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Abstract – Graph-based methods consist in a powerful form for data representation and abstraction, such approach has been
each time more considered to solve machine learning related problems. This work presents a graph-based algorithm suitable for
streaming data classification problems with non-stationary distribution. The proposed algorithm is an extension of a static algo-
rithm which relies on the following concepts, a graph structure called optimal K-associated graph, that represents the training
set as a sparse graph separated into components; and the purity measure for each component, which uses the graph structure to
determine local data mixture level in relation to their classes. Here we address classification problems that exhibit modification
on the underlying data distribution. This problem qualifies concept drift and worsens any static classifier performance. Hence,
in order to maintain accuracy performance, it is necessary for the classifier to keep learning during application phase, for exam-
ple, by implementing incremental learning. Experimental results, suggest that our algorithm presents advantages over the tested
algorithms on streaming classification tasks.
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1. INTRODUCTION

Many real-world applications require online classification, where the task is to classify examples at the time they arrive [1]
such as intrusion detection [2] and credit card fraud detection [3], among many others. Generally in those applications the
underlying data distribution change over time, and often these changes make the model built on old data inconsistent with the
new one. This problem, known as concept drift [4], [5], ruins the performance of the current classifier demanding frequently
updating of the model. A trivial solution to this problem is to retrain the classifier over certain periods of time. This practice,
however, brings at least two prohibitive drawbacks, (i) stopping the classifier for retraining may lose incoming data that needs
to be classified and; (ii) retraining process usually is computationally expensive. Fortunately, frequent retraining of a classifier
can be avoided using an incremental learning algorithm [6], which enables a classifier to acquire knowledge during classification
phase without being retrained, i.e. new knowledge is added, continuously, to the classifier through a more efficient process than
training itself. There is plenty of methods that implements incremental learning, a recent review can be found in [7].

Graph-based algorithms applied to data mining tasks have attracted great attention, in a broad range of areas, such as cluster-
ing, [8], semi-supervised learning [9] among others [10]. Basically, graph-based approach consists of representing a data set as
a set of nodes and connections among them, such structure can further be used as a powerful representation of data; permitting
to analyze and visualize local and global connection structure in data within a single framework. Motivated by the richness of
graph-based representation as well as new methods provided by graph theory, this paper presents a classification approach which
is carried out by finding an optimal purity measure during the graph construction phase. The obtained results of classification
on stationary data sets have indicated its potential for dealing with classification problems, particularly in the presence of noise
[11]. Moreover, an extension of the technique for dynamical classification is proposed, in which the model continually evolves
during the classification phase. This approach, also known as incremental learning [6], allows the classifier to expand its data
representation as well as to deal with applications in dynamical environment.

The remainder of the paper is organized as follow. Section 2 briefly exposes the concepts presented in [12] [11], basically
covering the K-associated optimal graph, the purity measure and the KAOG classifier. Section 3 describes the proposed extension
to cope with streaming classification. Section 4 presents the experiments comparing the proposed approach to four state-of-the-
art ensemble method. It also presents some insight on how the classifier works, as well as a comparison between static and
incremental approaches in a non-stationary environment. At last, Section 5 concludes the paper.

2. CLASSIFICATION BASED ON THE K-ASSOCIATED OPTIMAL GRAPH

This section briefly exposes the K-associated optimal graph which is used to estimate the class label of new instances, a fully
description can be found in [11]. A K-associated optimal graph is the final graph structure obtained as a result of sequentially
building of several K-associated graphs by increasing K by one, while keeping record of the components with the highest purity
found. In order to present the K-associated graph, consider a labeled set X = {x1, . . . ,xN} with xi = (xi1, xi2, ..., xip, ci)
the i-th vector-based data composed of p attributes and a class label ci ∈ Ω = {ω1, . . . , ωµ}, considering a µ-class problem. A
K-associated graph, in turn, is defined as an unweighted directed graph G(K) = (V,E) where V = {v1, . . . , vN} is a set of
vertices in which each vertex vi represent an instance xi of the input data set within its class label ci. In order to obtain the edge
set E = {eij} let Λvi,K represents the set of label independent K nearest neighbors of vertex vi, obtained through calculation
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on the data instances by using a given similarity measure. Then, the connections are performed by taking every vertex vi as an
origin, and connect to all destination vertex vj that satisfies, vj ∈ Λvi,K and ci = cj .

In order to present how a new instance is classified using the K-associated optimal graph, consider a new unlabeled data
instance defined just as the labeled ones, as y = (y1, y2, ..., yp), excepted that now the class c associated with the new instance
y must be estimated. Also, let vy be the vertex that represents y. According to Bayes theory [13] the probability a posteriori of
a new vertex vy to belong to component Cα given the observed neighborhood of the the vertex vy , Λvy is defined by Eq. (1).

