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A Method for Reducing the Computational
Complexity of the Encoding Phase of Voice

Waveform Vector Quantization
E. N. Arcoverde Neto, A. L. O. Cavalcanti Jr., W. T. A. Lopes, M. S. Alencar and F. Madeiro

Abstract—A method for codebook design with the pur-
pose of reducing the computational complexity of the en-
coding phase of vector quantization (VQ) has been proposed
in a recent work. The method consists of an efficient use of
a symmetry observed in certain signals. This paper shows
that an additional reduction of the computational complex-
ity is obtained when the partial distance search algorithm
is incorporated to the previously proposed method for the
VQ encoding phase.

Index Terms—Speech coding, vector quantization, com-
putational complexity.

I. Introduction

VECTOR quantization [1,2] may be defined as a map-
ping Q of an input vector x belonging to the K-

dimensional Euclidean space, R
K , to a vector belonging

to a finite subset W of R
K , that is,

Q : R
K → W. (1)

The codebook W = {wi; i = 1, 2, . . . , N} is the set of
reconstruction vectors (codevectors), K is the dimension
of the vector quantizer and N is the codebook size, that is,
the number of codevectors (or number of levels, in analogy
with scalar quantization).

In a signal compression system based on vector quan-
tization (VQ), a vector quantizer may be seen as a com-
bination of two functions: a source encoder and a source
decoder. Given a vector x ∈ R

K from the source to be
encoded, the encoder calculates the distortion d(x, wi) be-
tween the input vector (vector to be quantized) and each
vector wi, i = 1, 2, . . . , N of the codebook W . The op-
timum rule for encoding is the nearest neighbor rule [3]:
a binary representation of the index I , denoted by bI , is
transmitted to the source decoder if the codevector wI

corresponds to the minimum distortion, that is, if wI

is the codevector that presents the greatest similarity to
x among all the codevectors in the codebook. In other
words, the encoder uses the encoding rule C(x) = bI if
d(x, wI ) < d(x, wi), ∀i 6= I . When the decoder (which has
a copy of the codebook W ) receives the binary representa-
tion bI = (b1(I), b2(I), ..., bm(I)) of the index I , it simply
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searches for the I-th codevector and produces the vector
wI as the reproduction (quantized version) of x. In other
words, it uses the following decoding rule: D(bI ) = wI .

The code rate of a vector quantizer, which measures the
number of bits by vector component, is given by R = m

K
=

1

K
log2 N . In voice waveform coding (e. g. [4, 5]), R is

expressed in bits/sample. In image coding (e.g. [6, 7]), R
is expressed in bits per pixel (bpp).

In [8] a methodology for codebook design with the pur-
pose of reducing the computational complexity of the en-
coding phase of VQ has been presented. The methodology
consists of introducing a structured organization in the de-
signed codebooks, with the objective of reducing the num-
ber of multiplications, additions, subtractions and com-
parisons performed in the minimum distortion encoding
phase (nearest neighbor search). In [8] the authors have
presented an efficient encoding method, which exploits the
structured organization of the designed codebooks. In the
present paper that methodology is combined with the par-
tial distance search (PDS) algorithm [9] to obtain an ad-
ditional reduction of the computational complexity.

The remaining of the paper is organized as follows. Sec-
tion II presents a brief description of the computational
complexity of VQ and describes the PDS algorithm. In
order to maintain the paper self-contained, Section III
describes the methodology of codebook design proposed
in [8]. In Section IV, the method proposed in [8] for reduc-
ing the number of operations performed in the encoding
phase of VQ is described. Section V presents the method
proposed in the present paper for reducing the computa-
tional complexity of the encoding phase of VQ. Results and
concluding remarks are presented in Sections VI and VII,
respectively.

II. Computational Complexity of Vector
Quantization

The computational complexity of the encoding phase is
a relevant problem for vector quantization. To encode an
input vector, the encoder must determine its distance to
each one of the N codevectors and must compare the dis-
tances in order to find the codevector closest to the input
vector, that is, the nearest neighbor.

In the conventional full search (FS) method, the encod-
ing of an input vector requires N distance (distortion) com-
putations and N−1 comparisons. When using the squared
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Euclidean distortion, that is,

d(x, wi) =

K∑

j=1

(xj − wij)
2, (2)

where wij is the j-th component of the codevector wi and
xj is the j-th component of the input vector x, each dis-
tance computation requires K multiplications, K subtrac-
tions and K−1 additions. Thus, to encode each input vec-
tor, KN multiplications, KN subtractions, (K−1)N addi-
tions and N−1 comparisons must be computed. The com-
plexity of a vector quantizer may be alternatively expressed
in terms of N multiplications, N subtractions, (1 − 1

K
)N

additions and (N − 1)/K comparisons per sample.
Hence, the computational complexity of a vector quan-

tizer of dimension K and rate R requires a number of oper-
ations per sample of the order of N = 2KR for each input
vector if a full search (exhaustive search) is performed in
the codebook.

