
10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil
 © Brazilian Society on Computational Intelligence (SBIC)

DECISION TREE-BASED ENSEMBLES TO SPECIFY SECRET KEYS FOR
CELLULAR AUTOMATA CRYPTOGRAPHIC MODEL

Luiz G. A. Martins and Gina M. B. Oliveira

Faculdade de Computação, Universidade Federal de Uberlândia
gustavo@facom.ufu.br; gina@facom.ufu.br

Abstract – A cryptographic method based on cellular automata (CA) was previously proposed which employs transition
rules as secret keys. However, some rules belonging to the possible key space present undesirable behaviors that must be
avoided. In a previous work, it was investigated the secret key specification for this cryptography model associating rules
performance in ciphering with CA static parameters. A genetic algorithm-based data mining was performed to discover
adequate key specification and it was employed to filter the set of all possible radius 2 CA rules. It was able to discover good
secret key specifications. However, such filter provokes a significant decay in the number of good keys, while still keeping
some underperforming rules. Adequate secret key specifications are investigated here using decision tree ensembles: bootstrap
aggregating (bagging), boosting and random forest. The new filters are compared to the previous ones. By applying the new
methodology, it was possible to find filters able to eliminate almost all underperforming rules and keeping a higher number of
adequate secrete keys.

Keywords – Ensembles, decision trees, genetic algorithm, data mining, cellular automata, cryptography.

1 Introduction
Cellular automata are particularly well suited for cryptographic application and there are several previous studies in this topic
[1]-[10]. Since CA rule is simple, local and discrete, it can be executed in easily-constructed parallel hardware at fast speed.
Considering CA reverse interaction, given a lattice in time t, a possible antecessor lattice is determined for time t-1. This
process is also known as pre-image computation. In previous papers [9-10], the application of the reverse interaction [12] as a
cipher algorithm was investigated. Besides, static parameters were employed in [9] to specify CA rules as appropriate secret
key. A rule was considered adequate in [9] if it presents a guarantee of pre-image existence for any possible lattice. Using a
spatial entropy measure to evaluate the ciphering quality, the main conclusion in [9] is that the simple adoption of the reverse
algorithm is not possible because only rules with 100% guarantee of pre-image existence are not appropriate for ciphering,
since they do not exhibit a chaotic dynamics. A new approach has been emerged from this previous study [11]: it employs
toggle transition rules as secret keys and it alternates the original reverse algorithm and a variation that uses extra bits in
encryption when the pre-image computation fails. This variation is similar to pre-image computation adopted in Gutowitz’s
model [7] which also employs toggle rules. Since it is expected that in practice few failures happen, the ciphertext length will
be close to the plaintext. This method was named Variable-Length Encryption Method (VLE) [11].

CA rules used as secret keys in VLE must be properly specified to exhibit two characteristics: (i) they must have low
probability of failure during pre-image computation to returning a ciphertext length close to the original text; (ii) they must add
a high level of entropy during the encryption to ensure a good ciphering quality. In [14], the secret key specification was better
investigated. First, a representative rule set formed by all radius 2 right-toggle rules was analyzed. These rules represent about
50% of the possible secret keys in radius 2 space, being that the other 50% are dynamically equivalent (radius 2 left-toggle
rules). The main conclusion is that there are some undesirable behavior rules in the complete set that must be avoided as secret
keys. An analysis based on CA static parameters [13] was employed in [14] to capture the pattern associated to
underperforming rules. Using nine static parameters and a genetic algorithm (GA) [15] to mine this pattern, it was able to find
a good specification of rules to be used as valid secret keys. However, the number of available good rules decreases
significantly and some undesirable ones are maintained in the filtered set.

In the present work, new secret key specifications to VLE encryption method are investigated using decision trees-
based ensembles. Decision trees employ fast learning algorithms and they are able to generate comprehensible classifiers. In
our experiments, machine learning algorithms available in Weka® were used. First, a single decision tree based on C4.5
algorithm was employed. Although this method results a good filter to adequate rules, it kept a significant number of
undesirable rules due to the natural unbalancing of the data set. Subsequently, we adopted three ensemble methods - bootstrap
aggregating (bagging), boosting and random forest - attempting to deal with this unbalanced nature of the data set. Ensemble
methods use multiple models to obtain better predictive performance than could be obtained from any of the base models. The
principle behind ensembles is that prediction can base be improved by aggregating weaker independent classifiers. The main
goal of this work is to filter the undesirable rules of the entire secret key space, without drastically reducing the number of
adequate secret keys. The new classifier presents a great improvement, mainly in the underperforming rules reduction.

