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Abstract – A cryptographic method based on cellular automata (CA) was previously proposed which employs transition 
rules as secret keys. However, some rules belonging to the possible key space present undesirable behaviors that must be 
avoided. In a previous work, it was investigated the secret key specification for this cryptography model associating rules 
performance in ciphering with CA static parameters. A genetic algorithm-based data mining was performed to discover 
adequate key specification and it was employed to filter the set of all possible radius 2 CA rules. It was able to discover good 
secret key specifications. However, such filter provokes a significant decay in the number of good keys, while still keeping 
some underperforming rules. Adequate secret key specifications are investigated here using decision tree ensembles: bootstrap 
aggregating (bagging), boosting and random forest. The new filters are compared to the previous ones. By applying the new 
methodology, it was possible to find filters able to eliminate almost all underperforming rules and keeping a higher number of 
adequate secrete keys. 
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1 Introduction 
Cellular automata are particularly well suited for cryptographic application and there are several previous studies in this topic 
[1]-[10]. Since CA rule is simple, local and discrete, it can be executed in easily-constructed parallel hardware at fast speed. 
Considering CA reverse interaction, given a lattice in time t, a possible antecessor lattice is determined for time t-1. This 
process is also known as pre-image computation. In previous papers [9-10], the application of the reverse interaction [12] as a 
cipher algorithm was investigated. Besides, static parameters were employed in [9] to specify CA rules as appropriate secret 
key. A rule was considered adequate in [9] if it presents a guarantee of pre-image existence for any possible lattice. Using a 
spatial entropy measure to evaluate the ciphering quality, the main conclusion in [9] is that the simple adoption of the reverse 
algorithm is not possible because only rules with 100% guarantee of pre-image existence are not appropriate for ciphering, 
since they do not exhibit a chaotic dynamics. A new approach has been emerged from this previous study [11]: it employs 
toggle transition rules as secret keys and it alternates the original reverse algorithm and a variation that uses extra bits in 
encryption when the pre-image computation fails. This variation is similar to pre-image computation adopted in Gutowitz’s 
model [7] which also employs toggle rules. Since it is expected that in practice few failures happen, the ciphertext length will 
be close to the plaintext. This method was named Variable-Length Encryption Method (VLE) [11]. 

CA rules used as secret keys in VLE must be properly specified to exhibit two characteristics: (i) they must have low 
probability of failure during pre-image computation to returning a ciphertext length close to the original text; (ii) they must add 
a high level of entropy during the encryption to ensure a good ciphering quality. In [14], the secret key specification was better 
investigated. First, a representative rule set formed by all radius 2 right-toggle rules was analyzed. These rules represent about 
50% of the possible secret keys in radius 2 space, being that the other 50% are dynamically equivalent (radius 2 left-toggle 
rules). The main conclusion is that there are some undesirable behavior rules in the complete set that must be avoided as secret 
keys. An analysis based on CA static parameters [13] was employed in [14] to capture the pattern associated to 
underperforming rules. Using nine static parameters and a genetic algorithm (GA) [15] to mine this pattern, it was able to find 
a good specification of rules to be used as valid secret keys. However, the number of available good rules decreases 
significantly and some undesirable ones are maintained in the filtered set. 

In the present work, new secret key specifications to VLE encryption method are investigated using decision trees-
based ensembles. Decision trees employ fast learning algorithms and they are able to generate comprehensible classifiers. In 
our experiments, machine learning algorithms available in Weka® were used. First, a single decision tree based on C4.5 
algorithm was employed. Although this method results a good filter to adequate rules, it kept a significant number of 
undesirable rules due to the natural unbalancing of the data set. Subsequently, we adopted three ensemble methods - bootstrap 
aggregating (bagging), boosting and random forest - attempting to deal with this unbalanced nature of the data set. Ensemble 
methods use multiple models to obtain better predictive performance than could be obtained from any of the base models. The 
principle behind ensembles is that prediction can base be improved by aggregating weaker independent classifiers. The main 
goal of this work is to filter the undesirable rules of the entire secret key space, without drastically reducing the number of 
adequate secret keys. The new classifier presents a great improvement, mainly in the underperforming rules reduction. 

