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Abstract — This paper proposes a simulation environment for stock etarkalysis that uses intelligent agents. The behavior
of the environment is defined by the ideal gas theory and th& iislto analyze the fluctuation of the stock markets and hkso t
distribution of the gains and losses of the agents. The mewewof the market can be estimated by a measure called itglatil
which is defined by the difference between two stock pricelstinct periods. It characterizes the sensibility of akeachange

in the world economy. Thus, the contributions of this paper &) it is proposed a simulation framework of the stock nedrk
dynamics based on intelligent agents; ii) the volatilityndynics of the financial world indexes is analyzed; iii) a tielaship
between the volatility of the markets, the distribution afrts and losses of the agents and the coefficient of the erfiahfeinc-

tion based on the ideal gas theory of Maxwell-Boltzmann &ppsed. In the experimental study, fifteen world marketxede
were chosen to guide the simulation of the stock prices.

Keywords —Volatility Analysis, agents, Maxwell-Boltzmann theorycaprobability density function.

1. INTRODUCTION

The classical branch of science that aims to study and amahe time series is Statistics. In this field, Box & Jenkins
(ARIMA models) [1] is one of the most popular statistical hatques used to describe the behavior of time series. These
statistical models aim to capture temporal patterns froenséiries under observation. When the objective is to urateighe
stock markets economic phenomenons, generally the sigts@halyze the patterns contained in the return serigs.analysis
is important because quantifies loss or gain of a investmgith® market movement. In other words, a significant market
movement can lead to considerable difference between ibe piagnitude of a share in a short time. This market movement
called the volatility. Generally, a higher stock price fluation leads a higher volatility.

The volatility [2] can be defined as a statistical measuredhantifies the variation of returns of a share price or a fir@dn
index over time. There are several forms of estimate itsevfu3]: mean of differences, variance or standard devidietween
returns, historical volatility, implied volatility or mer sophisticated models, such as exponentially weightedngaverage
(EWMA) used by RiskMetrics and GARCH process [1].

However, these analysis are not restricted to economidtstatisticians. As the stock market is a complex system pcien
scientists, mathematicians, engineers and physicistapiying new approaches based on statistical physicsinaamldyna-
mics, statistical finance and stochastic processes to amtig market behavior in order to obtain new insights oranaions
about about its dynamics. Econophysics is the name thigdistaplinary research field that, through these new motiglto
understand the stock markets dynamics.

In Econophysics, traditionally, the probability densityn€tion (pdf) of the return series is used to analyze thekstoarket
dynamics. The pdf is applied to determine the relationskeipvben high volatilities and low volatilities. This andkysan be
used to understand the markets behavior and to provide r&ghis about the economic fluctuations, high valorizatiod a
crashes in the value of stock markets, as well as, tempooaltisn of money [2,4-6].

The pdf of returns has been widely studied and many appredohés analysis were developed. Mandelbrot [7], Fama [8]
and Stanley [9] showed that distributions of returns can thedfiby a symmetric Lvy stable law. Other analysis showetl tha
the pdf of the returns presents a Lvy distribution in the @mtart and exhibits a Gaussian behavior in the remainimts pa
following the central limit theorem [9]. Corat al.[10] proposed the fitting with exponentially truncated satistributions and
Longin [11] studied empirically the extreme events in ratuwith a Frchet distribution. Laherrere and Sornette [TRlisted
the distributions of stock returns by the Stretched-Exptiaé(SE) law. In last years, Queiras al. [13] proposed the use of
g-Gaussian distribution to fit financial data. Podobetilal.[14, 15] analyzed the prices of stocks that comprise the aasahd
New York Stock Exchange. In these works, the pdf of aggrebairns are fitted by a double exponential in the centrabreg

Matia et al. [3] suggested that “hot” markets and “cold” markets havded#nt behaviors. The volatility pdf for Indian
stocks (“hot” market) is well fitted by an exponential law, the other hand, American stocks (“cold” market) is fitted by a
power law for the tail distribution. Thus, their work indtea that developing markets and developed markets can e it
different approaches. Although, in a recent paper, Matte® Bt al. [16] analyzed seventeen world indexes and found that the
exponential fitting adhered to data better than the classaoach of Econophysics, the power laws. The power la/staown
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in Equation 1, where andk are respectively constant of proportionality and expon€he power laws are quite widespread in
the Econophysics literature [4, 6] and are often used irouagranalysis, including scaling properties, relation leemvlarge and
small volatilities and observation of extreme events.

y = az" 1)

The Equation 2 shows the exponential function,
P(z) = a.el~ B (2)

where the coefficients and B are constants: is the initial amplitude £ = 0) and B is a decay rate.

