
EFFICIENT METAHEURISTICS FOR THE DYNAMIC SPACE ALLOCATION
PROBLEM

Geiza Cristina da Silva

1
, Laura Bahiense

2
, Luiz Satoru Ochi

3
, Paulo Oswaldo Boaventura-Netto

2

1
(Corresponding author) Department of Statistics, Federal University of Pernambuco, e-mail: geiza.silva@gmail.com

2
Production Engineering Program, COPPE, Federal University of Rio de Janeiro, e-mails: laura@pep.ufrj.br,

boaventu@pep.ufrj.br
3
Computer Science Institute, Fluminense Federal University, e-mail: satoru@ic.uff.br

Abstract – This work is devoted to the Dynamic Space Allocation Problem (DSAP), where project duration is divided into

a number of consecutive periods, each of them associated with a number of activities. The resources required by the activities

have to be available in the corresponding workspaces and those sitting idle during a period have to be stored. This problem

contains the Quadratic Assignment Problem (QAP) as a particular case, which places it in the NP-hard class. In this context,

the difficulty of identifying optimal solutions, even for instances of medium size, justifies the use of heuristic techniques. This

work presents new construction and local search methods and heuristic algorithms based on the VNS and ILS metaheuristics to

obtain near optimal solutions for the DSAP. Comp arisons are presented for values obtained by VNS, ILS, and results from

the literature. Computational results show the proposed methods to be competitive in relation to instances in the literature and

to existing techniques.

Keywords – Dynamic Space Allocation Problem, Quadratic Assignment Problem, Metaheuristics, Computational

Intelligence.

1 Introduction

The dynamic space allocation problem (DSAP), very new in the literature, was introduced by McKendall et al. in 2005 [5], and

was inspired by the necessity to optimize the cost of rearranging resources when we assign activities to workspaces and

resources to work/storage spaces during a multiperiod planning horizon. When the resources are used to perform activities,

they are assigned to workspaces. Otherwise, they are deemed to be idle and assigned to storage areas.

A project is divided in consecutive periods of time and along each one a given set of activities is run. Each activity

demands a set of resources to be executed. If a given resource is not utilized during a period, it is considered idle. The project

layout is divided in workspaces and storage areas, the resources in use being associated with workspaces and the idle ones,

with storage areas. The set of periods, with their respective activities (and their respective resources) to be carried on during

them, is the project’s agenda. The objective of the problem is to allocate the resources in a way that the total distance they have

to travel be minimized along the project horizon.

A small DSAP instance is shown in Figure 1, where the agenda has 4 periods, 5 activities and 9 resources. The space

layout has 3 workspaces (E1 to E3) along with 3 depots (E4 to E6). This type of layout, with the rows of workspaces and depots

alongside each other, is considered in every instance of the literature. The Manhattan metric is used in to determine distances.

Each space can receive up to 3 resources.

Period Activities

(Necessary Resources)

Idle Resources

1 A1 (6,7),

A2 (1,5)

2,3,4,8,9

2 A2 (1,5),

A3 (3,4)

2,6,7,8,9

3 A4 (2,8) 1,3,4,5,6,7,9

4 A4 (2,8),

A5 (6,9)

1,3,4,5,7

E1 E2 E3

E4 E5 E6

Figure 1 – A small DSAP instance and layout of the facility

For a given solution to be considered feasible, the following conditions must be met:

• during a given period, exactly one activity can be carried out in a workspace;

• at any time, a given activity is always carried out in the same workspace;

• the capacity of a workspace must be sufficient to contain the resources required by its activity;

• the depot capacities also have to be respected.

An optimal solution for this instance found using Cplex is shown in Figure 2. The total cost (associated with distance)

is 12. During Period 1, Resources 1 and 5, used by Activity A2, were allocated to Workspace E1 and Resources 6 and 7, used

by A1, to Workspace E3, while the idle resources were allocated to Depots E4, E5 and E6 as shown in the figure. During Period

2, the resources from A1 become idle and go to E6, covering 1 distance unit. At the same time, A3 is allocated to E2, which

means that its resources 3 and 4 have to come from E5 (1 distance unit). The third period finds only A4 being carried out at E1,

where A2 is deactivated, with its resources going to E4. Consequently, Resources 2 and 8 travel from E4 to E3 and 1 and 5 move

in the opposite direction. Lastly, Period 4 has A4 continuing to be executed (in E1) while A5 is carried out in E3, receiving its

resources from E6 (1 distance unit). The sum of the distances traveled by all resources is 12, the optimal problem value.