2 CA Applied in Cryptography 
A cellular automaton consists of a lattice of cells and a transition rule. Each cell presents in each time t one of k distinct states. 
A cell is updated in discrete time steps and its new state depends on the states of the 2R+1 neighborhood cells, where R is the 
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CA radius. In the case of a deterministic one-dimensional CA, whose example is showed in Figure 1, the state of the cell i at 
time t+1 is determined by the transition ruleτ: 

( 1) ( ) ( ) ( )[ ,..., ,..., ]t t t
i i R ia a a aτ+
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The dynamics of a cellular automaton is associated with its transition rule. In order to help forecast the dynamic 
behavior of CA, several static parameters have been proposed [13], some of them are: Z derived from the pre-image 
computation algorithm and it is composed by Zleft and Zright. [12]; symmetry level (S) of a rule transition [9]; neighborhood 
dominance (ND), activity propagation, sensitivity and absolute activity (AA) [13]. The idea behind such static parameters is to 
perform a simple calculus over the rule transition output bits. Based on the result, one can predict the most probable behavior 
when the rule is applied to an arbitrary lattice. For example, if a transition rule has low Z (next to 0) it is expected a fixed point 
behavior, while if it has high Z (next to 1), the chaotic behavior is more probable. 

 
Figure 1 – Example of Deterministic 1D Cellular Automata. 

Basically, CA-based cryptographic models can be divided into three classes: (i) models that use CA to generate binary 
sequences with good pseudo-random properties, which are used as cryptographic keys, but the effective ciphering process is 
made by another function [1-4]; (ii) models based on additive, non-homogeneous and reversible CA, that use algebraic 
properties of this kind of rules to generate automata of maximum and/or known cycle [5-6]; and (iii) models based on 
irreversible CA, which uses the backward interaction of cellular automata in the ciphering process and the forward interaction 
to decipher [7-11], as the cryptographic model discussed here. 

Gutowitz has previously proposed a cryptographic model based on backward evolution of irreversible CA [7]. Toggle 
CA transition rule is used as the secret key in his model. A pre-image of an arbitrary lattice is calculated adding extra bits in 
each side of the lattice. This increment is pointed as the major flaw in the model. An efficient reverse algorithm was proposed 
by Wuensche and Lesser [12] for a periodic boundary condition, keeping the pre-image with the same size of the original 
lattice. Such algorithm was evaluated as encryption method in [9]. However, its usage has the disadvantage that there is no 
guarantee of pre-image existence for any given lattice and any given rule. Thus, the pre-image computation can fail if a 
Garden-of-Eden state [12] is found during ciphering. The only rules with assurance of pre-image existence are not appropriate 
for ciphering because they do not exhibit a chaotic dynamics. 

3 VLE Method 

3.1 General Description 
Due to drawback of the previous methods, a new approach was proposed in [9] and developed in [11], which alternates the 
original reverse algorithm and the variation that uses extra bits, using the second only when the pre-image computation fails. 
This variation is similar to pre-image computation adopted in Gutowitz model [7]. Although this approach needs to add bits to 
the ciphertext when a failure occurs, it is expected that in practice few failures happen and the ciphertext length will be equal 
or close to the plaintext size. In the resultant method, encryption always succeeds and the final length of the ciphertext is not 
fixed. This method was named Variable-Length Encryption Method (VLE) [11]. VLE method works as it alternates rounds of 
pre-image computation performed by reverse algorithm (a variation of Gutowitz’s model for periodic conditions) with few or 
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none steps of pre-image computation performed by Gutowitz’s model. Ciphering is made by computing P consecutive pre-
images starting from a lattice of size N corresponding to the plaintext. The secret key is a radius-R CA rule τ generated with an 
appropriate specification based CA static parameters. 

Suppose that VLE started to calculate pre-images using reverse algorithm and the secret key τ and it fails in the K-th 
pre-image such that K ≤ P. In such situation the ciphering process uses the modified reverse algorithm with extra bits to 
calculate the K-th pre-image. Thus, the K-th pre-image will have N+2R cells. Ciphering returns again to the original reverse 
algorithm for remaining pre-image computations. If all the subsequent pre-images computation succeeds the final ciphertext 
will have a size of N + 2R. If the pre-image computation fails again, the ciphering process changes and adds 2R more bits to 
the lattice. If the process fails in F pre-images (F ≤ P) the final lattice will have N+2FR. Starting from a lattice of N cells, the 
size of the ciphertext after P pre-images computation is given by N ≤ ciphertext size ≤ N +2PR. 