The objective of this paper is to create an environment obtiatjon of stock markets based on intelligent agents. The
dynamics to the agents follows the movement of an ideal gaghich, the interaction between the particles (agentg)ekists,
is weak. Evidences that the market could be modeled by thusaph was showed by Mattos Netbal.[16,17]. They used a
small time window (two years) [16] and artificial time serlemsed on the Random Walk model [17]. In this paper, fifteeh rea
world indices with a time window of5 years are analyzed.

From these analysis, it is possible to verify if the analoggnan ideal gas can be used to describe the dynamics of tHeemar
in large time windows. Through this result, the idea is tatelthe different types of markets based on the gains anddasds
their agents. To achieve that aim, a relationship amongetm@érature of the markets, volatility and the gains anceloss the
agents is established.

This paper is organized as follows. The Section 2 explaiesbidise for the simulation, ideal gas theory, to analyze the
stock markets and describes the environment simulatedyti@mics of intelligent agents and the methodology of tleppsed
analysis. In Section 3 evidences and an analogy betweerytiardcs of particle movements of an ideal gas, describetiby t
Maxwell-Boltzmann Distribution, and the dynamics of stonkrkets and agents is presented in Section 3. And in Secti®n 4
discussed the final remarks.

2. METHODOLOGY

A stock market is a public entity for the trading of compangcét (shares) and derivatives at an agreed price; these are
securities listed on a stock exchange as well as those adedrprivately. The market can be seen as a network of economi
transactions, not a physical facility. In recent yearsptlost of operations in market are realized on line by intetigagents [18].

The approaches based on agents to financial analysis has grimaan important research field for developing and unders-
tanding the complex patterns and phenomenas that are elsereconomic systems. The agent-based computationabecon
mics [18—20] and the micro-simulation approaches have pegwosed, emphasizing the need to represent traders ailirals
and to study the way macro features emerge from individualactions. In this new interpretation the concept of canpl
systems can be used.

A complex system is any process composed for many elemedtshah has many relations among them, so the global
behavior depends on each component and its behavior deperitle behavior of others components of the system. The stock
market is an example of a complex system [2]. However, sitawdl variables of market stock is very complicated andlgpst
then a simple simulation was developed to analyze the cteaistics of market. In [16] an analogy using a particle eys{ideal
gas) was used to explain the macro behavior of stock marRétss, this analogy could be used to describe the dynamics of
differents markets of world with its shares and agents.

The simulated stock market is based in ideal gas theory f@ijdeal gas is a theoretical gas composed of a set of pagticle
that move randomly. These particles weakly interacting rrgrtbhem, or not interacting among them. The ideal gas corisept
useful because it obeys the ideal gas law, a simplified emuafistate, and is amenable to analysis under statisticahamécs.

In economic theory, there are two basic ideas about the dignainstock markets. The first is the random walk hypothesis,
this financial theory affirms that the market evolves aceaydo a random walk model. Thus, the behavior of market cannot
be predicted [22, 23]. The second theory, called of nonwandialk hypotheses, affirms that the stock market is prelliet®
some degree [24, 25].

Assuming that the stock markets are formed by particlesnfajeon these particles are not interacting with each other
(random walk hypothesis) or are interacting weakly (namdam walk hypothesis). Therefore for both cases, the madwbe
seen as an ideal gas [16]. From this analogy, the financiaégalf the stocks can be viewed like energy of the particles.

Following this hypothesis was generated a simulated engiemt, where the agents do not interact with the others,\itlty
the market as can be seen in Figure 1. The negotiations &oflbuy and sell) are done only between the agents and theetmark
there is not interaction among the agents. The actions aidinhagents do not influence the actions of others finangahts,
neither the fluctuation of stock prices. The idea is to gareamanarket, where the interactions are realized only betwaeh
financial agent and the market, or stocks.

The two environment are initialized: agents and stockshBgent has a name, an initial capital, one stock in its pegses
and one stock that it desire to buy (target stock). The chariatics of financial agents are generated randomly: thialinapital
is generated by a gaussian distributioni(:ial capital =~ N (10000, 100)) and stock in possession and target stock are chosen
randomly. The stocks follows the fluctuation of a real indexrket. Each stock initiates the simulation with a name niisail
price and a standard deviation. The name serves only toifigeaich stock and it is generated sequentially and theairgtice
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Figura 1: Simulation of market.

is always a positive number generated randomly from indesketdy a gaussian distributiopiice ~ N (index, 10)). In each
iteration, that corresponds to one day, the financial agantsand sell financial securities randomly with probabitfy90%,
however only one operation is allowed for iteration (or pay)d After of all negotiations the prices of stocks are upddiased
in index record of actual iteration.