A. PDS Algorithm

The partial distance search (PDS) algorithm, proposed
by Bei and Gray in [9], is a method for reducing the com-
putational complexity of the nearest neighbor search (en-
coding phase). The PDS algorithm allows early termina-
tion of the distortion calculation between an input vector
(vector to be encoded) and a codevector by introducing a
condition for premature exit in the search process.

Assume that the smallest distortion is dmin =
min{d(x, wi)|wi has been inspected}. If the uninspected

codevector wi′ satisfies the condition
q∑

j=1

(xj−wi′j) ≥ dmin,

which guarantees that d(x, wi′) ≥ dmin, the codevector wi′

is rejected without computing the distance d(x, wi′), where
1 ≤ q < K.

In other words, the encoder decides that a codevector is
not the nearest neighbor if, for some q < K, the accumu-
lated distance (that is, the partial distance) for the first
q components (samples) of the input vector is larger than
the smallest distance previously computed in the search.
Then, the encoder stops the distance computation for that
codevector and starts the distance computation for the
next codevector. With this approach, the number of mul-
tiplications per sample is dramatically reduced. The PDS
algorithm also leads to a reduction in the number of sub-
tractions/additions per sample. Although PDS increases
the number of comparisons, the global complexity of the
nearest neighbor search is reduced.

III. The Codebook Design

Speech signals present an interesting symmetry: a type
of correspondence between the speech vectors, in the sense
that for a speech vector x there exists a corresponding
vector, which, approximately, equals the symmetric −x.
In speech signals the symmetry is also observed as follows:
approximately half the vectors have a positive mean1 and

1 Throughout the text, the mean of a vector must be understood
as the arithmetic mean of its components.

TABLE I

Codebook with eight codevectors wi = [wi1 wi2]T , with

1 ≤ i ≤ 8. The binary word of the i-th codevector, wi, is

denoted by bi, while wij denotes the j-th component of

codevector wi.

i wi1 wi2 bi

1 0.0973 0.0974 000
2 0.5884 0.5905 001
3 0.0151 0.0152 010
4 0.2329 0.2315 011
5 -0.2329 -0.2315 100
6 -0.0151 -0.0152 101
7 -0.5884 -0.5905 110
8 -0.0973 -0.0974 111

approximately half the vectors have a negative mean.
The methodology proposed in [8] for codebook design is

an attempt to design a codebook which incorporates in its
structure the symmetry of the speech signals. The set S
of the K-dimensional training vectors is divided into two
subsets, SPOS and SNEG, where SPOS is formed by the
training vectors that have a positive mean and SNEG is
formed by the training vectors that have a negative mean.

The subset SPOS is used for obtaining the first N/2 code-
vectors, by using a codebook design algorithm, such as the
LBG (Linde-Buzo-Gray) algorithm [3], unsupervised learn-
ing algorithms [10–12] and fuzzy algorithms [13].

The first N/2 codevectors, that is, the codevectors wi,
1 ≤ i ≤ N/2, have components whose mean value is
positive. Those vectors will be denoted by wi,POS, with
1 ≤ i ≤ N/2, where the subscript POS stands for the
positive mean.

The remaining N/2 codevectors of the codebook are ob-
tained as follows. For each codevector wi,POS, a corre-
sponding codevector wN+1−i,NEG is obtained, such that

wN+1−i,NEG = −wi,POS, 1 ≤ i ≤ N/2. (3)

Thus, the last N/2 codevectors of the codebook have
components whose mean is negative. Those vectors will
be denoted by wi,NEG, with N/2 + 1 ≤ i ≤ N , where the
subscript NEG stands for the negative mean.

Hence, according to Equation (3), the codebooks ob-
tained with the previously described methodology present
a remarkable symmetry: a codevector wi, 1 ≤ i ≤ N/2 has
a corresponding codevector wN+1−i such that wN+1−i =
−wi.

Table I presents a codebook of eight codevectors ob-
tained with the methodology described in [8]. The first
N/2 codevectors were obtained by using as training set
the vectors belonging to SPOS. It is observed that the
codevectors incorporate the symmetry of the speech sig-
nals: half the codevectors have a positive mean and half
the vectors have a negative mean; each codevector has its
corresponding symmetric codevector.

