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Resumo – A detecção eficiente de veı́culos em movimento é uma tarefa crucial em comboio de veı́culos autônomos, também
conhecida como o problema do “follow me” (do inglês, siga-me). Neste trabalho são apresentadas análises de três algoritmos
de aprendizado de máquina (Redes Neurais Artificiais, Naı̈ve Bayes e Random Forests) para identificação de veı́culos usando
sensores lasers planares. Também é apresentada uma nova técnica de detectar veı́culos em uma área de leitura laser usando um
classificador binário. Foram feitos testes experimentais para selecionar o classificador mais adequado baseado na métrica Area
of Receiver Operating Characteristic (ROC) Curve (AUC). Finalmente, em resultados simulados é possı́vel ver que é possı́vel
ver que é possı́vel obter uma boa acurácia nos classificadores binários.
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Abstract – Efficient detection of moving vehicles is a key task for a convoy of autonomous vehicles, also known as the ”fol-
low me” problem. We present an analysis of three machine learning algorithms (Artificial Neural Networks, Naı̈ve Bayes and
Random Forests) for vehicle identification using a planar laser range data. We present a novel way to detect a vehicle in a laser
reading area using one binary classifier. Experimental tests have been performed to select the more adequate classifier based on
the Area of Receiver Operating Characteristic (ROC) Curve (AUC) metric. Simulated results show that is possible to obtain a
good classification rate for the binary classifier.
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1. Introduction

A key task in the convoy of autonomous vehicles, also known as the ”follow me” problem, is correctly detecting a car in a
urban environment. This task needs to be performed with a high reliability to avoid any collision. Various approachs have been
tried for this, many of then based on vision systems [1–6]. Unfortunately, a vision system suffers leverage of light, mist and
others environmental influences, which can affect the reliability of the system. Lasers range scanners, however, suffers less from
these environmental influences.

Several approaches have been proposed to detect a vehicle. Petrovskaya [7] proposed a particle filter and a bayesean network
to detect vehicles and their velocity based on the motion of the vehicles. Garcia et al [8] focus in detection of moving obstacles,
mainly vehicles, based on the shape of the detected obstacle. Some works present performs fusion with laser readings and vision
systems [9]. Keat et al [10] uses a sick range laser raw data with bayesian programming to construct hypothesis about presence
and orientation of a vehicle in a car park.

Our approach uses machine learning techniques, i.e. Artificial Neural Networks (ANN) and Random Forests, to correctly
identify the presence of a vehicle in a area of a raw planar laser reading.

2 Vehicle Detection

A planar laser provides a horizontal scan of ranges of the obstacles in front of the sensor. In the Sick LMS 200 laser, a possible
configuration consists of 361 laser beams in a 180o with maximum range distance of 80 meters for each laser beam. In this way,
a horizontal laser in front of a vehicle can detect the shape of another vehicle if it is into the maximum configured range.

In Figure 1 we can see a complete horizontal laser scanner (Figure 1b) with a back of a vehicle in the center and some other
obstacles (i.e. persons) around it and the respective map (Figure 1a). The difference between the vehicle and the other obstacles
is the shape and the size of them.

To delimit the area of the vehicle (or vehicles) we divide the scan area in nine areas (Figure 2). Therefore, each area can be
occupied by a vehicle or not. Our approach uses only one binary classification algorithm to classify each area. This is possible
by the use of the entire scan as input of the classifier and rotating the laser range scan in accordance with the block that will be
classified. During the rotation, the last area is sent to the begin of the laser scan, and all the areas are shifted by one to the side
(right side of the Figure 3)).
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(a) Occupancy Map and laser scanning. (b) Only the laser scanning of this scene.

Figure 1: Laser planar reading with various obstacles.

Figure 2: Division of the laser scan for classification in blocks. Occupation, here, means that the area in occupated by a vehicle.

Figure 3: Rotated blocks of laser scan.
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3 Methodology

Player/Stage [11] has been used to simulate the environment for data aquisition. Therefore, as we use supervised learning
techniques, This data has been manually classified with a user selecting the area that contains a vehicle. Even if the area has
only a small part of the vehicle, the block is classified as occupied. Three different maps have been created with eight different
scenarios each one. The scenarios include parked vehicles close to others vehicles in the street. Some vehicles turning, vehicles
close to trees and persons, two vehicles side by side and others.

Table 1: Datasets Sizes.

Dataset number Training and validation Testing
Dataset 1 911 304
Dataset 2 715 239
Dataset 3 1167 390

From these three maps, we created three different datasets, simulating the approach of the vehicle by the robot. We divided
the data in a random stratified manner these datasets in 75% for training and validation and 25% for testing the final classificators
(Table 1). Thus, the 75% part was used for train and validation to select the more adequate classificator, and the 25% last part
was used for test the final selected classificator.