The world indexes chosen are daily records in the period teffif years1995 — 2010), accounting for approximateBi700
days. The series were: United States of America (Dow Jonasd&y and S&R0), England (FTSEO00), Japan (NikkeR25),
Germany (Dax30), French (CAC40), Spain (Ibex35), Singapure (STI), Mexico (IPC), Hong Kong (Hang Seng), &¥ala
(KLSE), Brazil (Ibovespa), Austrian (ATX) and Switzerlaf@MlI).

In the literature of Econophysics, there are several aghemto analyze the pdf of return series [12,13, 26], howsweare
normally used, exponential functions and power laws. Tka id to generate an artificial environment based in reakesland
analyze the characteristics of market in a large time windasweloped markets normally are characterized by loweatilties
and developing markets are characterized by high vola#ilit

Below are describes the variables of the simulation:

e Number of agents- 500;

e Number of stocks= 5000;

e lterations> 3700;

e Probability of buy= 0.9;

e Probability of sell= 0.9.

For each index was design the following steps:

1. The return series is defined for each series as
log Z(t + At) — log Z(t
g(t):( g Z( 5) g ()), 3)

whereAt = 1 day, Z(t) is the series value at timg and is the standard deviation ¢fog S(t + At) — log S(t)). This
formula [3] describes how the return series are constrifoted index series;

2. For each index, the volatility [27] described in Table Iswalculated as

1 t+n—1

Vit)=— > o), @)

t'=t
with n = N, whereN is the total number of time series observations;
3. The probability density function of the return seriesstraated;

4. The comparison between the power law adjust and the ergiahinctions adjust is done based on Trust Region algo-
rithm [28]. Mean of Squared Errors (MSE) is used to evaluiagerésults.

The data (pdf of the volatility of the series) was used andfittiag procedure was done based on Trust Region (TR) al-
gorithm [28]. The TR algorithm, also known as restrictecpsteethod, searches for the region which solves the miniimizat
problem in question. For this it uses a model function (oftequadratic one). When the TR algorithm finds a model accgrdin
to the objective function, the region is expanded, tryindind new promising regions to solve the problem, converstthe
adjustment is poor, the region is contracted, and the algorsearches for other regions that can solve the problem Tt
Region provide numerical solutions, using a linear searethod to the problem of function minimization.
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Tabela 1: Fitting errors (MSE) using power law and exporafitinctions

RwW Volatilities Trust Region Exponential | Pearson
Model of series | Power law | Exponential | Coeff. (B) | Coefficient
Nikkei 1.030 0.00018 0.00024 0.981 1.3341
CAC 40 1.009 0.00021 0.00009 1.020 1.3905
Ibex 35 1.005 0.00020 0.00006 1.016 1.3446
DAX 30 0.993 0.00020 0.00008 1.003 1.3207
IPC 0.988 0.00035 0.00011 1.036 1.3241
Nasdaq 0.974 0.00021 0.00006 1.024 1.3469
SMI 0.971 0.00021 0.00005 1.049 1.2876
FTSE100 0.963 0.00021 0.00014 1.056 1.3432
Ibovespa 0.963 0.00020 0.00012 1.075 1.3022
DJIA 0.937 0.00014 0.00036 1.077 1.3173
STI 0.933 0.00020 0.00006 1.087 1.2495
S&P 500 0.919 0.00026 0.00009 1.098 1.237
Hang Seng|  0.903 0.00020 0.00010 1.089 1.2654
ATX 0.899 0.00018 0.00010 1.151 1.2836
KLSE 0.706 0.00021 0.00012 1.480 1.0009

3. ANALYSIS

As a first step, the exponential function and the power lawgweed to fitting the data using the algorithm TR. The results
of simulations with the agents are shown in the Table 1. Theltgare in descending order of the volatilities. It candensthat
the exponential function obtained a better fit than the pdaweifor most of indexes.

Figure 2 shows examples of the fitting generated by the exg@héunction and by the power law, where the black points
are the experimental observations and the gray lines arfitshér'he examples are the indexes of Spain (higher volgtidihd
Singapore (lower volatility). The exponential functiorhades better to the probability density function of theestiecause it
is capable of doing a good fitting for most data of the volgtitidf, including the end of the tail. The tail is the regiortioé pdf
that has a more instable behavior. A good fitting in this paitriportant because there is a considerable concentrdtfmoirds
and in this zone is where the large gains and large lossedtaimed.