2 CA Applied in Cryptography
A cellular automaton consists of a lattice of cells and a transition rule. Each cell presents in each time t one of k distinct states.
A cell is updated in discrete time steps and its new state depends on the states of the 2R+1 neighborhood cells, where R is the

1

10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil
 © Brazilian Society on Computational Intelligence (SBIC)

t
i R

CA radius. In the case of a deterministic one-dimensional CA, whose example is showed in Figure 1, the state of the cell i at
time t+1 is determined by the transition ruleτ:

(1) () () ()[,..., ,...,]t t t
i i R ia a a aτ+

− += (1)

The dynamics of a cellular automaton is associated with its transition rule. In order to help forecast the dynamic
behavior of CA, several static parameters have been proposed [13], some of them are: Z derived from the pre-image
computation algorithm and it is composed by Zleft and Zright. [12]; symmetry level (S) of a rule transition [9]; neighborhood
dominance (ND), activity propagation, sensitivity and absolute activity (AA) [13]. The idea behind such static parameters is to
perform a simple calculus over the rule transition output bits. Based on the result, one can predict the most probable behavior
when the rule is applied to an arbitrary lattice. For example, if a transition rule has low Z (next to 0) it is expected a fixed point
behavior, while if it has high Z (next to 1), the chaotic behavior is more probable.

Figure 1 – Example of Deterministic 1D Cellular Automata.

Basically, CA-based cryptographic models can be divided into three classes: (i) models that use CA to generate binary
sequences with good pseudo-random properties, which are used as cryptographic keys, but the effective ciphering process is
made by another function [1-4]; (ii) models based on additive, non-homogeneous and reversible CA, that use algebraic
properties of this kind of rules to generate automata of maximum and/or known cycle [5-6]; and (iii) models based on
irreversible CA, which uses the backward interaction of cellular automata in the ciphering process and the forward interaction
to decipher [7-11], as the cryptographic model discussed here.

Gutowitz has previously proposed a cryptographic model based on backward evolution of irreversible CA [7]. Toggle
CA transition rule is used as the secret key in his model. A pre-image of an arbitrary lattice is calculated adding extra bits in
each side of the lattice. This increment is pointed as the major flaw in the model. An efficient reverse algorithm was proposed
by Wuensche and Lesser [12] for a periodic boundary condition, keeping the pre-image with the same size of the original
lattice. Such algorithm was evaluated as encryption method in [9]. However, its usage has the disadvantage that there is no
guarantee of pre-image existence for any given lattice and any given rule. Thus, the pre-image computation can fail if a
Garden-of-Eden state [12] is found during ciphering. The only rules with assurance of pre-image existence are not appropriate
for ciphering because they do not exhibit a chaotic dynamics.

3 VLE Method

3.1 General Description
Due to drawback of the previous methods, a new approach was proposed in [9] and developed in [11], which alternates the
original reverse algorithm and the variation that uses extra bits, using the second only when the pre-image computation fails.
This variation is similar to pre-image computation adopted in Gutowitz model [7]. Although this approach needs to add bits to
the ciphertext when a failure occurs, it is expected that in practice few failures happen and the ciphertext length will be equal
or close to the plaintext size. In the resultant method, encryption always succeeds and the final length of the ciphertext is not
fixed. This method was named Variable-Length Encryption Method (VLE) [11]. VLE method works as it alternates rounds of
pre-image computation performed by reverse algorithm (a variation of Gutowitz’s model for periodic conditions) with few or

2

10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil
 © Brazilian Society on Computational Intelligence (SBIC)

none steps of pre-image computation performed by Gutowitz’s model. Ciphering is made by computing P consecutive pre-
images starting from a lattice of size N corresponding to the plaintext. The secret key is a radius-R CA rule τ generated with an
appropriate specification based CA static parameters.

Suppose that VLE started to calculate pre-images using reverse algorithm and the secret key τ and it fails in the K-th
pre-image such that K ≤ P. In such situation the ciphering process uses the modified reverse algorithm with extra bits to
calculate the K-th pre-image. Thus, the K-th pre-image will have N+2R cells. Ciphering returns again to the original reverse
algorithm for remaining pre-image computations. If all the subsequent pre-images computation succeeds the final ciphertext
will have a size of N + 2R. If the pre-image computation fails again, the ciphering process changes and adds 2R more bits to
the lattice. If the process fails in F pre-images (F ≤ P) the final lattice will have N+2FR. Starting from a lattice of N cells, the
size of the ciphertext after P pre-images computation is given by N ≤ ciphertext size ≤ N +2PR.