A2(1,5) A1(6,7) A2(1,5) A3(3,4)

2,8 3,4 9 2,8 6,7,9

Period 1 Period 2

A4(2,8) A4(2,8) A5(6,9)

1,5 3,4 6,7,9 1,5 3,4 7

Period 3 Period 4

Figure 2 – A solution for DSAP example

DSAP is related to other well-known combinatorial optimization problems: the problem of associating activities with

workspaces (quadratic assignment problem, QAP) [4], the problem of allocating activities to multiple time periods (dynamic

facility layout problem, DFLP) [10] and the problem of associating idle resources with storage areas (generalized quadratic

assignment problem, GQAP) [3]. In McKendall et al [8], a mathematical model is presented and two simulated annealing

heuristics are developed. McKendall and Jaramillo [7] presented five constructive methods together with a simple tabu search

heuristic. McKendall [6] presented three tabu search heuristics.

In this paper, we present two heuristic procedures based on VNS and ILS metaheuristics in order to obtain near

optimal solutions for the DSAP. Section 2 presents the proposed heuristics. Section 3 presents computational results for a set of

test problems taken from the literature. Section 4 provides conclusions and suggestions for future research.

2 Proposed methods for the DSAP

This work presents new construction and local search methods, and heuristic algorithms based on VNS and ILS metaheuristics

to obtain near optimal solutions for the DSAP, along with the isolated implementation of these methods.

2.1 Construction algorithms

The proposed construction algorithm involves two stages to build a DSAP solution. The first calculates a partial solution where

activities are associated with workspaces. Let A be the set of activities (a = 1, 2, ..., |A|) and W (w = 1, 2, ..., |W|) the set of

workspaces (WS). The second stage generates partial solutions by allocating idle resources (IR). Let S then be the set of

storage areas, Cs the capacity of storage area s, P the set of periods, R the set of resources and Ip the set of idle resources over

period p.

A partial activity solution (Figure 3) is built as follows: for each activity a, a restricted candidate list (RCL) is created

in lexicographic order, with the available WS from the beginning to the end of the activity execution period. A WS is randomly

selected from the RCL to be associated with the activity a. The cardinality of the RCL is given by the number of WS available

for the activity.

Partial Activities Solution Algorithm (A, W)

1. for a ← 1 until |A| do

2. Create RCL;

3. F ← first period of a;

4. L ← last period of a;

5. for each w ∈ W do

6. if w is available at all times from F to L do

7. Add w in RCL;

8. end if

9. end for

10. Sel ← Choose a random element in RCL;

11. Allocate the activity a to workspace Sel;

12. Free RCL;

13. end for

end.

Figure 3 – Pseudo code for the heuristic of association of activities with workspaces.

For the association of idle resources (Figure 4), we adapt the RSP heuristic proposed in [8], because it considers the

resource association made at the previous period. This way, from the second period on, resources that remain idle from a

period to the next, are prioritarily allocated to the same depot they occupied during the previous period. The remaining IR

during the period are allocated, as in RSP, to the nearest storage area with respect to the most recently used WS.

Partial Idle Resource Solution Algorithm (S, Cs, P, R, Ip, α)

1. In the first period, allocate each idle resource to the depot where the resource was most recently used

(in activity solution);

2. for p ← 1 to |P| do

3. Allocate idle resources that occur in p =1to the same storage area;

4. Allocate the remaining idle resources to the storage area closest to the workspaces they are assigned to, when

performing activities.

5. end for

end.

Figure 4 – Pseudo code for the heuristic of association of idle resources to depots.

2.2 Movements and Neighborhoods

The following movements, defined in [8] and [7] are considered:

• M1: WS exchanges of two or more activities within consecutive periods during which they were allocated.