P (vy ∈ Cα|Λvy ) =
P (Λvy

|vy ∈ Cα)P (vy ∈ Cα)
P (Λvy )

(1)

Now, we define each term on the right-hand side of Eq. (1). As each component Cα has its own value of K, denoted as Kα, as
a result of being formed in a given K-associated graph, the neighborhood Λvy must consider Kα. Therefore, the probability of the
neighborhood of vy , supposing that vy belongs to Cα depends on Kα, and is defined as P (Λvy

|vy ∈ Cα) = |{Λvy,Kα
∩Cα}|/Kα.

Now, the second numerator term of Eq. (1) corresponds to the component a priori probability. According to the definition of
the purity measure, when normalized, it can act as a priori probability for classification. So, purity normalization considers only
those components that vy connects to, i.e. Λvy,Kβ

6= ∅, and can be stated as P (vy ∈ Cα) = Φα/
∑

Λvy,Kβ
6=∅

Φβ . Finally, the

normalizing term is defined in Eq. (2).

P (Λvy ) =
∑

Λvy,Kβ
6=∅

P (Λvy |vy ∈ Cβ)P (vy ∈ Cβ) (2)

In general, there are more components than number of classes, according to Bayes optimal classifier, it is necessary to sum
the posteriori probabilities of all components corresponding to the same class, as shown in Eq. (3), where Ĉα stands for the class
of the vertices in component Cα.

P (vy|ωi) =
∑

Ĉα=ωi

P (vy ∈ Cα|Λvy ) (3)

Finally, the largest values among the posteriori probabilities reflects the most probable class for the new instance, according
to Eq. (4), where ϕ(vy) stands for the class attributed for the vertex vy and consequently to instance y.

ϕ (vy) = arg max {P (vy|ω1) , . . . , P (vy|ωµ)} (4)

The classifier is suitable to multi-class (µ > 2) environment due to the sparse component structure of the K-associated
optimal graph and to the Bayesian-like way it is derived.

3. THE PROPOSED ALGORITHM FOR STREAMING DATA CLASSIFICATION

The algorithm proposed here, and named KAOGINC, is an extension of the algorithm proposed in [12], which uses a special
graph referred to as principal graph, that evolves by adding new knowledge along time, without the need of being retrained. This
dynamical evolution is done by growing the principal graph within the optimal graphs built from recent patterns. Each time an
unlabeled pattern comes, it is classified by the non-parametric classifier, presented in the previous section.

In a formal way, consider a scenario where labeled and unlabeled data sets are presented as a data stream of the form, S =
{X1, Y1, . . . , XT , YT } where Xt stand for labeled data sets, while Yt are unlabeled data sets whose classes must be estimated.
The objectives of a classifier aimed at processing this kind of data stream are, keep an acceptable and stable performance regarding
classification accuracy, while at the same time, keep low computational and memory costs. According to [6], in order to a
classifier satisfy these requirements it must execute the following tasks during application, (i) add new knowledge incoming
from labeled data throughout time, (ii) predict the classes of all new unlabeled data and (iii) discard old knowledge that no longer
will be. In view of these tasks, consider the general scheme of the the proposed method as in Fig. 1.

Now, we see how KAOGINC cope with incremental learning by associating the aforementioned mentions three tasks of an
incremental algorithm to the components depicted in Fig. 1. The task (i) refers to updating the classifier with new concepts; in the
proposed algorithm the principal graph is updated every time when a labeled set is presented. The updating procedure consists in
building a K-associated optimal graph from the labeled set at hand, Xt, and add it to the principal graph, as shown in Fig. 1(a).
Task (ii) corresponds to classifying new unlabeled data, and is performed every time when an unlabeled instance is provided. In
the proposed algorithm, this task is realized by using the principal graph as the structure to infer the classes of the new vertices
as shown in Fig. 1(b). At last, task (iii) corresponds to component removal and is directly related to the size of the principal
graph and to the classifier performance. As shown in Fig. 1(c) the proposed algorithm provide two mechanisms for eliminating
misleading components of the principal graph. The principal graph is kept at reasonable size by implementing the pruning -
which removes components associated to errors - and the not using rule that determines a maximal number of classifications that
a component is allowed to stay in the graph without been used. Algorithm 1 presents the proposed algorithm in details.

Every time a labeled set Xt, is presented to the algorithm, a K-associated optimal graph is generated by using the KAOG()
algorithm, as described in [12]. Once built the current graph is added to the principal graph, noted as GP . Notice that theses
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Figura 1: Data Stream processing scheme for the proposed algorithm KAOGINC.