For practical reasons related to the speed of the encryption process, it can be better to limit the method to operate with
only toggle rules. A CA transition table is said to be a toggle rule if it is sensible in respect to a specific neighborhood cell, that
is, if any modification of the state on this cell necessarily provokes a modification on the new state of the central cell,
considering all possible neighborhoods [7]. Therefore, it speeds up the pre-image computation, since that will be removed the
ambiguities and there is no possibility of the algorithm to come back in the computation before arriving at the end of the
lattice.

Deciphering is executed applying the forward interaction of cellular automata rules. By starting from the ciphertext
the recipient needs to apply the transition rule τ forward by P steps and the final lattice will be the plaintext. He also needs to
know in which pre-images failures happened to recover the original text.

3.2 Evaluation of VLE Secret Key Space
Applying VLE method, any toggle rule is able to complete the ciphering process starting from any plaintext (initial lattice).
However a short length ciphertext depends on the secret key specification. Some experiments were performed in [14] to
analyze VLE’s performance and to evaluate rules specification using the complete set of radius 2 right-toggle rules: all of them
have Zleftt = 1 and 0 < Zright < 1. As a radius 2 toggle rule is defined by only 16 bits (since the other 16 bits are deterministically
defined due to toggle property), this set is composed by 65536 (216) rules. These rules represent 50% of the possible secret
keys in radius 2 space. The other 50% of secret keys are the all radius 2 left-toggle rules (Zright = 1), which are dynamically
equivalent to the set of right-toggle rules.

VLE-based environment was employed in [14] to cipher a hundred 256-bits plaintexts using each right-toggle rule (of
65536 rules), by calculating 48 consecutive pre-image steps (P). The number of consecutive pre-images was experimentally
determined by preliminary investigations. Based on the results, it is possible to determine some performance metrics as
following:

• Ciphertext Length (Lmean): by applying VLE method, the final length of the ciphertext can be between N and N+2PR.
Aiming to evaluate if the expected final length is in fact close to N, it was calculated the mean length (Lmean) of the ciphertexts
(final lattices), related to the mean number of failures (Fmean) occurred during the ciphering. In the experiments performed in
[14], a number of fails above 10 was considered inadequate because it returns a ciphertext with 300 bits or more starting from a
plaintext of 256 bits. The ciphertext length obtained for all 65536 right-toggle rules ciphering 100 plaintexts highlights the
existence of several secret keys returning at least one ciphertext with size equal or above 300 bits. About 800 rules returned
long ciphertext length for at least one random plaintext evaluated and 478 rules returned Lmean above 300 bits considering the
100 evaluated plaintexts.

• Ciphering quality (Emean): by comparing ciphertexts generated from two very similar plaintexts it is possible to
evaluate the encryption quality and specially its protection against a differential cryptanalysis-like attack. Cryptanalysis tries to
find the plaintext after getting the ciphertext without knowing the secret key [16]. Sen et al. (2002) have used the same idea to
analyze their CA cryptosystem named CAC comparing it with DES and AES cryptosystems [17]. In such analysis, several
pairs of plaintext (X, X'), that differ one of the other by a fixed and small difference D, is used to generate a pair of ciphertexts
(Y, Y'), which differ one of the other by a difference D'. This difference is obtained by Hamming distance. That is, applying
XOR operations between Y and Y' and counting the number of 1s in D'. In the experiments performed in [14], the difference D
between two plaintexts X and X’ was fixed in only one bit in any arbitrary position over the lattice and the value of D’ was
calculated for the complete set of right-toggle rules. The computation of D’ to each pair (Y, Y') was performed to obtain the
entropy. This measure aims to verify if D´ does not keep any pattern that eventually could help a cryptanalyst. Spatial entropy
[14] was calculated on D’ to evaluate the existence of some undesirable regularity on this difference. Entropy below 0.5
indicates a strong pattern in difference D’, in other words, a low ciphering quality. When ciphering quality metric Emean was
calculated for all 65536 right-toggle rules ciphering the 100 plaintexts [14], it was possible to verify that there are rules with
mean values of entropy below 0.5, indicating that these rules does not perform an adequate encryption of the plaintexts in
average. The most probable behavior in such cases is that the rule only shifts the initial lattices, not performing an actual
encryption of these plaintexts. This behavior cannot be allowed in a secure cryptosystem. Considering the entire rule set (right
and left-toggle rules), about 3200 rules returned entropy below 0.5 for at least one pair Y and Y’ and 879 rules returned Emean
below 0.5 considering the 100 evaluated plaintexts.

3

10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil
 © Brazilian Society on Computational Intelligence (SBIC)

Based on performance metrics Lmean and Emean, the main conclusion in [14] was that there are undesirable behavior
rules in the complete set analyzed - considering a cryptographic purpose - that must be avoided as secret keys. Therefore the
entire rule space formed by all radius 2 right-toggle rules is not appropriate to be applied as secret keys in VLE method: 1357
rules (~2% of the key space) must be avoided: 879 due to low entropy and 478 due to long ciphertext length.

