayed time signals. Also, it is possible to use representation
through dynamic neurons, changing the model´s input/output
description into steady state approach[10]. A state observer´s
general view to speed estimation of anIM is shown in Figs. 1
and 2.

Fig. 1. Structure of artificial neural network system for speed estimation

III. NEURAL ESTIMATOR

Amongst neuronal identification forms, direct modeling
was used to represent the neural network structure which es-
timates the rotor speed,ωr. In the Fig. 2, there is the induction

Fig. 2. Model of artificial neural networks estimation

machine block , whose input is represented by rotor voltages
and current. In this block outputλd is obtained by Equation (1)
and representing the desired flux. In neural network block out-
putλa is obtained by Equation (2), representing actual flux. In-
duction machine and neural network blocks are in parallel[5],
.

When actual fluxλa approaches to the desired fluxλd,
neural network starts to supply the signals delayed in time its
proper input. The error between desired and actual (estimated)
fluxes is used by the learning algorithm to adjust one of the
neural network weights, in this case,ωr. When motor para-
meters are known, neural and induction machine models must
coincide. However, any difference between the used speed in
neural model and IM speed can automatically result in error
between the outputs of the two estimators. This error between
desired and actual fluxes is used to brings neural networks´s
model weights up to date, or either rotor speed,ωr, in Equa-
tion (2). This approach is shown in Figure 2, having been the
backpropagation algorithm derived from such a form that the
estimator of Equation (2) follows the next possible the estima-
tor to Equation (1). To obtain the algorithm backpropagation,
the data standards model of the Equation (2) first is derived
using the backward difference method [11] and [4].

The rotor flux (λr) instantaneous variation range inT
relation to the instant in whichT = k, it’s given by

lim∆T→0
∆λr

∆T = lim∆T→0(
~λr(k)−~λr(k−1)

T ) then,

~̇λa(k) =
~λa(k)− ~λa(k − 1)

T
(3)

Applying the recursive method in the right side of the Equa-
tion (3), equaling the Equation (2), it follows,
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then,
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Organizing terms in relation to matricesI, J and variables

~λa and~is,
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Equation (6) can be written in the following form:

~λa = W1X1 + W2X2 + W3X3 (7)

or

~λa =
3∑
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WiXi, (8)

beingW1 = 1 − T
Tr

, X1 = I~λa(k − 1), W2 = ωrT , X2 =

J~λa(k − 1), W3 = Lm

TrT , X3 = I~is(k − 1), I =
[
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0 1

]
,

J =
[

0 −1
1 0

]
andT is the sampling period.

Equation (7) can be represented as a neural model, with two
layers, beingW1, W2 andW3 the weights of the neural net-
work; X1, X2 andX3, inputs and~λa, output, Figure 3, [6].

Fig. 3. Neural network

The output error between desired flux and actual flux, ma-
thematically, is given by:

~ε(k) = ~λd(k)− ~λa(k) (9)

Neural network weightsW1 andW3 are considered cons-
tant, therefore depend on machine parameters andW2 depends
on the machine speed [7].

Synaptic weights (W1, W2, W3) are adjusted to minimize
the energy function, [7]-[10]. Instantaneous value of the error
energy for these neurons is defined as [7],
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or,
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The correction∆W2(k) applied to backpropagation algo-
rithm for synaptic weightW2 is determined, [10]:

∆W2(k) ∝ − ∂E

∂W2
(12)

Through chain rule, gradient∂E
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can be express as, [10]:
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being ∂E
∂W2

, the sensibility factor that determines search direc-
tion in weights space for synaptic weightW2, [10].

Differentiating Equation (10) both sides in relation theε , is

∂E

∂ε
= ~ε (14)

Substituting~λa from EquationX2 = J~λa(k − 1) in Equa-
tion (9) and differentiating this equation’s both sides in relation
to X2, is

∂ε

X2
= −1 (15)

If X2 = J~λa(k − 1), then

X2 = f(~λa) (16)

Differentiating Equation (16) in relation to~λa, there is

∂X2

∂~λa

= f ′(~λa) (17)

Differentiating Equation (7) in relationW2, is produced

∂λa

∂W2
= X2 (18)

Substituting Equations (14), (15) and (17) in Equation (13),

∂E

∂W2
= ε(−1)f ′(~λa)X2 (19)

Correction∆W2(k) applied toW2, defined as delta rule, is
given by:



∆W2(k) = −η
∂E
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, (20)

being η backpropagation algorithm’s learning range and the
negative signal indicating gradient descending in weights space
to find a direction for weight change in order to reduce error
value,ε[10].

Substituting Equation (19) in (20), is

∆W2(k) = −ηε(−1)f ′(~λa)X2, (21)

∆W2(k) = −ηδ(k)X2, (22)

beingδ(k) the local gradient data for
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substituting Equation (28) in (23),

δ(k) = (~λa − ~λd)
′

(29)

Substituting Equation (23) and consideringX2 = J~λa(k −
1) in Equation (22),

∆W2 = −η(~λa(k)− ~λd(k))
′
J~λa(k − 1) (30)

In Figure 4, it is show the new weight,

W2(k) = W2(k − 1) + η∆W2(k), (31)

beingη, the training coefficient andk coefficient is developed
from 1 for each sweeping through input-output set[7].