• M2: Removal of one activity from a WS to another one that is available during one or more consecutive periods when

it is allocated.

• M3: Combines M1 and M2.

• M4: Exchange of depots between two resources.

• M5: Removal of a resource from an storage area to another when the capacity allows it.

• M6: Depot exchange of two or more resources during consecutive periods available when they are allocated.

• M7: Transfer of a resource from one storage area to another during consecutive periods available when it is allocated.

• M8. Combines M6 and M7.

Starting with a solution s and using these movements, the following neighborhood structures are utilized:

• N1: neighborhood explored by M1 to M3, applying every possible movement to the partial activity solution.

• N2: neighborhood explored by M4 and M5, every possible individual IR movement applied to the partial IR solution.

• N3: neighborhood explored by M6 to M8, every possible movement being applied to the partial IR solution during

consecutive periods.

• N4: neighborhood explored by combining N1 and N2, that is, for each neighbor generated in N1, all N2 neighbors are

investigated.

2.3 Local Search Algorithms

Throughout this work, two local search strategies are utilized, Best Improvement and First Improvement.

Best Improvement explores the whole neighborhood V(s) from a current solution s obtained by the construction

method. A better neighbor, after execution, becomes the current solution for the next iteration. The search goes on until no

better neighbor is found.

First Improvement is a non-exhaustive local search. A movement is applied to the first better neighbor of s, that is, the

first solution t ∈ V(s) such that f(t) < f(s) will be the current solution for the next iteration. The search goes on until no better

neighbor is found.

Based on the above defined neighborhoods and local search implementations, we propose the following local searches

(Figure 5):

Local search Implementation Neighborhoods

LS1 FI N1 and N3

LS2 BI N1

LS3 BI N2

LS4 BI N3

Figure 5 – Proposed local search algorithms.

2.4 Variable Neighborhood Search metaheuristic

The VNS (Variable Neighborhood Search) metaheuristic was proposed in [2]. It explores more than one neighborhood and it

can combine deterministic and stochastic neighborhood changes[9]. First, a set of neighborhood structures is defined, after

which they can be arbitrarily chosen to compose a sequence |N1| < |N2| < ... < |Nkmax| where kmax is a starting parameter [1].

An initial solution s is generated and a neighborhood counter k is initialized. A neighbor s’ from s within Nk(s) is

randomly chosen and a local search based on s’ is executed. If a solution s” better than s’ is found, then s” becomes the current

solution and the procedure is reinitialized with k = 1. Otherwise, k is incremented and a new search is started. The process ends

when there is no better solution within any Nk(s). An enveloping loop allows for more iterations until a stopping criterion is

matched.

We use a VNS version where kmax = 3 (Figure 6). The neighborhood structures are those defined in Section 2.2. For

each k ∈ {1, 2, 3} a solution s’, neighbor of s, is randomly generated as follows (Line 5):

• k = 1: An activity or IR movement is randomly chosen. In the first case, a neighbor is generated within N1, otherwise,

within N2.

• k = 2: A neighbor is generated within N4.

• k = 3: As for k = 1 with activity movements; the neighborhood N3 is used with IR movements.

At the local search stage (Line 6), the searches LS2. LS3 and LS4 are executed, in that order.

Heuristic VNS (N, kmax, max_no_improv)

1. s ← constructionAlgorithm ();

2. while iter < max _no_improv do

3. k ← 1;

4. while k < kmax do

5. s’ ← Choose a random neighborhood in Nk(s)

6. s’’ ← LocalSearch(s’);

7. if f(s’’) < f(s) then

8. s ← s’’;

9. k ← 1; iter ← 0;

10. else

11. k ← k + 1; iter ← iter + 1;

12. end if

13. end while

14. end while

end.

Figure 6 – Pseudo code for VNS heuristic.

2.5 Iterated Local Search metaheuristic

The ILS (iterated Local Search) metaheuristic is an iterative process where local searches are applied to new starting solutions

obtained through perturbations applied to local optima. The method works as follows (Lourenço et al, 2003) [5]: Given a

current solution s*, a perturbation is applied to it generating a solution s’. Then s’ is submitted to a local search, giving s*’,

which is a local optimum. An acceptance criterion is utilized to decide which of these two solutions will be the current one for

the next iteration.