3.3 Previous Specifications Using Static Parameters and GA-Based Data Mining
Secret key specification was first proposed in [9] trying to filter undesirable behavior rules when using the pure reverse
algorithm [12] as ciphering process: static parameters S and the components Zleft and Zright were used. However, some
preliminary experiments using the complete set of right-toggle rules had evidenced that their application is not effective as
supposed, when VLE method is used. Aiming to better understand the relation between CA static parameters and
underperforming rules, an analysis was developed in [14]. A series of CA parameters were calculated trying to identify a
pattern to filter inadequate rules of the complete key space formed by all radius 2 right-toggle rules. Nine parameters were used
in this analysis: Zright, S, BWLR_Symmetry (BWLR), LR_Symmetry (LR), Absolute Activity (AA), Neighborhood Dominance
(ND), Sensitivity (μ) and Activity Propagation (AP) [13-14]. A new parameter was also proposed and used in [14]: it is the
spatial entropy associated to the 16 bits that define the 32-bits toggle rule (the rule core), named here as core entropy (CE). All
these parameters were calculated to each one of the 65536 right toggle radius 2 rules. The parameter values are normalized
between 0 and 1. A database was elaborated in which each register corresponds to one right-toggle rule and the fields are
composed by the values of the nine parameters calculated for each rule, and the values of the performance metrics (Lmean and
Emean) where calculated when the rule is applied to cipher 100 random plaintexts.

As a pattern associating parameters with the underperformance rules was not possible to recognize by a simple visual
inspection, a GA-based data mining process was applied with this goal. Standard genetic algorithm was elaborated based on
the model described in [18]. As illustrated in Figure 2, the individual is composed by I genes, where I is the number of CA
static parameters analyzed (I=9). The i-th gene is subdivided into three fields: weight (Wi), operator (Oi) and value (Vi). Each
gene corresponds to one condition in the antecedent part (IF) and the individual as a whole is the rule antecedent. The weight
field is an integer variable and its value is between 0 and 10. This field determines the insertion or no of the correspondent
gene in the rule antecedent. If this value is lesser than a boundary-value this gene will not appear in the rule, otherwise the gene
appears. The value 7 was used as the boundary-value [14]. The operator field can be < (minor), ≥ (larger or equal) or ≠
(different). The value field is a floating-point number that can vary between the 0 and 1, because each parameter was
normalized in such range.

Gene 1 Gene 2 …
…

Gene 9
Zright S CE

W1 O1 V1 W2 O2 V2 W9 O9 V9
Figure 2 –Individual representation.

To establish the consequent part of the rule, the fields Fmean, and Emean of each register of the database was analyzed
aiming characterize the underperformed rules in specific classes. Field Class was added to the database with the classification
of each register in one of these classes:

• Class 1: rules with low mean entropy (Emean < 0.5). There are 879 right-toggle rules.

• Class 2: rules with large mean ciphertext length (Lmean ≥ 300 bits). There are 478 right-toggle rules.

• Class 3: rules with adequate features to secret key. There are 64,179 reminiscent rules.

The individual illustrated in Figure 1 represents only the antecedent part of the rule (IF). The consequent part is
always in the format THEN Class = C, being that C can be 1, 2 or 3. However, it is omitted in individual’s representation.
Conversely, it is a fixed execution parameter of GA. Thus, if the GA is executed with C = 1, all the rules of population
represent classification rules in the format IF ANTECEDENT THEN Class is “Low entropy”. All registers are considered
either Class 1 or not Class 1. Fitness quantifies the quality of the rule associated to each individual. Two indicators commonly
used in classification are Sensitivity and Specificity [18]. In [14], individual fitness is given by a weighted sum between
Sensitivity and Specificity. Stochastic tournament with Tour = 3 is used as the matting selection method. Two-point crossover
is applied and a specific mutation operator is used to each type of gene field with a rate of 30%. Each GA experiment was
formed by 100 runs, using a population of 100 individuals, which were evolved by 100 generations. The classification rule that
was indeed intended to be mined was Class 3, because it represents appropriate rules to be used in cryptography. However, the
other two classification rules (classes 1 and 2) were also important to achieve this goal, because they better characterize low
entropy rules and long ciphertext ones, given information to prune the rules returned by GA for Class 3. After several
executions and manual post-processing pruning procedures the rule following was found in [14]:

IF (S ≠ 1 AND ND ≤ 0.57 AND CE > 0.65 AND Zright ≠ 1) THEN Class = 3

This rule employs 4 of the 9 CA parameters to characterize adequate secrete keys. It was applied as a filter in the
complete radius 2 right-toggle CA rule set. The filtered set has 51,495 right-toggle rules: it reduces 21.4% of the entire key

4

10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil
 © Brazilian Society on Computational Intelligence (SBIC)

space. When the underperforming rules are analyzed, the advantage of such filter is evidenced: only 28 rules with such
inappropriate low entropy remains (out of 879 rules) and 217 rules with a ciphertext length above 300 bits remains (out of 750
rules). Therefore, it was concluded in [14], the GA-mined filter is a good specification for CA secret keys.

4 Ensemble-Based Models
Ensemble methods combine multiple hypotheses in order to form a hopefully better hypothesis. That is, an ensemble is a
technique for combining many weak classifiers (base classifiers) in an attempt to produce a strong one [19]. Generally, the
ensemble decision is generated from the base classifiers hypothesis by voting. Therefore, ensemble hypothesis is not
necessarily contained within the hypothesis space of the models from which it is built. Thus, ensembles can be shown to have
more flexibility in the functions they can represent. Diversity and accuracy are features desirable for good performance of the
ensembles [19]. Diversity can be obtained when the base classifiers are independents (its errors are not correlated). Accuracy
can be obtained if the base classifiers results individually better performances than random classification (> 0.5). Evaluating
the prediction of an ensemble typically requires more computation than evaluating the prediction of a single model. Thus, fast
algorithms such as decision trees are commonly used with ensembles, although slower algorithms can benefit from ensemble
techniques as well. Other advantage of decision tree is its capability of comprehensibility, that is, it is able to understand the
criteria used by model to classify a rule.

In present work, three kinds of ensembles were tested: two meta-algorithms based on instances manipulation
(bootstrap aggregating-bagging and boosting) and one algorithm based on instances and attributes manipulation (random
forest). All ensembles adopted decision trees as base classifiers. The models was generated, trained and tested through the
Weka® Explorer framework. In bagging method, each model in the ensemble vote with equal weight. In order to promote
model variance, bagging trains each model in the ensemble using a different subset of the training set. Bagging randomly
generates each new training subset by uniform sampling examples from original one. In this process is used the bootstrap
approach, which employed sampling with replacement. Boosting involves incrementally building an ensemble by training each
new model instance (base classifier) to emphasize the training examples that previous models misclassified. In other words,
data is dynamically reweighted: misclassified examples increase their weight and corrected classified examples decrease their
weight. In some cases, boosting has been shown to yield better accuracy than bagging, but it also tends to be more likely to
overfitting training data. The most common implementation of boosting is Adaboost, which was used in this work. Random
forest is an ensemble classifier that consists of many decision trees. The ensemble hypothesis is obtained by the mode of the
outputs of the individual trees. The random forest algorithm combines random decision trees (attributes selection) with bagging
(instances sampling) to achieve very high classification accuracy. For each node of the tree, the algorithm randomly chooses of
k attributes (being k << total of attributes) and calculates the best split based on these attributes in the training subset. The
selection of a random subset of attributes is a way to implement stochastic discrimination [20]. Each tree is fully grown and it
is not pruned. Random forest presents: (i) a fast learning algorithm; (ii) it runs efficiently on large databases; and (iii) it
estimates what variables are important in the classification. In other hand, it is more likely to overfitting some datasets, being
more pronounced in noisy classification or regression tasks.

5 Experiments
Althrough GA-mined filter obtained in [14] defines a good specification for VLE cryptographic model, it provokes a
significantly reduction of available keys. Besides, some undesirable rule still remains in the resultant filtered key set. In this
section new experiments are described which were carry out aiming to identify new secret key specifications based in decision
trees ensemble methods.

5.1 Preprocessing
This work also uses the complete radius 2 right-toggle rules set employed in GA mining experiments described in [14]. The
full set formed by 65,536 radius 2 rules presents an unbalancing in the registers quantity between the classes: 879 rules with
low entropy (class 1); 478 rules with large ciphertexts length (class 2); and 64,179 rules classified as adequate secret keys
(class 3). Due to such high unbalance, the algorithms guide the learning process to identify the majority class, prejudicing the
detection of the minority classes. Therefore, the complete rule set was worked in order to aid the machine learning algorithms
to find adequate classifiers. Initially, a random sampling of the registers of majority class was made in order to decrease the
unbalancing; being the number of instances of the class 3 is limited up to four times the total of instances of two others (classes
1 and 2). The new subset contains approximately 5400 class 3 instances. In this process, three different random seeds were
employed for generation of subsets. Each subset was again divided in training and test subsets through a stratified 10-fold
cross-validation sampling, which are applied to evaluate of the classifiers performance [19]. Therefore, 30 subsets were used
for each machine learning method. Furthermore, two types of experiment were performed: the first type uses 3 classes as
defined previously (low entropy, large ciphertext and adequate rules); the second type joined the undesirable rules into only
one class defining only two classes (inadequate and adequate rules). All preprocessing was carried on Matlab®, as well the
generation of data files in the Weka® format (arff).