This instable behavior at the end of the tail occurs due tditgk values in the return series; these are the cases where th
investor has higher gains or higher losses, which can rept@spossible crash [4]. Therefore, it is very importantriderstand
the dynamics of this part of the return series, even knowhiagjit occurs with a low probability.

From the observation of the adjustment of pdf, a comparisitim tive theory of ideal gas can be established. A reasonable
association can be done between volatility and temperafubhe market (a coefficient of agitation). If a market is magitated
(or “hotter), it has higher volatility, otherwise, if the amket is not agitated, it has lower volatility (or “colder”Jemperature
implies thermal energy; therefore, if the market is obseéfvem the point of view of an ideal gas, the process resenariédeal
gas guided by a Maxwell-Boltzmann Distribution [21]. Basmdthis analogy, the markets would be characterized by agive
temperature (or volatility).

The theory of an ideal gas, more precisely the Maxwell-Bo#inn Distribution [21], describes the probability functiaf the
particle speed or energy, where the particles do not cothgiateract with each other but move freely between shollisions.

This statistics is used to describe the distribution ofipks over various energy states in thermal equilibriumemwkhe
density of the patrticles is low and the temperature is higgtatding the quantum effects. This variation in the spestbgates
thermal energy, resulting in an increase of the agitatiahefparticles.

The theory of an ideal gas corroborates with the simulatgvaated. The dynamics found in the pdf of indexes, using time
series with large time window follows the Maxwell-BoltzmraDistribution. Thus, the stocks or companies shares theat ar
negotiated by investors (financial intelligent agents)lddne compared with particles of an ideal gas in the MaxwelltBnann
Distribution, like in simulation. In the experiments, theve@onment recreates the idea of an ideal gas, since theot exchange
of information between the agents, nor between the stocksgaoket and nor between agents and the market. With this id,min
the temperature of an ideal gas can be related to the vpaiflthe market. Thus, higher temperature leads to highkatility
and lower temperature of the economic system leads to lowlatilty of the market. A relationship between Equationte(
Maxwell - Boltzmann statistics) and Equation 2 (exponéifigiaction) is given by Equation 6.

Y = a. expr/k”'t (5)

1
=03 (6)

This theory can be used to explain the relationship found/éen theB coefficients of the exponential function and the
volatility. The system temperature (Equation 6) can beagdlated to the market system, as observed in Figure 3 arabie T:
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Figura 2: Comparison of fitting with power law and expondrtiaction, using Trust Region algorithm in log-log scale-k)
Fitting to Ibex35 index. (c-d) Fitting to STI index. The black line is the prbiday density function (pdf) of series and gray line
is the fit line
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Figura 3: Comparison among the indexes volatilities and2reefficients. In plot, the gray dots are tBecoefficients and the
black dots are the volatilities of the indexes. The black lmd gray line are the linear fitting.

when the volatility decreases (the energy decreases ceittyaerature decreases), tBeoefficient increases. Figure 4 shows that
the product betweeR coefficient and volatility B - Volatility) tends to be a constant, as can be demonstrated by Equation 7,

B «x m = B - Volatility = C @)
where(C' is the proportionality constant between tBecoefficient and the volatility. The constant found in the epiments was
C=1+0.02.

These facts indicate that the Maxwell-Boltzmann theory loameally used to analyze the behavior of the pdf of the return
series presented in this article. Thus, the market systeiritarcomponents could be treated like a gas system [21]. dn th
experiments, Equation 7 confirms the association founddsstthe exponential coefficients and the volatility. Theoefficient,
or equivalently the volatility, can be used to quantify theficial risk of a given market over a specified time periotimeding
of the instability/fluctuation of the markets. Thus, the iegpof the market'’s fluctuation may be compared as the peigtiehergy,
which can be seen as the temperature of market. In Equatibie 8ame association can be seen:Bhepefficient is inversely
proportional to the temperature of the system. This is aaldkiinformation which can be used to cluster different ratzkto
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observe the characteristics in common or to predict the\nehaf different markets, or of a group of markets.
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Figura 4: The producB - Volatility for each market. The solid line is the mean value of these dots

From these tests, the dynamics of agents can be better adaljke the distribution of gain/loss of money by agent. In
simulation, the agents do not have any information abouirtheket, or about the investments of the other agents. Thgsda
corresponds to people that invest without to make any stéichaoket, or any type of forecasting based in calculus. Thesple
invest only using their “emotional” side, or put the moneyhe stock market as long time investment.