The proposed ILS algorithm is presented in Figure 7. Six perturbation levels are utilized:

• Level 1: Two different randomly chosen WS have their elements exchanged within every period.

• Level 2: Two activities allocated to different WS are randomly chosen for WS exchange. This is done t times (t is a

parameter). Since the solution has to be kept feasible, a new perturbation must be done if one activity is allocated to

different WS in consecutive periods.

• Level 3: Two different pairs of WS (at least one of them not empty) are randomly chosen in a period and the elements

of each pair are exchanged. This is done t times.

• Level 4: One perturbation Level 2 and t perturbations Level 3.

• Level 5: One period and two different depots are chosen and one resource from one depot is exchanged with one

resource from the other depot. This is done t times. When there is space in one of these depots, a reallocation

movement can be done.

• Level 6: Two IR from different depots are chosen to be exchanged over every consecutive period when they are

present. The process is repeated t times. A new attempt is made if the exchange of any IR pair allows one or more IR

to go to different depots in consecutive periods.

Heuristic ILS (max_iter, max_times)

1. s0 ← GenerateInitialSolution();

2. s0 ← LocalSearch(s0);

3. iter ← 0; level ← 1; t ← 2;

4. while iter < max_iter do

5. times ← 0;

6. while times < max_times do

7. s’ ← Perturbation(s0, level, t);

8. s’* ← LocalSearch(s’);

9. if f(s’*) < f(s0) then

10. f(s0) ← f(s’*);

11. iter ← 0; level ← 1; times ← 0;

12. else

13. iter ← iter + 1; times ← times + 1;

14. end if

15. end while

16. level ← level + 1;

17. if level > 6 then

18. level ← 1; t ← t + 1;

19. end if

20. do while

end.

Figure 7 – Pseudo code for ILS heuristic.

Each perturbation level is applied to a solution a given number of times, limited by the parameter max_times, as we

can see in the internal loop (Lines 6 to 15). The process is repeated until a given number of unsuccessful iterations is executed,

defined by max_iter (Lines 4 to 20). Each time a solution passes through all levels, t is incremented by one unit (Line 18).

3 Computational results

 The set of tested instances is available in [8]. It is composed of 96 instances (P01 to P96) containing problems with 6, 12, 20

and 32 locations and 9, 18, 30 and 48 resources, each one with 10, 15 and 20 periods. Half of the locations are workspaces and

the other half are depots. Each depot has a maximum capacity of three resources, and the number of required resources per

activity varies between 1 and 3. Lastly, the number of activities ranges between 6, for small instances, and 87, for larger

instances.

All parameters involved in the proposed techniques were determined with the aid of preliminary testing. Each instance

was tested ten times with each algorithm (VNS and ILS) using different seeds. VNS requires a single parameter, which is the

iteration number (fixed as 1,500), while ILS needs two: the number max_times of applications of a given perturbation level

(fixed as 20) and the accepted number max_iter of iterations without a cost improvement (fixed as 700). Both values affect the

execution time of the algorithm.

The algorithms were written in C, using the GCC 4.2.3 compiler with –O3 option. We used a computer with an Intel®

Core™2 Quad Processor Q6600 with 2.40 GHz, 4 Gbytes of RAM, and the Linux 2.6.24-19 operating system.

 The computer reported in [6], a Pentium IV 2.4 GHz, has an estimated power of 4595 MFlops

(http://www.activewin.com/reviews/hardware/processors/intel/p424ghz/benchs.shtml), while our computer has an estimated

power of 44300 MFlops (http://techgage.com/print/intel_core_2_quad_q6600). Thus, in order to perform a fair comparison

between the computational times, we use the rate of 4595/44300 Mflops to adjust the best literature times (fifth column of

Table 2). All the computational times are expressed in seconds.