5

10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil
 © Brazilian Society on Computational Intelligence (SBIC)

5.2 Ensembles-Based Experiments
Each machine learning method (single decision tree and ensembles approaches) was applied through the Weka® Explorer
framework to all training and test subsets obtained in pre-processing step. Table 1 presents mean values of performance
metrics obtained using learning methods in 2-classes test subsets. These values are grouped by random seeds. This table
contain the quantity of adequate rules selected (TP - true positive); underperforming rules effectively detected (TN - true
negative); adequate rules incorrectly classified as underperforming ones (FN - false negative); underperforming rules
incorrectly classified as adequate ones (FP - false positive); as well the indicators Sensitivity; and Specificity.

Table 1 – Mean values of the methods specifications applied to test subsets with 2 classes.
Run Metrics Single DT Bagging Boosting Random Forest

0

TP 524 529.5 529.7 527.1
FN 18.8 13.3 13.1 15.7
FP 25.2 26.4 6.1 7.9
TN 110.5 109.3 129.6 127.8

Sensit. 0.965 0.975 0.976 0.971
Specif. 0.815 0.805 0.955 0.941

1

TP 526.5 529.7 529.1 527.5
FN 16.3 13.1 13.7 15.3
FP 26.8 27 6.7 8.5
TN 108.9 108.7 129 127.2

Sensit. 0.970 0.976 0.975 0.972
Specif. 0.802 0.802 0.950 0.938

2

TP 526 528.8 528.7 528.7
FN 16.8 14 14.1 14.1
FP 27.8 26 6.8 7.7
TN 98.9 109.7 128.9 128

Sensit. 0.969 0.974 0.974 0.974
Specif. 0.745 0.808 0.950 0.943

The executions of single decision tree-based methods aim to generate baseline performance metrics for evaluate of
ensemble classifiers and determine the values of configuration parameters of the decision tree (DT) employed in the others
methods. The adopted decision tree after some preliminary experiments uses a prune confidence factor of 0.25; allows at least
six instances for each leave node; uses C4.5 algorithm and 10-fold cross-validation to training validation. The training process
of this kind of classifier spends about 5.5 seconds and generates decision trees with 125 nodes and 63 leave nodes in average.
The best decision tree obtained was applied as a filter over the complete radius 2 right-toggle CA rule set. The filtered set has
62,443 rules (reduction of 5% considering the entire key space), remaining 202 underperforming rules (97 rules with low
entropy and 105 with a larger ciphertext length).

Three kinds of ensembles also were evaluated in this work: bagging, boosting and random forest. All ensembles
approaches adopted the same parameter configuration used in the single decision tree executions to their base classifiers. In
addition, each method has its specific parameters.

Considering the ensemble method based on bagging, it was performed 5 iterations during the training, where the size
of each bag is the same of the training subset. The choice of the number of iterations was also defined after some exploratory
experiments aiming to reduce training processing time without compromising the accuracy of the model, returning a mean
processing time of 30 seconds. However, its processing time is greater than the single decision tree model, since that this
method generates 5 decision trees from different bootstrap sampling. The decision trees generated are bigger than those
obtained using single decision tree models. They have 153 nodes and 72 leaves in average. The best bagging ensemble
obtained was applied over full set, generating a filtered set of 62,972 instances (about 3.9% of reduction), being that 95 rules
belonging to class 1 (low entropy) and 106 rules belonging to class 2 (large ciphertext length).

In boosting approach, Adaboost M1 (Weka® algorithm) was used with 10 iterations. The adoption of such number of
iterations (greater than the number used in bagging) aims better performance of boosting. The best boosting ensemble obtained
was applied as filter over the complete radius 2 right-toggle rule set. The filtered set has 62,768 rules (reduction of 4.2% of the
entire key space), remaining 6 underperforming rules (4 rules with low entropy and 2 with a larger ciphertext length). As it can
be observed, there is a great reduction of underperforming rules in this method. We believe it happens due to the better
regulation of the attribute weights realized during training phase, since there are more specialized/adjusted trees. In the other
hand, it provokes a significantly increase of the mean processing time during training to approximately 72 seconds. This is the
worst processing time between learning methods investigated here. Besides, executions with boosting returning the biggest
decision trees (298 nodes and 150 leaves in average).