For practical reasons related to the speed of the encryption process, it can be better to limit the method to operate with 
only toggle rules. A CA transition table is said to be a toggle rule if it is sensible in respect to a specific neighborhood cell, that 
is, if any modification of the state on this cell necessarily provokes a modification on the new state of the central cell, 
considering all possible neighborhoods [7]. Therefore, it speeds up the pre-image computation, since that will be removed the 
ambiguities and there is no possibility of the algorithm to come back in the computation before arriving at the end of the 
lattice.  

Deciphering is executed applying the forward interaction of cellular automata rules. By starting from the ciphertext 
the recipient needs to apply the transition rule τ forward by P steps and the final lattice will be the plaintext. He also needs to 
know in which pre-images failures happened to recover the original text. 

3.2 Evaluation of VLE Secret Key Space 
Applying VLE method, any toggle rule is able to complete the ciphering process starting from any plaintext (initial lattice). 
However a short length ciphertext depends on the secret key specification. Some experiments were performed in [14] to 
analyze VLE’s performance and to evaluate rules specification using the complete set of radius 2 right-toggle rules: all of them 
have Zleftt = 1 and 0 < Zright < 1. As a radius 2 toggle rule is defined by only 16 bits (since the other 16 bits are deterministically 
defined due to toggle property), this set is composed by 65536 (216) rules. These rules represent 50% of the possible secret 
keys in radius 2 space. The other 50% of secret keys are the all radius 2 left-toggle rules (Zright = 1), which are dynamically 
equivalent to the set of right-toggle rules. 

VLE-based environment was employed in [14] to cipher a hundred 256-bits plaintexts using each right-toggle rule (of 
65536 rules), by calculating 48 consecutive pre-image steps (P). The number of consecutive pre-images was experimentally 
determined by preliminary investigations. Based on the results, it is possible to determine some performance metrics as 
following: 

• Ciphertext Length (Lmean): by applying VLE method, the final length of the ciphertext can be between N and N+2PR. 
Aiming to evaluate if the expected final length is in fact close to N, it was calculated the mean length (Lmean) of the ciphertexts 
(final lattices), related to the mean number of failures (Fmean) occurred during the ciphering. In the experiments performed in 
[14], a number of fails above 10 was considered inadequate because it returns a ciphertext with 300 bits or more starting from a 
plaintext of 256 bits. The ciphertext length obtained for all 65536 right-toggle rules ciphering 100 plaintexts highlights the 
existence of several secret keys returning at least one ciphertext with size equal or above 300 bits. About 800 rules returned 
long ciphertext length for at least one random plaintext evaluated and 478 rules returned Lmean above 300 bits considering the 
100 evaluated plaintexts. 