To calculate the distribution of gain/loss of money per agea histogram for each market was constructed. The Pearson
coefficient [29], used to estimate the asymmetry of histograas calculated for each series and its values are in Talne 1
descending order following the volatility. The Pearsonfficient for asymmetry applies in the case of the slightlyrasyetrical
distributions. It is determined through relating the diéfiece between average and mode to the average squareateviktie
Pearson coefficient is measured according the Equation 8,

A, = (X - Mo)/s ®)

whereA, is the Pearson coefficienk; is the mean of data ant/ o is the mode of data. How the analyzed data are return series,
higher the value of Pearson coefficient, higher the asynynoétthe data. So more agents gain or lose money. The rel&ijons
among Pearson coefficients aBdcoefficients are showed (in crescent ordeB)fin Figure 5.

Figure 6 shows the histograms of distribution of money ofKdik225 and KLSE indexes. Comparing the histograms in
Figure 6 may be noted that for histogram of smaller volgt{i{LSE), the agents gain/loss less money than the histogfam
higher volatility (Nikkei225). These measures show that when the volatility is smallg#ir/loss of investors are around the
average of return. When the volatility is high, there is ageigspread and the probability of higher gain/loss of thentgis
bigger. These results corroborate with the Maxwell-Bolnm theory described in this paper. The agents that too atielpa
gain/loss more energy, according with energy of system.

Then, there is a relationship: between the volatility arel/hcoefficient of exponential function, between the volatilind
Pearson coefficient and the probability of gain/loss of égand finally, the relationship amog) coefficient and the Pearson
coefficient.

Amplitudes
= =
S &

—
-

Indexes

Figura 5: Comparison between the Pearson Coefficient an&t treefficient in crescent order of volatility. In plot, the grdots
are the Pearson Coefficients and the black dots ar8theefficients of indexes.

4 CONCLUSIONS

In this paper was presented a simulation withworld markets, representing developed and developing@u@ms. The
simulations were based in the assumption that the dynaris®ck market follows the ideal gas theory [16]. The propbse
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Figura 6: Comparison of the histograms of distribution igass) of agents. (a) Distribution of money of the agentNlitkei
225 index. (b) Distribution of money of the agents to KLSE index.

environment was based in [17], however in this paper, thécat stock prices are guided by indexes of real marketsfirgt
step, the simulation was recreated to simulate an artifisigironment, where the agents interact only with markegugh of
buy and sell orders. The agents do not exchange informatither between them or with the market. And the stocks receiv
information only of market index.

Then, two classical approaches of Econophysics were usgektribe the pdf of returns. Based on the results achieved fo
these real indexes, the exponential function adheredrhettiata of probability density function (pdf) of the realrkets than the
power laws. Since the exponential function fitted all regiohdata, while that the power law only fitted the tail of dakéter the
exponential function adjustment, a relationship betweerBt coefficient of exponential function with volatility was fod. This
relationship confirms the evidences that an analogy coultsbd to explain the relationship between the volatilitynfpperature
in the Maxwell-Boltzmann Distribution) of the markets ame 3 coefficients of exponential. This approach can bring insigh
about the modeling of the stock market volatility. Thereftis conjecture seems to be promissory to new modelingrodmhyc
market.

Thereby, in a finance system, the volatility can be seen atethperature, when compared with an ideal gas system. The
larger the market agitation, the higher the temperatureeiitarkets and the higher the volatility of the series. Tleselusions
are supported by the results and strengthen the MaxwetkBainn approach to model financial time series, validatiegésults
and conclusions demonstrated in this paper. Bluoefficient relates the frequency of occurrence of smaileshnd high values
in the return series, and therefore could be used to measute,quantify the movement of markets, as volatility. Frdmatt
information, the investor can forecast the behavior of tregk®t or can understand the association between high anlli sma
volatilities. This can be an interesting tool for financiamket analysis.

Finally, another association can be established ant®rgefficient, or volatility and the distribution of gain/lsf agents.
This behavior was measurement by Pearson coefficient,dhritie asymmetry of gains/losses of the agents. Higher tlagility
of market, higher the asymmetry of the histograms of datehégiter the energy of each agent. The energy of agent is dietedm
by how much it won/lost money. Then, this result corrobasatih the dynamics of the Maxwell-Boltzmann Distributiof.
important detail is that the agents do not have any inforonadbout the market, so its dividends won or lost follow thekaga
This contribution may help in understanding of the stockkats and in analysis of agents performance, and from thistass
the elaboration of the strategy of trader.
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