Random forest method experiments were set to generate five decision trees per execution and employees 4 input
attributes. This configuration returned a performance similar to the boosting taking a processing time close to these obtained to

6

10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil
 © Brazilian Society on Computational Intelligence (SBIC)

single decision tree method (7.5 seconds in average). When applied over the full rule set, the best random forest ensemble
obtained a filtered set of 62,556 reminiscent rules (about 4.6% of reduction), being 5 rules with low entropy and 5 rules with
large ciphertext length.

As it can be noted in Table 1, the usage of a single decision tree and the bagging approaches generated the worst
performances. It was biased by the great number of instances in majority class, resulting in greater values of false positive
(underperforming rules classified as adequate keys). In other hand, boosting and random forest approaches presented the best
performances, resulting in similar metrics.

For better comparing the two approaches, three classifiers (optimist, pessimist and mean ensembles of each seed) were
applied in full set. The mean values of the metrics obtained by the best filter of both methods as illustrated in Table 2. As one
can see, the values returned by both approaches are very similar, although boosting has a bit of advantage since it returns the
same sensitivity and a higher specificity, which is the major capability we desire (because it is related to the misclassification
of inadequate rules).

Table 2 – Results of the best ensembles applied over the full rule set with 2 classes.
Method TP FN FP TN Sens Spec
Boosting 62865 1314 5 1352 0.980 0.996

Random Forest 62693 1486 9 1348 0.980 0.993

Attempting to better identify which method generates the best filter, it was verified the behavior of ensembles
generated using 3 classes instead of 2. For simplicity, we used boosting and random forest approaches applied only to the
training and test subsets in which the best ensembles were obtained in 2-classes problem. The resultant 3-classes specifications
were applied to full rule set and the confusion matrixes are presented in Table 3.

Analyzing this table, boosting obtains the best trade-off, that is, it provided a more reduction of underperforming
rules, without considerably compromising the quantity of available rules in filtered set. However, the result obtained by
random forest also is very good, being able to be used.

Table 3 – Confusion matrixes obtained in 3 classes full set.
 Boosting Random Forest
 C1 C2 C3 C1 C2 C3

C1 875 0 4 870 4 5
C2 4 472 2 0 473 5
C3 990 427 62762 1038 595 62546

Aiming to compare the best filters obtained using each approach, Table 4 presents the results found. Each row
corresponds to the used filter criteria applied to database, except for the first row which represents the complete radius 2 toggle
rule set (Fullset). The other rows presents: filter generated through GA-based data mining process (GA-Subset) described in
[14]; single decision tree-based filter (DT-Subset); ensemble filters based on bagging, boosting and random forest approaches
(BA-Subset, BO-Subset and RF-Subset, respectively). The second column corresponds to total number of reminiscent rules in
each filtered set. Other columns correspond to number of rules in each class (1, 2 or 3). It is desirable a small quantity of rules
in classes 1 (low entropy) and 2 (large ciphertext length); and a high number of rules in class 3 (adequate keys).

Table 4 – Reminiscent rules after filtering (3 classes).
Filter Criteria Number of rules Low Entropy (C=1) Large Length (C=2) Good Rules (C=3)

Fullset 65536 879 478 64179
GA-Subset [14] 51495 28 217 51250

DT-Subset 62443 97 105 62241
BA-Subset 62972 95 106 62771
BO-Subset 62768 4 2 62762
RF-Subset 62556 5 5 62546

5 Conclusions
The appropriate specification of adequate cellular automata rules as secret keys for VLE cryptographic method was deeper
investigated in the present work. It was used a set formed by all the 65536 radius 2 right-toggle rules as potential secret keys
and different machine learning approaches were used to relate the adequacy of rules and their static parameters. Initially, we
analyzed specification obtained on previous work [14], which used a standard genetic algorithm and several CA static
parameters to mine adequate rules in this same data set. Although a good specification was found in [14], its usage as a filter

7

10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil
 © Brazilian Society on Computational Intelligence (SBIC)

8

over the key space provokes a severe decay of the number of available good rules and some undesirable ones are maintained.
In order to improve filter specification, the usage of single or ensemble methods based on decision trees is investigated here.