• Ciphering quality (Emean): by comparing ciphertexts generated from two very similar plaintexts it is possible to 
evaluate the encryption quality and specially its protection against a differential cryptanalysis-like attack. Cryptanalysis tries to 
find the plaintext after getting the ciphertext without knowing the secret key [16]. Sen et al. (2002) have used the same idea to 
analyze their CA cryptosystem named CAC comparing it with DES and AES cryptosystems [17]. In such analysis, several 
pairs of plaintext (X, X'), that differ one of the other by a fixed and small difference D, is used to generate a pair of ciphertexts 
(Y, Y'), which differ one of the other by a difference D'. This difference is obtained by Hamming distance. That is, applying 
XOR operations between Y and Y' and counting the number of 1s in D'. In the experiments performed in [14], the difference D 
between two plaintexts X and X’ was fixed in only one bit in any arbitrary position over the lattice and the value of D’ was 
calculated for the complete set of right-toggle rules. The computation of D’ to each pair (Y, Y') was performed to obtain the 
entropy. This measure aims to verify if D´ does not keep any pattern that eventually could help a cryptanalyst. Spatial entropy 
[14] was calculated on D’ to evaluate the existence of some undesirable regularity on this difference. Entropy below 0.5 
indicates a strong pattern in difference D’, in other words, a low ciphering quality. When ciphering quality metric Emean was 
calculated for all 65536 right-toggle rules ciphering the 100 plaintexts [14], it was possible to verify that there are rules with 
mean values of entropy below 0.5, indicating that these rules does not perform an adequate encryption of the plaintexts in 
average. The most probable behavior in such cases is that the rule only shifts the initial lattices, not performing an actual 
encryption of these plaintexts. This behavior cannot be allowed in a secure cryptosystem. Considering the entire rule set (right 
and left-toggle rules), about 3200 rules returned entropy below 0.5 for at least one pair Y and Y’ and 879 rules returned Emean 
below 0.5 considering the 100 evaluated plaintexts. 
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Based on performance metrics Lmean and Emean, the main conclusion in [14] was that there are undesirable behavior 
rules in the complete set analyzed - considering a cryptographic purpose - that must be avoided as secret keys. Therefore the 
entire rule space formed by all radius 2 right-toggle rules is not appropriate to be applied as secret keys in VLE method: 1357 
rules (~2% of the key space) must be avoided: 879 due to low entropy and 478 due to long ciphertext length. 

3.3 Previous Specifications Using Static Parameters and GA-Based Data Mining 
Secret key specification was first proposed in [9] trying to filter undesirable behavior rules when using the pure reverse 
algorithm [12] as ciphering process: static parameters S and the components Zleft and Zright were used. However, some 
preliminary experiments using the complete set of right-toggle rules had evidenced that their application is not effective as 
supposed, when VLE method is used. Aiming to better understand the relation between CA static parameters and 
underperforming rules, an analysis was developed in [14]. A series of CA parameters were calculated trying to identify a 
pattern to filter inadequate rules of the complete key space formed by all radius 2 right-toggle rules. Nine parameters were used 
in this analysis: Zright, S, BWLR_Symmetry (BWLR), LR_Symmetry (LR), Absolute Activity (AA), Neighborhood Dominance 
(ND), Sensitivity (μ) and Activity Propagation (AP) [13-14]. A new parameter was also proposed and used in [14]: it is the 
spatial entropy associated to the 16 bits that define the 32-bits toggle rule (the rule core), named here as core entropy (CE). All 
these parameters were calculated to each one of the 65536 right toggle radius 2 rules. The parameter values are normalized 
between 0 and 1. A database was elaborated in which each register corresponds to one right-toggle rule and the fields are 
composed by the values of the nine parameters calculated for each rule, and the values of the performance metrics (Lmean and 
Emean) where calculated when the rule is applied to cipher 100 random plaintexts. 

As a pattern associating parameters with the underperformance rules was not possible to recognize by a simple visual 
inspection, a GA-based data mining process was applied with this goal. Standard genetic algorithm was elaborated based on 
the model described in [18]. As illustrated in Figure 2, the individual is composed by I genes, where I is the number of CA 
static parameters analyzed (I=9). The i-th gene is subdivided into three fields: weight (Wi), operator (Oi) and value (Vi). Each 
gene corresponds to one condition in the antecedent part (IF) and the individual as a whole is the rule antecedent. The weight 
field is an integer variable and its value is between 0 and 10. This field determines the insertion or no of the correspondent 
gene in the rule antecedent. If this value is lesser than a boundary-value this gene will not appear in the rule, otherwise the gene 
appears. The value 7 was used as the boundary-value [14]. The operator field can be < (minor), ≥ (larger or equal) or ≠ 
(different). The value field is a floating-point number that can vary between the 0 and 1, because each parameter was 
normalized in such range. 

Gene 1 Gene 2 … 
… 
 

Gene 9 
Zright S CE 

W1 O1 V1 W2 O2 V2 W9 O9 V9 
Figure 2 –Individual representation. 

To establish the consequent part of the rule, the fields Fmean, and Emean of each register of the database was analyzed 
aiming characterize the underperformed rules in specific classes. Field Class was added to the database with the classification 
of each register in one of these classes: 

• Class 1: rules with low mean entropy (Emean < 0.5). There are 879 right-toggle rules. 