Optimal solutions were reported in the references for 25 instances, P01−P24 and P27. We solved the formulation

described in [8] using Cplex 11 and, besides the previous known optimal values, we were able to find optimal solutions to

instances P25, P26, P28, P29, P30, P31, P32, P35, P36, P39 and P40. Surprisingly, for instances P25, P26, P28, P32, P35, P36,

P39 and P40, the best known upper bounds (heuristic algorithm solutions) reported in [6] were smaller than the optimal

solutions found by Cplex 11.

Table 1 reports the results for the instances solved by Cplex 11, comparing the solutions and computational times for

Cplex 11, the literature, and VNS and ILS algorithms. The first column presents the instances and the second column presents

the solutions found by Cplex 11, followed in the third column by their computational times. The fourth column presents the

best solutions found by the literature, followed by their computational times, in the fifth. The sixth column presents the best

solutions found by VNS procedure, followed in the seventh column by their computational times. Finally, the eighth column

presents the best solutions found by ILS procedure, followed in the ninth column by their computational times. The results are

presented in two sections for the sake of space. Best solutions are set off in bold typeface. Those values reported by [6] that are

lower than those found by Cplex are indicated by underlined italics. The last line in Table 1 shows the average processing

time for each algorithm.

Inst. Cplex T_Cplex Lit. T_Lit. VNS T_VNS ILS T_ILS Inst. Cplex T_Cplex Lit. T_Lit. VNS T_VNS ILST_ILS

P01 16 0,3 16 0,8 16 1,9 16 0,9 P19 46 26,6 46 5,2 46 5,1 46 1,5

P02 25 0,3 25 1 25 1,6 25 0,5 P20 60 57,8 60 4,7 60 3,9 60 1,1

P03 18 0,3 18 0,8 18 1,9 18 0,4 P21 46 46,5 46 4,7 47 6,1 46 3,9

P04 25 3,5 25 0,8 25 1,3 25 0,3 P22 67 103,2 67 4,7 67 5,3 67 1,7

P05 16 1,3 16 1,6 16 1,8 16 0,5 P23 55 24,6 55 4,2 55 6 55 1,4

P06 27 5,5 27 2,1 27 2 27 0,5 P24 74 32,6 74 3,1 74 4,6 74 0,9

P07 16 3,5 16 2,3 16 1,8 16 0,4 P25 31 59551 30 7,5 31 13,7 31 5,4

P08 31 0,9 31 1,6 31 1,1 31 0,3 P26 43 20663,1 42 8,3 43 13,8 43 11,3

P09 25 6,8 25 1,8 25 3,6 25 1,1 P27 43 1008,4 43 4,9 43 14,3 43 11

P10 46 19 46 2,1 46 3,4 46 1,1 P28 55 582,3 54 4,4 55 9,3 55 6,3

P11 32 7,7 32 1,8 32 3,1 32 0,9 P29 29 94397,6 29 10,2 29 13,9 29 5,1

P12 41 15 41 2,1 41 2,3 41 0,7 P30 49 27609,2 50 8,6 49 14,5 49 9,7

P13 28 11 28 2,6 28 3,6 28 0,9 P31 42 1950,3 42 7,8 43 14,7 43 6,4

P14 45 18,9 45 1,8 45 3 45 1,4 P32 69 3716,4 66 7,3 69 10,3 69 4,3

P15 35 17,8 35 2,1 35 3,6 35 0,7 P35 73 790670,6 68 12,8 74 30,4 76 17,7

P16 49 4,5 49 1,8 49 2,8 49 1,1 P36 95 57012 90 117,9 96 19,8 95 7,5

P17 35 16,2 35 7,5 35 5,9 35 2,3 P39 68 177400,5 67 13 68 28 71 19,1

P18 60 62,3 60 4,9 61 5,5 60 2,7 P40 108 211216,3 104 15,1 108 18,6 108 13,1

Aver. - 10,8 - 2,2 - 2,8 - 0,9 - - 80337,2 - 13,6 - 12,9 - 7,1

Table 1 – Results of Cplex, literature, VNS and ILS.