Considering the mean convergence time (training), the usage of single decision tree or random forest ensemble were
must faster than bagging and boosting approaches. Boosting has the double of iterations in relation to bagging turning it the
slowest approach. Besides, boosting generates the biggest decision trees, with twice number of nodes in relation to bagging.
The smallest decision trees are generated by single C4.5 algorithm. Analyzing the performance metrics obtained in
experiments, does not exist a significant variation in rate of false negative between the methods. This indicates a similarity in
relation to majority class prediction. However, considering the reduction of underperforming rules in filtered set, it is possible
to rank the methods in relation to false positives: single decision tree and bagging classifiers as the worst filters. Although they
return large number of rules in filtered sets (bagging generated the biggest one) and they are able to decrease the number of
rules with large ciphertext length in relation to previous specification published in [14], they also increase the number of
reminiscent rules with low entropy. Such kind of rules is prohibitive for cryptography specifications. Boosting and random
forest approaches present a significant improvement on the prediction of minority classes (they returned the best results), being
that the values obtained by boosting method are a bit better, while random forest method is much faster (random forest is
almost ten time faster than boosting). Both methods also returned a small reduction of the secret key space, specially when
compared with the previous specification obtained in [14]. Therefore, both methods produced excellent specifications to secret
keys and they overcame the specification obtained by genetic algorithm in [14].

6 References
[1] S. Wolfram, Cryptography with cellular automata. Int. Cryptology Conf. (Crypto'85). LNCS. 218 (1986), 429-432.
[2] M. Tomassini, M. Perrenoud, Stream Ciphers with One and Two-Dimensional Cellular Automata. Parallel Problem

Solving from Nature VI. LNCS. 1917(2000), 722-731.
[3] F. Seredynski, P. Bouvry, A.Y. Zomaya, Secret key cryptography with cellular automata. Workshop on Nature Inspired

Distributed Computing, (2003), 149-155.
[4] M. Benkiniouar, M. Benmohamed, Cellular Automata for Cryptosystem. IEEE Conference Information and

Communication Technologies, (2004), 423-424.
[5] J. Kari, Cryptosystem based on reversible cellular automata, Personal communication, (1992), Apud in (Seredynski,

Bouvry and Zomaya, 2003).
[6] S. Nandi, B. Kar, P. Chaudhuri, Theory and Applications of CA Automata in Cryptography, IEEE Trans. on Computers,

43 (1994), 1346-1357.
[7] H.Gutowitz, Cryptography with Dynamical Systems,Cellular Automata and Cooperative Phenomena,1(1995),237-274.
[8] G.M.B. Oliveira, A. Coelho, L. Monteiro, Cellular Automata Cryptographic Model Based on Bi-Directional Toggle Rules,

Int. Journal of Modern Physics C, 15 (2004), 1061-1068.
[9] G.M.B. Oliveira, H. Macêdo, A. Branquinho, M. Lima, A cryptographic model based on the pre-image computation of

cellular automata, Automata-2008: Theory and Applications of Cellular Automata, (2008), 139-155.
[10] A. Wuensche, Encryption using cellular automata chain-rules, Automata-2008: Theory and Applications of Cellular

Automata, (2008), 126-138.
[11] G.M.B. Oliveira, L.G.A. Martins, L.S. Alt, G.B. Ferreira, Investigating a Cellular Automata-Based Cryptographic Model

with a Variable-Length Ciphertext. International Conference on Scientific Computing, (2010).
[12] A. Wuensche, M. Lesser, Global Dynamics of Cellular Automata. Addison-Wesley, (1992).
[13] G.M.B. Oliveira, P. de Oliveira, N. Omar, Definition and applications of a five-parameter characterization of 1D cellular

automata rule space, Artificial Life, 7:3 (2001), 277-301.
[14] G.M.B. Oliveira, L.G.A. Martins, G.B. Ferreira, L.S. Alt, Secret Key Specification for a Variable-Length Cryptographic

Cellular Automata-Based Model, Int. Conf. on Parallel Problem Solving from Nature, LNCS, 6239(2010), 381-390.
[15] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, (1989).
[16] W. Stallings, Cryptography and Network Security: Principles and Practice, Prentice Hall, (2003).
[17] S. Sen, C. Shaw, D. Chowdhuri, N. Ganguly, P. Chaudhuri, Cellular Automata based Cryptosystem (CAC). LNCS,

2513 (2002), 303-314.
[18] M. Fidelis, H. Lopes, A. Freitas, Discovery comprehensible classification rules with a genetic algorithm. Cong. on

Evolutionary Computation, (2000), 805-810.
[19] K. Faceli, A.C. Lorena, J. Gama, A.C.P.L.F. de Carvalho, Inteligência Artificial: Uma abordagem de Aprendizado de

Máquina, unpublish, (2011).
[20] E. Kleinberg, An Overtraining-Resistant Stochastic Modeling Method for Pattern Recognition, Annals of Statistics, 24:6

(1996), 2319–2349.

	6 References