• Class 2: rules with large mean ciphertext length (Lmean ≥ 300 bits). There are 478 right-toggle rules. 

• Class 3: rules with adequate features to secret key. There are 64,179 reminiscent rules. 

The individual illustrated in Figure 1 represents only the antecedent part of the rule (IF). The consequent part is 
always in the format THEN Class = C, being that C can be 1, 2 or 3. However, it is omitted in individual’s representation. 
Conversely, it is a fixed execution parameter of GA. Thus, if the GA is executed with C = 1, all the rules of population 
represent classification rules in the format IF ANTECEDENT THEN Class is “Low entropy”. All registers are considered 
either Class 1 or not Class 1. Fitness quantifies the quality of the rule associated to each individual. Two indicators commonly 
used in classification are Sensitivity and Specificity [18]. In [14], individual fitness is given by a weighted sum between 
Sensitivity and Specificity. Stochastic tournament with Tour = 3 is used as the matting selection method. Two-point crossover 
is applied and a specific mutation operator is used to each type of gene field with a rate of 30%. Each GA experiment was 
formed by 100 runs, using a population of 100 individuals, which were evolved by 100 generations. The classification rule that 
was indeed intended to be mined was Class 3, because it represents appropriate rules to be used in cryptography. However, the 
other two classification rules (classes 1 and 2) were also important to achieve this goal, because they better characterize low 
entropy rules and long ciphertext ones, given information to prune the rules returned by GA for Class 3. After several 
executions and manual post-processing pruning procedures the rule following was found in [14]:  

IF ( S ≠ 1 AND ND ≤ 0.57 AND CE > 0.65 AND Zright ≠ 1 )  THEN  Class = 3 

This rule employs 4 of the 9 CA parameters to characterize adequate secrete keys. It was applied as a filter in the 
complete radius 2 right-toggle CA rule set. The filtered set has 51,495 right-toggle rules: it reduces 21.4% of the entire key 
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space. When the underperforming rules are analyzed, the advantage of such filter is evidenced: only 28 rules with such 
inappropriate low entropy remains (out of 879 rules) and 217 rules with a ciphertext length above 300 bits remains (out of 750 
rules). Therefore, it was concluded in [14], the GA-mined filter is a good specification for CA secret keys. 

4 Ensemble-Based Models 
Ensemble methods combine multiple hypotheses in order to form a hopefully better hypothesis. That is, an ensemble is a 
technique for combining many weak classifiers (base classifiers) in an attempt to produce a strong one [19]. Generally, the 
ensemble decision is generated from the base classifiers hypothesis by voting. Therefore, ensemble hypothesis is not 
necessarily contained within the hypothesis space of the models from which it is built. Thus, ensembles can be shown to have 
more flexibility in the functions they can represent. Diversity and accuracy are features desirable for good performance of the 
ensembles [19]. Diversity can be obtained when the base classifiers are independents (its errors are not correlated). Accuracy 
can be obtained if the base classifiers results individually better performances than random classification (> 0.5). Evaluating 
the prediction of an ensemble typically requires more computation than evaluating the prediction of a single model. Thus, fast 
algorithms such as decision trees are commonly used with ensembles, although slower algorithms can benefit from ensemble 
techniques as well. Other advantage of decision tree is its capability of comprehensibility, that is, it is able to understand the 
criteria used by model to classify a rule. 