To minimize the number of inputs of the classificators and thus reduce their complexity, we divide the laser readings in sets
of five, calculating the mean of each five readings. In this way, we can have 72 inputs for the classificators.

We used the Weka [12] for the classification training, validation and testing. A main problem in robotics is a high throughput
of the sensor-predict-act loop. Therefore, there’s a limitation of the processing requered to execute the algorithm. Thus, we
discard the algorithms with intensive processing for classification, like k-nearest neighbor [13], a ”lazy” algorithm. So, we
choose the following algorithms to compare: MultiLayer Perceptron (MLP) with Backpropagation with Momentum [14, 15],
Naı̈ve Bayes [13] and Random Forests [16]. All these algorithms have a relatively fast execution time in the classification phase.
However, as the number of neurons (MLP) or the number of trees (Reandom Forests) increases, the classification task can be
slow. To deal with this, we limit the number of neurons and the trees of these algorithms.

The 10-fold cross-validation was used in the the training phase. Every experiment has been run 10 times. We then select the
best one classificator based in the ranking of comparison of the CCR of instances and AUC of all the algorithms with a paired
t-test corrected [13]. The datasets were unbalanced. The class that defines that the are is not occupied by a vehicle dominates
the dataset (app. 70%), as the occupied class has only 30%. Thus, the Correctly Classified Rate (CCR) is not the more adequate
metric for the classificators comparison. Henceforth, we also used the Area Under ROC Curve (AUC) metric, which is a metric
for discrimination of the classifier, not affected by the distribuition of the classes in the dataset. Finally, the more adequate
classificator was trained again with full training dataset and then was tested with the respective independent test dataset, to verify
if there’s a overfit in the model.

4 Experiments and Results

Table 2: MLP experiments parameters and topology.

Learning rate Momentum Hidden l. neurons Epochs
MLP 1

0.3 0.2

2 200
MLP 2 5 200
MLP 3 10 200
MLP 4 20 200
MLP 5 30 200
MLP 6 2 500
MLP 7 5 500
MLP 8 10 500
MLP 9 20 500
MLP 10 30 500

Table 2 shows all the parameters and topology of the MLPs evalued. The learning rate and momentum was keep the default of
the Weka for all experiments, as these parameters affects mostly the the number of epochs of the training time. Only the topology
(2, 5, 10, 20, 30 neurons in one hidden layer) and the training epochs (200, 500) was changed. To understand how the change
of the parameters and topology affects the results, all the combinations of the parameters and topologies that has been proposed
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was been combinated and evaluated. In this way, if a more complex MLP has the same performance of a less complex MLP, the
less complex can be chosen for the final classificator, as Occam’s razor sugests.

Table 3: Naı̈ve Bayes experiments parameters.

Kernel estimator Supervised discretization
Naı̈ve Bayes 1 No No
Naı̈ve Bayes 2 Yes No
Naı̈ve Bayes 3 No Yes

The Naı̈ve Bayes classificator has only three parameters combinations (Table 3): using a kernel density estimator, which
can be useful if normality assumption is incorrect (used in this work, but not the case of laser range data), and supervised
discretization (which takes class into account when discretizing the numeric inputs) [13].

Table 4: Random Forest experiments parameters.

Depth of trees Features Trees generated
Random Forest 1 Unlimited Unlimited 10
Random Forest 2 Unlimited Unlimited 20
Random Forest 3 Unlimited Unlimited 30
Random Forest 4 Unlimited Unlimited 40

Four parameter combinations of the Random Forest have been evaluated. We do not set any limit for the depth of the trees
and for the number of attributes to be randonly selected for the creation of the random tree. The only parameter that has been set
was the number of trees generated by the algorithm (Table 4).

Table 5: Results of the classification experiments.