When comparing the proposed algorithms, we see that ILS obtained the optimal value for 33 out of the 40 instances,

while VNS obtained 31 optimals. The average percent deviation from the optimum for VNS and ILS was respectively 0,24%

and 0,30%. This deviation is calculated as

nitloweritlowerit
n

i

/)100*][cos/])[cos][(cos
1

∑
=

−
,

where n is the number of instances, cost [i] is the cost obtained by the algorithm and lowercost[i] is the the best (or optimal)

cost for the instance i, found by the algorithms being compared. The lesser is the per cent average deviation, the better is the

algorithm on average.

It is important to observe the time increases of the exact algorithm with the instance order. As for the heuristics, both

the literature one and the VNS have an average time of 8 seconds and the ILS, of 4 seconds.

Table 2 shows the comparison between the best solution achieved by our VNS and ILS algorithms and the best results

reported in [6], for the 60 instances where the optimal value is not known, i.e., P33, P34, P37, P38 and from P41 to P96. The

first column shows the instance, the second column shows the best solution reported in [6], followed in the third column by its

computational time. The fourth column shows the best cost obtained by the proposed VNS algorithm, followed by its time, in

the fifth. The sixth column shows the best cost obtained by the proposed ILS algorithm, followed by its time, in the seventh.

Finally, the last line in Table 1 shows the average processing time for each algorithm. The results are again presented in two

sections for the sake of space.