Due to the symmetry introduced in the codebook, only
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half the codevectors must be stored. In fact, by storing
only the codevectors wi,POS, the codevectors wi,NEG can
be easily determined. This leads to half the conventional
memory requirements to store a codebook. The symme-
try of the codebook has also led to a method for reducing
the computational complexity of the encoding phase (near-
est neighbor search) of VQ. In that method, only half the
codebook, corresponding to the codevectors wi,POS, is ef-
fectively stored in the reference memory of the encoder.
The decoder, by its turn, has all (N) codevectors of the
codebook.

IV. Method For Reducing The Computational
Complexity of VQ

The encoding method proposed in [8] for reducing the
number of operations performed to encode an input vector
(vector of the source to be encoded) x is described as fol-
lows: given x, if mean(x) ≥ 0 then2 the encoder performs
a search for the nearest neighbor of x only in the codevec-
tors wi,POS, that is, in the codevectors effectively stored in
the reference memory of the encoder. Then, the encoder
sends to the decoder a binary word beginning with 0 (indi-
cating to the decoder that the codevector to be produced
as the representation of x is a wi,POS vector), followed by
log2(N/2) bits needed to represent the index i of the vector
wi,POS selected from the reference memory. On the other
hand, if mean(x) < 0, the search for the nearest neigh-
bor should be performed among the vectors wi,NEG. Since
those vectors are not stored in the reference memory of
the encoder, the encoding consists of comparing the vector
−x (symmetric vector of x) with the codevectors wi,POS.
Once the closest one to −x is determined, the encoder
sends to the decoder a binary word beginning with 1 (indi-
cating to the decoder that the codevector to be produced
as the representation of x is a wi,NEG vector), followed by
a sequence of log2(N/2) bits: each bit of this sequence is
the complement of the corresponding bit of the sequence of
log2(N/2) bits needed to represent the index i of the vec-
tor wi,POS selected as the closest one to −x according to
the minimum distortion criterion. It is important to note
that, due to the symmetry introduced in the codebook, if
x has wN+1−i,NEG as the nearest neighbor, then −x has
wi,POS = −wN+1−i,NEG as the nearest neighbor.

To illustrate the encoding method, consider the code-
book of Table I (available to the decoder). The reference
memory of the encoder, by its turn, concerns Table II,
corresponding to the first N/2 codevectors (wi,POS vec-
tors) in Table I. Suppose that the communication system
receives x = [0.0121 0.0109]T as the input vector. Af-
ter evaluating the mean3 of the components of the input
vector, the encoder decides that the codevector to be se-
lected as the representation (quantized version) of x is a

2 For a vector x = [x1x2 · · · xK ]T , where T is the transposition

operation, mean(x) = 1

K

PK
j=1

xj .
3 If the sum of all components of a vector is positive then the

arithmetic mean of the components is also positive. So, instead of
determining the mean value of the vector components, the encoding
method computes only the sum of the vector components. This leads
to saving one division for each input vector.

wi,POS vector. It is determined that the first bit of the
binary word to be transmitted to the decoder is 0. The
nearest neighbor search is then performed in the codebook
effectively stored (Table II) in the reference memory of
the encoder. Following the minimum distortion criterion,
vector [0.0151 0.0152]T , with binary representation 10, is
selected. Hence, the encoder transmits to the decoder the
binary word 010, where the first bit informs that the quan-
tized version of x is a wi,POS vector (that is, one of the
first N/2 vectors of the codebook of N vectors in the de-
coder) and the last two bits are the binary representation
of the index of the vector selected (from the table of the
encoder) as the closest one (nearest neighbor) to x. On
the other side of the communication system based on VQ,
when the decoder (which has the codebook of Table I) re-
ceives the binary word 010, it simply outputs the vector
[0.0151 0.0152]T .

Now suppose that the communication system receives
x = [−0.5765 − 0.4902]T as the input vector. After eval-
uating the mean of the input vector, the encoder decides
that the quantized version of x is a wi,NEG vector. It
is determined that the first bit of the binary word to be
transmitted to the decoder is 1. The search for the nearest
neighbor of −x is then performed in the N/2 codevec-
tors available (Table II) to the encoder: the codevector
[0.5884 0.5905]T is selected since it is the closest one to
[0.5765 0.4902]T = −x. Thus, the encoder sends to the
decoder the binary word 110, where the first bit informs
that the codevector selected as the quantized version of the
input vector (source vector) x is a wi,NEG vector and the
last two bits correspond to the complement of the binary
word 01 of the vector [0.5884 0.5905]T in the codebook ef-
fectively available to the encoder. In the other side of the
communication system, when the decoder receives the bi-
nary word 110, it outputs the vector [−0.5884 −0.5905]T .