In present work, three kinds of ensembles were tested: two meta-algorithms based on instances manipulation 
(bootstrap aggregating-bagging and boosting) and one algorithm based on instances and attributes manipulation (random 
forest). All ensembles adopted decision trees as base classifiers. The models was generated, trained and tested through the 
Weka® Explorer framework. In bagging method, each model in the ensemble vote with equal weight. In order to promote 
model variance, bagging trains each model in the ensemble using a different subset of the training set. Bagging randomly 
generates each new training subset by uniform sampling examples from original one. In this process is used the bootstrap 
approach, which employed sampling with replacement. Boosting involves incrementally building an ensemble by training each 
new model instance (base classifier) to emphasize the training examples that previous models misclassified. In other words, 
data is dynamically reweighted: misclassified examples increase their weight and corrected classified examples decrease their 
weight. In some cases, boosting has been shown to yield better accuracy than bagging, but it also tends to be more likely to 
overfitting training data. The most common implementation of boosting is Adaboost, which was used in this work. Random 
forest is an ensemble classifier that consists of many decision trees. The ensemble hypothesis is obtained by the mode of the 
outputs of the individual trees. The random forest algorithm combines random decision trees (attributes selection) with bagging 
(instances sampling) to achieve very high classification accuracy. For each node of the tree, the algorithm randomly chooses of 
k attributes (being k << total of attributes) and calculates the best split based on these attributes in the training subset. The 
selection of a random subset of attributes is a way to implement stochastic discrimination [20]. Each tree is fully grown and it 
is not pruned. Random forest presents: (i) a fast learning algorithm; (ii) it runs efficiently on large databases; and (iii) it 
estimates what variables are important in the classification. In other hand, it is more likely to overfitting some datasets, being 
more pronounced in noisy classification or regression tasks.  

5 Experiments 
Althrough GA-mined filter obtained in [14] defines a good specification for VLE cryptographic model, it provokes a 
significantly reduction of available keys. Besides, some undesirable rule still remains in the resultant filtered key set. In this 
section new experiments are described which were carry out aiming to identify new secret key specifications based in decision 
trees ensemble methods. 

5.1 Preprocessing 
This work also uses the complete radius 2 right-toggle rules set employed in GA mining experiments described in [14]. The 
full set formed by 65,536 radius 2 rules presents an unbalancing in the registers quantity between the classes: 879 rules with 
low entropy (class 1); 478 rules with large ciphertexts length (class 2); and 64,179 rules classified as adequate secret keys 
(class 3). Due to such high unbalance, the algorithms guide the learning process to identify the majority class, prejudicing the 
detection of the minority classes. Therefore, the complete rule set was worked in order to aid the machine learning algorithms 
to find adequate classifiers. Initially, a random sampling of the registers of majority class was made in order to decrease the 
unbalancing; being the number of instances of the class 3 is limited up to four times the total of instances of two others (classes 
1 and 2). The new subset contains approximately 5400 class 3 instances. In this process, three different random seeds were 
employed for generation of subsets. Each subset was again divided in training and test subsets through a stratified 10-fold 
cross-validation sampling, which are applied to evaluate of the classifiers performance [19]. Therefore, 30 subsets were used 
for each machine learning method. Furthermore, two types of experiment were performed: the first type uses 3 classes as 
defined previously (low entropy, large ciphertext and adequate rules); the second type joined the undesirable rules into only 
one class defining only two classes (inadequate and adequate rules). All preprocessing was carried on Matlab®, as well the 
generation of data files in the Weka® format (arff). 
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5.2 Ensembles-Based Experiments 
Each machine learning method (single decision tree and ensembles approaches) was applied through the Weka® Explorer 
framework to all training and test subsets obtained in pre-processing step. Table 1 presents mean values of performance 
metrics obtained using learning methods in 2-classes test subsets. These values are grouped by random seeds. This table 
contain the quantity of adequate rules selected (TP - true positive); underperforming rules effectively detected (TN - true 
negative); adequate rules incorrectly classified as underperforming ones (FN - false negative); underperforming rules 
incorrectly classified as adequate ones (FP - false positive); as well the indicators Sensitivity; and Specificity. 

Table 1 – Mean values of the methods specifications applied to test subsets with 2 classes. 
Run Metrics Single DT Bagging Boosting Random Forest 