Algorithm 1 Incremental Algorithm KAOGINC
Input: S = {X1, Y1, ..., XT , YT } {Data stream}; τ {Forgetting parameter - set by user}
Symbols: GP {Principal graph}; KAOG() {K-associated optimal graph builder}; classifier() {Graph-based classifier}
1: repeat
2: if Xt then
3: prunning(GP , Xt)
4: GP ⇐ GP ∪ KAOG(Xt)
5: else
6: for all yj ∈ Yt do
7: ϕ(yj) ⇐ classifier(GP ,yj)
8: end for
9: for all Cα ⊂ GP do

10: if tα > τ then
11: GP ⇐ GP − Cα

12: end if
13: end for
14: end if
15: until S = ∅

graphs are in fact a set of disconnected components. The frequent addition of new components in the principal graph updates it
with new knowledge and as a consequence avoid drop in performance due to concept drifts. However, it also enlarges the graph,
which could lead to uncontrolled growing and consequently, invaliding the classifier. Therefore the algorithm has two methods
to take components off the graph, the pruning() method takes off the principal graph those components that are associated with
error when the labeled set Xt is presented; and when tα > τ , where tα correspond to the number of classification that component
Cα has not been used in classification. It turns out that by implementing both removing strategy the principal graph remains at a
reasonable size along the time.

4. SIMULATIONS RESULTS

This section presents two groups of simulations; first we give an insight on the KAOG classifier and also a show a motivation
for developing its incremental version within a comparison between then in a non-stationary benchmark domain. The second
group comprehend the comparison between the proposed incremental algorithm, KAOGINC and four state-of-the-art algorithms
in two benchmarks domains.

The KAOG classifier uses neighborhood relations in the classification of new data, this next example explores the differences
between the algorithms KAOG and KNN. Consider the set with three classes artificially generated and presented in Fig. 2(a).
The surfaces of the decision on the data set shown in Fig. 2(a) are shown in Fig. 2(b) to 1NN, Fig. 2(c) 15NN and Fig. 2(d)
for the KAOG algorithm. Despite the limitations in revealing all the features of the algorithms, given a representation in two
dimensions with little data, one can still notice some major differences between the algorithms.

As can be seen in Figs 2(b)-(d) methods based on nearest neighbors are inherently nonlinear and multiclass. Besides that,
the algorithm is able to adjust KAOG locally to the data distribution, due to the way components are used in classification. As
a result of the training process, the optimal graph is composed of components with the highest value of purity, obtained from
the various components in the generation of graphs K-associated. Thus, the optimal graph can be viewed as a locally optimized
structure that allows the classifier to act according to the local distribution of instances. A direct analogy between the algorithm
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Figura 2: Figure (a) represents a randomly generated data set within three classes; Decision surfaces of (b) 1-NN KNN and (c)
15-NN and (d) KAOG.

and the algorithm KAOG KNN can be established by comparing their respective areas of decision. On KNN algorithm, smaller
values of K produces decision surfaces quite adjusted to the sample data, whereas, high values for K produces more general
decision surfaces. As the proposed algorithm can store components obtained from different values of K, is a consequence that
the surface of locally present decision to feature a certain component. For example, in areas with noise the algorithm tries to
find small groups that may form a component, avoiding the creation of several components of a single vertex - which would be
similar to the classification made by the algorithm 1NN. While in the relatively pure, the algorithm tries to increase K in order to
increase the influence of this area in the standings. It is worth mentioning that the static algorithm KAOG also has mechanisms
for the detection and removal of outliers, which consists of removing the isolated vertices of the optimal graph.

For comparing the static and the incremental approach, consider the following. Both learning approaches start by training
with an 80 patterns training set which results in an optimal network in both cases static and incremental. The rest of the SEA
data set is divided in batches, 80 patterns for training batches and 60 for testing batches. The incremental algorithm receives the
batches in a interchangeably manner, and performs incremental learning by adding new training pattern to the principal graph.
The addition of a new pattern to the network may cause it to be no longer optimal but still, by doing so, it acquire new knowledge
about the environment which enables it to deal with changes in the underlying concept. The static classifier instead, only receives
the test batches. For every batch an error mean is calculated, the train statistic is done by presenting the next batch of train to
the classifier as a test set. Figure 3 presents a comparison concerning our model in two different learning approaches, static and
incremental, within four data sets with concept drift. The data sets were generated according to the following thresholds: Figure
3(a) θ = {7, 9, 6, 9.5}, Fig. 3(b) with θ = {8, 9, 7, 9.5}, Fig. 3(c) with θ = {3, 5, 7, 9} and Fig. 3(d) with θ = {9.5, 8, 6, 4}. The
results are a averaged by 20 runs of each learning approach considering different generations of the SEA data set.