Algorithm CCR (%) Area Under ROC Curve
Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

MLP 1 72.77 68.76 60.77 0.70 0.74 0.64
MLP 2 73.93 69.68 60.91 0.73 0.73 0.63
MLP 3 79.43 71.49 62.83 0.83 0.76 0.66
MLP 4 82.25 74.33 66.60 0.87 0.79 0.70
MLP 5 83.46 74.53 66.75 0.88 0.79 0.70
MLP 6 74.28 69.22 60.99 0.73 0.72 0.63
MLP 7 72.75 68.90 60.44 0.69 0.74 0.63
MLP 8 79.24 71.18 62.96 0.83 0.76 0.66
MLP 9 82.45 74.25 66.94 0.87 0.79 0.70
MLP 10 83.82 74.65 66.95 0.88 0.80 0.70
Naı̈ve Bayes 1 71.22 67.79 61.41 0.74 0.74 0.65
Naı̈ve Bayes 2 74.76 68.01 61.52 0.74 0.76 0.65
Naı̈ve Bayes 3 73.43 68.51 61.63 0.73 0.74 0.65
Random Forest 1 86.51 81.51 71.90 0.91 0.89 0.79
Random Forest 2 87.76† 83.95 74.71 0.93 0.91 0.82
Random Forest 3 88.25† 84.85† 75.85† 0.93† 0.92† 0.84†

Random Forest 4 88.35† 84.80† 76.44† 0.94† 0.92† 0.84†

Table 5 shows the CCR of instances and the AUCs of the classification algorithms. The best values are marqued with †. It’s
possible to see in this data that the number of training epochs for a MLP does not affects the result of the classification. However,
in MLP, only the topology affect the results. As the number of neurons in the hidden layer increases, the correctly classified
instances as well AUC also increases.

The Naı̈ve Bayes classificator does not perform well in this case. It obtained one of the worse performance from all classifi-
cation algorithms evaluated. The parameters change also does not influenced a variation in the results. The AUC remains almost
the same, even with the the kernel density estimator (which, as already said, was expected) and with supervised discretization of
the inputs.
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The Random Forest, however, showed the best results. As the number of the tress increases, the algorithm increases the
classification performance as well as AUC also increases.

Table 6: Ranking of the classification algorithms by AUC and the CCR, ordened by AUC.

Algorithm CCR AUC
Algorithm Sum Wins Loses Sum Wins Loses
Random Forest 4 41 41 0 46 46 0
Random Forest 3 41 41 0 43 44 1
Random Forest 2 39 39 0 37 42 5
Random Forest 1 38 4 0 28 37 9
MLP 10 14 25 11 13 24 11
MLP 9 12 24 12 12 24 12
MLP 5 13 25 12 12 23 11
MLP 4 11 23 12 12 24 12
MLP 8 -11 7 18 -13 7 20
MLP 3 -12 7 19 -13 7 20
Naı̈ve Bayes 2 -25 1 26 -22 0 22
Naı̈ve Bayes 1 -27 0 27 -25 0 25
Naı̈ve Bayes 3 -26 0 26 -26 0 26
MLP 7 -26 0 26 26 0 26
MLP 2 -26 0 26 26 0 26
MLP 6 -26 0 26 26 0 26
MLP 1 -26 0 26 26 0 26

Table 6 shows the final rank of the algorithms evaluated with t-test with 0.05 of significance. The ranking remains almost the
same with AUC as a performance metric as well the percent of currently classified instances. As we can see, there’s no relevant
statistical difference between the algorithm Random Forest 4 (with 40 trees) and the algorithm Random Forest 3 (with 30 trees)
for the CCR. Otherwise, with the AUC metric, the Random Forest 4 shows to be better. Thus, we had choice the Random Forest
4 as the better classificator for our problem.

Table 7: Performance of test dataset in the algorithm Random Tree 4.

Dataset number Area Under ROC Curve
Dataset 1 0.93
Dataset 2 0.90
Dataset 3 0.89

In the testing dataset, the performance remains stable, as we can see in Table 7. This shows that the Random Forest 4 doest
not overfit in the training datasets and still can not get the same results with a dataset that was never used to train the algorithm.

The algorithm that bests fit for these datasets is the Random Forest. However, as the classification can get a apparently a good
percent of accuracy (88.35% in the very best case), to correctly classify the entire space consisting by nine blocks, this percents
goes to 32.79%. That accuracy is very low, and, if the systems relies only in this classification algorithm, the consequences of a
autonomous vehicle can be catastrophic.

5 Conclusions and Future Work

Identifying a vehicle in a autonomouns vehicle guidance or driver assistance is a crucial task. The main problem with a
horizontal planar laser sensor data is that there’s no information about texture or height of the obstacle. A vehicle needs to be
detected in the details of their shape. Therefore, only the laser range raw data for a classication method is a limited way to identify
a vehicle in a robot. As the individual classificator achieve a apparently good CCR and AUC, multiplying this classificator for
the whole scene decreases the the CCR for a critical level.

Thus, future work includes a fusion with a camera sensor to make the car detector more robust, multipling the number of
sensors of the system. Another possible approach to improve this task is to use a Kalman Filter in conjunction with a odometer
sensor to track the detected vehicles as well the position and velocity of the vehicle is estimated.
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