0 

TP 524 529.5 529.7 527.1 
FN 18.8 13.3 13.1 15.7 
FP 25.2 26.4 6.1 7.9 
TN 110.5 109.3 129.6 127.8 

Sensit. 0.965 0.975 0.976 0.971 
Specif. 0.815 0.805 0.955 0.941 

1 

TP 526.5 529.7 529.1 527.5 
FN 16.3 13.1 13.7 15.3 
FP 26.8 27 6.7 8.5 
TN 108.9 108.7 129 127.2 

Sensit. 0.970 0.976 0.975 0.972 
Specif. 0.802 0.802 0.950 0.938 

2 

TP 526 528.8 528.7 528.7 
FN 16.8 14 14.1 14.1 
FP 27.8 26 6.8 7.7 
TN 98.9 109.7 128.9 128 

Sensit. 0.969 0.974 0.974 0.974 
Specif. 0.745 0.808 0.950 0.943 

The executions of single decision tree-based methods aim to generate baseline performance metrics for evaluate of 
ensemble classifiers and determine the values of configuration parameters of the decision tree (DT) employed in the others 
methods. The adopted decision tree after some preliminary experiments uses a prune confidence factor of 0.25; allows at least 
six instances for each leave node; uses C4.5 algorithm and 10-fold cross-validation to training validation. The training process 
of this kind of classifier spends about 5.5 seconds and generates decision trees with 125 nodes and 63 leave nodes in average. 
The best decision tree obtained was applied as a filter over the complete radius 2 right-toggle CA rule set. The filtered set has 
62,443 rules (reduction of 5% considering the entire key space), remaining 202 underperforming rules (97 rules with low 
entropy and 105 with a larger ciphertext length). 

Three kinds of ensembles also were evaluated in this work: bagging, boosting and random forest. All ensembles 
approaches adopted the same parameter configuration used in the single decision tree executions to their base classifiers. In 
addition, each method has its specific parameters.  

Considering the ensemble method based on bagging, it was performed 5 iterations during the training, where the size 
of each bag is the same of the training subset. The choice of the number of iterations was also defined after some exploratory 
experiments aiming to reduce training processing time without compromising the accuracy of the model, returning a mean 
processing time of 30 seconds. However, its processing time is greater than the single decision tree model, since that this 
method generates 5 decision trees from different bootstrap sampling. The decision trees generated are bigger than those 
obtained using single decision tree models. They have 153 nodes and 72 leaves in average. The best bagging ensemble 
obtained was applied over full set, generating a filtered set of 62,972 instances (about 3.9% of reduction), being that 95 rules 
belonging to class 1 (low entropy) and 106 rules belonging to class 2 (large ciphertext length).  

In boosting approach, Adaboost M1 (Weka® algorithm) was used with 10 iterations. The adoption of such number of 
iterations (greater than the number used in bagging) aims better performance of boosting. The best boosting ensemble obtained 
was applied as filter over the complete radius 2 right-toggle rule set. The filtered set has 62,768 rules (reduction of 4.2% of the 
entire key space), remaining 6 underperforming rules (4 rules with low entropy and 2 with a larger ciphertext length). As it can 
be observed, there is a great reduction of underperforming rules in this method. We believe it happens due to the better 
regulation of the attribute weights realized during training phase, since there are more specialized/adjusted trees. In the other 
hand, it provokes a significantly increase of the mean processing time during training to approximately 72 seconds. This is the 
worst processing time between learning methods investigated here. Besides, executions with boosting returning the biggest 
decision trees (298 nodes and 150 leaves in average).  

Random forest method experiments were set to generate five decision trees per execution and employees 4 input 
attributes. This configuration returned a performance similar to the boosting taking a processing time close to these obtained to 
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single decision tree method (7.5 seconds in average). When applied over the full rule set, the best random forest ensemble 
obtained a filtered set of 62,556 reminiscent rules (about 4.6% of reduction), being 5 rules with low entropy and 5 rules with 
large ciphertext length. 

As it can be noted in Table 1, the usage of a single decision tree and the bagging approaches generated the worst 
performances. It was biased by the great number of instances in majority class, resulting in greater values of false positive 
(underperforming rules classified as adequate keys). In other hand, boosting and random forest approaches presented the best 
performances, resulting in similar metrics.  

For better comparing the two approaches, three classifiers (optimist, pessimist and mean ensembles of each seed) were 
applied in full set. The mean values of the metrics obtained by the best filter of both methods as illustrated in Table 2. As one 
can see, the values returned by both approaches are very similar, although boosting has a bit of advantage since it returns the 
same sensitivity and a higher specificity, which is the major capability we desire (because it is related to the misclassification 
of inadequate rules). 