As expected the static classifier presents a good accuracy with patterns of the same concept it had learned or a close concept.
But, it has no mechanisms to recognize a change in the concept and consequently cannot react to it. The incremental classifier,
however, is able to recognize a concept change and to restructure the network to deal with the new scenario. In Fig. 3(a), note that
in the third concept the static classifier performs better than the incremental. This fact it is due to the third concept be a related to
the first one, in which the static classifier was trained. The reason why the incremental classifier presents decay in performance is
due to the fact that it just had adapted to the second concept. But as it can be seen in Fig. 3 the classifier also adjusts to the third
concept as well. Figure 3(b) stands for the statistic in the data set with less abrupt changes in the concept, as a result the static
classifier shows little changes in accuracy, but again the incremental classifier shows presents capability to recover. Figures 3(c)
and (d) presents results concerning the raise of one class in relation to the other, Fig. 3(c) represent a raise of class 1, and Fig.
3(d) a raise of class 2. In both cases, the static classifier is unable to follow such changes and as consequence its accuracy gets
worse in every concept change. The incremental classifier, however, recognizes the concept change and recovers its accuracy to
acceptable values. As one can see the incremental classifier had shown a better performance, not only in concept changes but
also on a stead concept it keeps getting better as the data stream keep coming. In the changing concepts it is expected a decay on
the performance for any classifier, but the most important is to recover to a good level of accuracy.
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Figura 3: Error rates comparison between Static and Incremental learning on a data set with concept drift, considering the
following thresholds (a) θ = {7, 9, 6, 9.5}; (b) θ = {8, 6, 8, 7.5}; (c) θ = {3, 5, 7, 9}; (d) θ = {9.5, 8, 6, 4}.

Consider now the second group of simulation, which consist in comparing the proposed algorithm KAOGINC for four other
algorithms, named SEA [14], DWM-NB [15], WCEA [3] and OnlineTree2 [5]. The experiments considered three domains, the
already cited SEA [14], the moving Sine and the moving Gaussians [16]. The results are a mean over 20 runs for each generation
of each domain. Figure 4 illustrates the performance of the algorithms on the SEA domain, for every test set along the time.

Note in Fig. 4 that the OnlineTree2 algorithm performs well until the second concept drift occurs, and after that it takes too
long to resume performance. This is due to the fact that the algorithm OnlineTree2 does not react well to abrupt changes of
concept, since it takes several iterations to adapt. However, the ensemble based algorithms, like SEA, DWM-NB and WCEA
have high adaptation capacity, given that the ensemble can restore itself with new classifiers in a number of iterations equal to
half the capacity of the committee, for unweighted ensembles like SEA and less iterations than that for weighted ensembles,
because weight may be used to favor those classifier trained on the newest concept, as is the instance of algorithms WCEA and
DWM-NB. Still, the best performance is obtained by the proposed classifier KAOGINC, showing its high level of adaptability to
concept drifts. Consider now the results for the Sine domain, presented in Fig. 5, which is composed of three abrupt changes of
concept.

Notice, in Fig. 5, that the OnlineTree2 algorithm presents the lowest adaptation performance since it does not update as quick
as the ensemble based algorithms or the algorithm KAOGINC. Also, the proposed algorithm achieved the best result, especially
during the periods of static concept. Despite the high error rate at the points of concept drifts (reaching errors rate around 85%),
the KAOGINC presents excellent recovery capacity, even better than the WCEA algorithm (Fig. 5), which is the one with the
most stable performance for this domain. At last, the results for the Gaussian domain are depicted in Fig. 6.

As in the Sine domain, the Gaussian domain, depicted in Fig. 6, presents abrupt drift which requires quick recovering from
the classifiers. The algorithm WCEA, once again, presents a quite stable performance with the cost of a slower recovering in
comparison to the aforementioned algorithms, KAOGINC and SEA. The best performance, though, is presented by the DWM-
NB algorithm as shown in Fig. 6, both in accuracy and recovering performance.

5. CONCLUSION

This paper proposed an incremental classifier based on the K-associated optimal graph and in the KAOG static classifier,
named KAOGINC. This extension have proved that graph-based classification methods not only can be successfully used classi-
fying stationary distributed data but also consists of a form of representation that allows frequent updating of concepts providing
steady performance along time. Initial results on the classification of non-stationary data show a favorable scenario for the
presented algorithm. Future works includes refining the graph updating process and consider real applications as well.
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Figura 4: Comparing the algorithm KAOGINC against the algorithms, OnlineTree2, SEA, WCEA and DWM-NB in the SEA
domain within the set of threshold θ = {7, 9, 6, 9.5}.
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Figura 6: Comparing the algorithm KAOGINC against the algorithms, OnlineTree2, SEA, WCEA and DWM-NB in the moving
Gaussians domain.
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