Fig. 4. Diagram for training of perceptron

The delta rule in Equation (22) is modified in to increase the
learning range without oscillations, including itself, a moment
term, as Equation (32)[10].

∆W2(k) = −ηδ(k)X2 + α∆W2(k − 1) (32)

The coefficientα, moment constant, determines previous
weights modifications effect in actual weight. However, it is
better to use Equation (32) instead of Equation (31).

KnowingW2 = ωrT , thenωr = W2
T , varyingωr,

∆ωr =
∆W2

T
(33)

And, finally, substituting Equation (32) in Equation (33), it
produces the rotor estimate speed which is given by:
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then, the estimate speed is, [7]-[12],

ω̂r(k) = ω̂r(k − 1)− 1
T

ηδ(k)X2 +
1
T
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IV. PROGRAMMABLE ARCHITECTURE

The neural estimator is implemented on a programmable
architecture forIM speed values indirect measurement. This
neural estimator model real time algorithm which is codified
in C language of the specified architecture. Estimated speed
values via neural network are visualized through a LCD.



V. SIMULATION, EXPERIMENTS AND ANALYSIS

A computational simulation was realized by of the toolMat-
lab/Simulinkamong the following estimators of rotor speed:
estimator via flux; estimator viaemf ; estimator via flux using
MRAS; estimator viaemf using MRAS and estimator via
neural networks.

The developed algorithms are based on the equations of the
induction machine in the reference frame. The equations of the
rotor flux are obtained of the measurements of the stator cur-
rents and stator voltage. As result of the analysis, it is verified
that all the techniques in analysis present oscillations in the
beginning of the time in the waveform. The estimate speeds
for the flux andemf present more oscillations until if approx-
imate of the reference value. In the flux usingMRASestimate,
the estimate speed approached faster of the reference value.
The estimateemf using MRASwas distant of the reference
speed (25% below). In the simulation of the estimator neural,
initially were specified several values for the parameters of the
network, only forα = 0.6, η = 0.5, it was obtained the esti-
mate speed converging for the reference value. Mouzinho [13]
comments that the better estimator speedωr it was it estima-
tor of the techniqueMRASwith flux. This estimator converged
more quickly for the reference value, after the estimator neural
with the reference value a little later of the estimator via flux for
MRAS. The techniqueemf for MRASalthough has if stabilized
quickly in a value of speed, distanced of the reference value.
Therefore, it is had the techniques through flux andemf with-
out MRAS, both not guaranteed the convergence of the speed
for the reference value.

The IM speed values obtained by experiments and simu-
lations are analyzed to evaluate the estimation algorithm’s
performance. Speeds come from experimental measurement
(tachometer and PSoC algorithm implementation) and model
simulation. PSoC implementation main practical issues are
described, [2], to establish relationships between proposed in-
direct measurement system’s real time hardware and software.

A. Model Simulations

Implemented algorithm in MATLAB environment. Com-
putational simulation results (voltage, currents and flux in sta-
tionary frame) are presented in Figs. 5, 6 and 7. The Fig. 8
illustrates the rotor speed obtained via neural estimator.

B. Experimental Systems

Programmable System on Chip (PSoC) is used in this de-
sign for neural estimator implementation, considering PSoC
available memory. Simulation and experimental data are ob-
tained by Equacional catalogues and data plate. Besides algo-
rithm development coded in C language dialect of PSoC.

IM main feature is presented in the subsection and in the
programmable architecture.Induction Motor : 3 phases, vol-
tage: 380 V in Y, frequency: 1700 rpm, hp: 2.25 kW and
power factor: 0.82.Parameters: Ls=134.5 mH,Lr=76.55
mH, Rr=1.55Ω andRs=2.1Ω.

Fig. 5. Voltage in stationary frame obtained from simulation

Fig. 6. Currents in stationary frame obtained from simulation

The programmable architecture technology used was deve-
loped by PSoC. It’s serial specification is CY8C27443. A de-
dicate software, PSoC Designer version 4.0, is used to perform
the block connection in the PSoC. The module used to supply
the values of output of the estimated speed is the LCD and the
port 0 of the chip is connected to an external display.Pro-
grammable architecture:M8C Processor Speeds: 24 MHz,
Operating voltage: 4.95 V, flash memory used: 8 kB and mod-
ule: LCD.
C. Analysis

In the regime the estimator neural has good operation, how-
ever, it was not possible analyzing the acting in the transitory.
The estimation steady state good performance em regime can
be checked out from the tachometer measurements. In this
case, the tachometer measurements is 1790.00 rpm no load,



Fig. 7. Flux in stationary frame obtained from simulation

Fig. 8. Rotor speed via neural estimator

model simulation is 1798.80 rpm and display connect the PSoC
is 1791.94 rpm.

VI. CONCLUSION

An indirect measurement architecture forIM speed estima-
tion has been presented in this paper. This system is based
on neural estimator implemented on programmable system on-
chip (PSoC), using code C, which executes speed estimator al-
gorithm, considering a 1.0s time interval for neural estimator.

The results from experiments and simulations indubitably
proved the proposed estimator good performance in regime.

This efficiency was verified by analysis, considering the fol-
lowing focus: estimator precision when it’s compared to con-
ventional speed measurements (tachometer). Speed measure-
ments values from the PSoC and tachometer have shown a
smaller than 2% discrepancy.
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