Inst. Lit. T_Lit. VNS T_VNS ILS T_ILS Inst. Lit. T_Lit. VNS T_VNS ILS T_ILS

P33 53 17,2 57 29,0 55 16,9 P67 157 119,5 155 296,0 150 114,3

P34 72 20,6 73 26,2 74 21,3 P68 234 84,6 227 356,8 224 112,8

P37 47 12,0 50 29,0 50 17,7 P69 112 112,5 119 407,0 118 170,0

P38 77 26,6 82 23,5 82 33,3 P70 178 262,9 176 336,7 173 103,0

P41 78 25,0 80 50,1 78 50,0 P71 170 176,2 173 324,7 169 96,3

P42 104 20,0 106 44,3 104 22,4 P72 265 128,1 252 318,7 247 212,1

P43 110 267,9 112 48,8 110 50,1 P73 74 130,4 71 402,9 71 135,0

P44 137 20,8 143 31,1 140 32,8 P74 97 106,2 92 383,6 96 193,6

P45 66 47,6 68 49,8 71 42,4 P75 110 116,4 105 406,3 109 300,7

P46 111 39,6 116 48,3 115 53,1 P76 155 80,4 155 307,1 150 144,2

P47 111 33,8 118 43,1 116 26,7 P77 73 97,4 70 445,3 70 241,7

P48 169 23,7 171 31,8 171 19,9 P78 101 163,2 97 458,5 98 668,9

P49 45 25,3 44 59,9 44 23,2 P79 110 117,7 109 443,9 110 142,0

P50 63 25,5 60 54,5 59 53,7 P80 175 87,7 171 334,7 164 133,6

P51 55 24,0 55 56,2 56 19,9 P81 119 266,8 117 1114,8 118 472,5

P52 98 20,8 89 37,6 89 17,6 P82 176 240,8 181 817,7 168 738,4

P53 49 36,2 47 69,8 47 28,2 P83 192 357,4 191 1356,2 197 783,8

P54 67 24,2 63 67,0 63 86,7 P84 282 247,8 291 885,0 287 339,4

P55 63 22,6 60 93,3 63 28,5 P85 125 343,9 126 1131,8 125 516,1

P56 97 27,6 90 67,1 89 34,2 P86 192 540,5 193 1010,3 196 528,9

P57 67 81,2 67 202,8 69 73,9 P87 193 461,8 199 890,1 191 234,4

P58 106 106,2 102 167,3 96 90,7 P88 302 342,3 292 910,0 292 626,0

P59 101 96,6 96 169,3 97 45,7 P89 171 447,5 171 1679,3 174 1303,0

P60 159 70,8 154 121,0 155 124,7 P90 262 696,7 275 1782,5 256 1214,5

P61 82 120,5 75 209,6 75 73,5 P91 284 400,7 295 1632,3 287 901,4

P62 129 100,2 117 233,1 117 119,8 P92 395 1458,4 395 2316,7 374 728,0

P63 121 68,2 121 189,8 120 95,3 P93 189 770,3 199 2003,1 185 514,3

P64 190 68,5 180 149,7 176 85,5 P94 281 887,0 288 1464,6 282 428,6

P65 105 106,5 105 370,7 101 192,9 P95 318 717,2 337 1522,8 328 568,5

P66 156 203,1 152 309,6 150 117,7 P96 464 663,6 482 1588,7 479 368,1

Aver. - 59,4 102,8 56,6 354,2 910,9 434,5

Table 2 – Best results of literature and our proposed algorithms,

With this set of instances, the literature algorithm obtains better results for 23 instances. The proposed VNS and ILS

obtain better costs for 21 and 32 instances, respectively. The corresponding per-cent average deviations are respectively

2.90%, 2.98% and 1.38% from the best solution obtained by the literature, VNS and ILS respectively.

With respect to the processing time, the greater average times are those of VNS (507 seconds). The literature and ILS

algorithms presented averages of 207 and 246 seconds respectively.

4 Conclusions and future work

The DSAP problem is relatively new in the literature and it can model many important real-life problems where rearranging

resources is a difficult and/or expensive task. It is also significant due to its relations with the well-known hard combinatorial

problem QAP.

Two heuristic procedures based in VNS and ILS were proposed in this paper. The computational results obtained

were comparable to the best algorithms previously existing in the literature. The heuristic based in ILS was able, on average, to

yield solutions with better costs than the best solutions produced earlier by the algorithms available in the literature.

It is also important to notice that by using Cplex 11 over a formulation previously defined in [8] we were able to

correct the upper bounds P25, P26, P28, P32, P35, P36, P39 and P40, which were incorrectly presented in the literature

previously. We were also able to solve to optimality some open instances.

As directions for future research, we suggest: testing other heuristic procedures; exploiting other related problems, as

pointed out in [6], while considering the addition of preparation costs to the data set available in the literature and comparing

the results obtained from all the proposed heuristics.

Acknowledgements

We are grateful to CNPq/CT-Info and Universal, CAPES, FAPEMIG and FAPERJ for their support of this work.

References

 [1] Blum, C., Roli, A.,Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM Comput.

Surv., 35 (2003), 268-308. ISSN: 0360-0300. doi: http://doi.acm.org/10.1145/937503.937505.

[2] Hansen, P., Mladenovíc, N. , Variable Neighborhood Search. In: Glover, F., Kochenberger, G. (Eds.), Handbook of

Metaheuristics, Kluwer Academic Publishers, 145-184, (2003).

[3] Lee, C-G., Ma, Z., The generalized quadratic assignment problem, Working paper, U. of Toronto, Dept. of Mechanical

and Industrial Engineering, (2005).

[4] Loiola, E. M., Abreu, N. M. M., Boaventura-Netto, P. O., Hahn, P., Querido, T.M., A survey for the quadratic assignment

problem, European Journal of Operational Research, 176(2007), 657–690.

[5] Lourenço, H. R., Martin, O., Stützle, T. (2003). Iterated Local Search. In: Glover, F., Kochenberger, G. (Eds.), Handbook

of Metaheuristics, Kluwer Academic Publishers, 145-184, (2003).

[6] McKendall Jr., A., Improved tabu search heuristic for the dynamic space allocation problem, Computers & Operations

Research, 35(2008), 3347–3359.

[7] McKendall Jr., A. e Jaramillo, J., A tabu search heuristic for the dynamic space allocation problem, Computers &

Operations Research, 33(2008), 768–789.

[8] McKendall Jr., A., Noble, J., Klein, C., Simulated annealing heuristics for managing resources during planned outages at

electric power plants, Computers & Operations Research, 32(2005), 107–125.

[9] Mladenovíc, N., Hansen, P., Variable neighborhood search, Computers & Operations Research, 24(1997), 1097–1100.

[10] Urban, T., Solution procedures for the dynamic facility layout problem, Annals of Operations Research, 76(1998)323-

342.