TABLE II

Two-dimensional codevectors effectively stored in the

reference memory of the encoder.

i wi1 wi2 Binary representation

1 0.0973 0.0974 00
2 0.5884 0.5905 01
3 0.0151 0.0152 10
4 0.2329 0.2315 11

The encoding method proposed in [8] will be referred
to as 1/2COD, since the encoder uses only half the code-
book. Table III presents a summary of the total number of
operations performed by the conventional full search (FS)
method (carried out in a codebook with N codevectors)
and 1/2COD.

V. Algorithm 1/2COD+PDS

This work presents the method 1/2COD+PDS, which is
an attempt to reduce the computational complexity of the
encoding phase of VQ. The method consists of combining
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TABLE III

Number of operations performed by FS and 1/2COD to

encode a vector, as a function of K and N [8].

Number of operations
FS 1/2COD

× KN KN/2
- KN KN/2
+ (K − 1)N (K − 1)(1 + N/2)

Comp. N − 1 N/2

the encoding systematic proposed in [8] and described in
Section 4 with the PDS algorithm. In other words, the
method 1/2COD+PDS uses the PDS algorithm for deter-
mining the nearest neighbor of the input vector (if this vec-
tor has a positive mean) or of its symmetric vector (if the
input vector has a negative mean) in the codebook avail-
able to the encoder (this codebook has only half the code-
vectors of the codebook available to the decoder, which
has been designed as described in Section 3). Hence, the
method outperforms 1/2COD in terms of reduction of the
number of operations of the encoding phase of VQ.

VI. Results

This section presents results concerning voice wave-
form vector quantization. The acquisition (resolution of
8.0 bit/sample and sampling rate of 8 kHz) of the speech
signals was performed by using a Sun workstation with
audio processing tools.

All codebooks were designed using a training set of
150,080 samples, corresponding to 18.76 seconds. The
codebooks were designed by using competitive learning for
various values of dimension (K) and number of levels (N).

Table IV shows that the 1/2COD algorithm presents
savings of 50% in terms of the number of multiplications
when compared to FS. For different values of K and N
corresponding to a code rate of 1.0 bit/sample, this table
also shows that the PDS algorithm outperforms 1/2COD
in terms of number of multiplications per sample. It is
also observed in the table that the best performance is ob-
tained by using 1/2COD+PDS. As an example, for K = 8
and N = 256 it is observed that 1/2COD+PDS achieves
savings of 88.11% when compared to FS algorithm. In
this case, PDS and 1/2COD saves 77.29% and 50.00%, re-
spectively, in terms of the number of multiplications per
sample. The table shows that the introduction of the PDS
algorithm in the 1/2COD methodology leads to an addi-
tional savings in the number of multiplications. In fact,
for K = 6 and N = 64, 1/2COD+PDS leads to savings of
81.34% while 1/2COD leads to 50.00% when compared to
FS. The table also shows that the larger the codebook size
(N) the greater is the superiority of 1/2COD+PDS over
1/2COD.

Table 5, which considers K = 2 and various val-
ues of N , reveals that the best performance in terms of
the number of multiplications per sample is obtained by

1/2COD+PDS. The table also shows that the 1/2COD
performance is better than the PDS performance in terms
of the number of multiplications. Moreover, the superi-
ority of 1/2COD+PDS over 1/2COD increases with the
codebook size (N).

Table 6, which considers K = 4 and various values
of N , shows that the best results in terms of savings in
the number of multiplications per sample are obtained by
1/2COD+PDS. It is observed in Table 6 that PDS outper-
forms 1/2COD regarding savings in the number of multi-
plications per sample.

It is worth mentioning that, according to [9], the num-
ber of multiplications is generally used as the evaluation
criterion of the computational complexity of the VQ encod-
ing phase. This comes from the fact that the multiplica-
tion operation requires a larger computational effort when
compared to the addition, subtraction or comparison.

VII. Concluding Remarks

This work presented a method for reducing the compu-
tational complexity of the encoding phase of vector quan-
tization (VQ). The proposed method combines two tech-
niques. The first one exploits a symmetry imposed in the
voice waveform VQ codebook. By using this symmetry,
the nearest neighbor search is performed by comparing
the input vectors with only half the codevectors. The sec-
ond technique corresponds to the partial distance search
method. Simulations concerning voice waveform coding
have shown that the combination of those techniques is a
suitable method for reducing the computational complex-
ity of the encoding phase of VQ.

As a future work, the authors will investigate the com-
bination of the proposed method with techniques for code-
book ordering with the purpose of obtaining an additional
reduction in the computational complexity of the minimum
distortion encoding of vector quantization.
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