Table 2 – Results of the best ensembles applied over the full rule set with 2 classes. 
Method TP FN FP TN Sens Spec 
Boosting 62865 1314 5 1352 0.980 0.996 

Random Forest 62693 1486 9 1348 0.980 0.993 

Attempting to better identify which method generates the best filter, it was verified the behavior of ensembles 
generated using 3 classes instead of 2. For simplicity, we used boosting and random forest approaches applied only to the 
training and test subsets in which the best ensembles were obtained in 2-classes problem. The resultant 3-classes specifications 
were applied to full rule set and the confusion matrixes are presented in Table 3.  

Analyzing this table, boosting obtains the best trade-off, that is, it provided a more reduction of underperforming 
rules, without considerably compromising the quantity of available rules in filtered set. However, the result obtained by 
random forest also is very good, being able to be used. 

Table 3 – Confusion matrixes obtained in 3 classes full set. 
 Boosting Random Forest 
 C1 C2 C3 C1 C2 C3 

C1 875 0 4 870 4 5 
C2 4 472 2 0 473 5 
C3 990 427 62762 1038 595 62546 

Aiming to compare the best filters obtained using each approach, Table 4 presents the results found. Each row 
corresponds to the used filter criteria applied to database, except for the first row which represents the complete radius 2 toggle 
rule set (Fullset). The other rows presents: filter generated through GA-based data mining process (GA-Subset) described in 
[14]; single decision tree-based filter (DT-Subset); ensemble filters based on bagging, boosting and random forest approaches 
(BA-Subset, BO-Subset and RF-Subset, respectively). The second column corresponds to total number of reminiscent rules in 
each filtered set. Other columns correspond to number of rules in each class (1, 2 or 3). It is desirable a small quantity of rules 
in classes 1 (low entropy) and 2 (large ciphertext length); and a high number of rules in class 3 (adequate keys). 

Table 4 – Reminiscent rules after filtering (3 classes). 
Filter Criteria Number of rules Low Entropy (C=1) Large Length (C=2) Good Rules (C=3) 

Fullset 65536 879 478 64179 
GA-Subset [14] 51495 28 217 51250 

DT-Subset 62443 97 105 62241 
BA-Subset 62972 95 106 62771 
BO-Subset 62768 4 2 62762 
RF-Subset 62556 5 5 62546 

5 Conclusions 
The appropriate specification of adequate cellular automata rules as secret keys for VLE cryptographic method was deeper 
investigated in the present work. It was used a set formed by all the 65536 radius 2 right-toggle rules as potential secret keys 
and different machine learning approaches were used to relate the adequacy of rules and their static parameters. Initially, we 
analyzed specification obtained on previous work [14], which used a standard genetic algorithm and several CA static 
parameters to mine adequate rules in this same data set. Although a good specification was found in [14], its usage as a filter 
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over the key space provokes a severe decay of the number of available good rules and some undesirable ones are maintained. 
In order to improve filter specification, the usage of single or ensemble methods based on decision trees is investigated here. 

Considering the mean convergence time (training), the usage of single decision tree or random forest ensemble were 
must faster than bagging and boosting approaches. Boosting has the double of iterations in relation to bagging turning it the 
slowest approach. Besides, boosting generates the biggest decision trees, with twice number of nodes in relation to bagging. 
The smallest decision trees are generated by single C4.5 algorithm. Analyzing the performance metrics obtained in 
experiments, does not exist a significant variation in rate of false negative between the methods. This indicates a similarity in 
relation to majority class prediction. However, considering the reduction of underperforming rules in filtered set, it is possible 
to rank the methods in relation to false positives: single decision tree and bagging classifiers as the worst filters. Although they 
return large number of rules in filtered sets (bagging generated the biggest one) and they are able to decrease the number of 
rules with large ciphertext length in relation to previous specification published in [14], they also increase the number of 
reminiscent rules with low entropy. Such kind of rules is prohibitive for cryptography specifications. Boosting and random 
forest approaches present a significant improvement on the prediction of minority classes (they returned the best results), being 
that the values obtained by boosting method are a bit better, while random forest method is much faster (random forest is 
almost ten time faster than boosting). Both methods also returned a small reduction of the secret key space, specially when 
compared with the previous specification obtained in [14]. Therefore, both methods produced excellent specifications to secret 
keys and they overcame the specification obtained by genetic algorithm in [14]. 
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