
 

Abstract— The power transformer is one of the most

important equipment in an electric power system. If this

equipment is out of order for some reason, the damage for both

society and electric utilities are very significant. In this work,

we present a comparative study of the application of Multi-

Layer Perceptrons trained via Rprop algorithm and Decision

Trees in the classification of incipient faults in power

transformers. The proposed procedures have been applied to

real databases derived from chromatographic tests of power

transformers. The results obtained by both techniques are

compared and fully described. The classifiers discussed here can

be seen as a very important component in power transformer

predictive maintenance activities.

I. INTRODUCTION

OR many years, preventive maintenance programs in

power transformers consisted of inspections, tests and

actions in periodic time intervals usually suggested by the

manufacturers or determined through practical experience. It

was also common the application of routine tests and

procedures such as: measurement of dielectric losses,

insulation resistance and winding resistance; physic-chemical

and chromatographic oil analysis; and manual or automatic

monitoring of temperature [1].

We discuss in this work the use of Neural Networks (NN)

and Decision Trees (DT) for pattern recognition as

supporting tools for the diagnosis of faults in power

transformers. Considering that the power transformer is

crucial for the power system operation, techniques for

diagnosis and fault detection are required. To be more

specific, many faults that occur in power transformers are

due to changes in the gas concentrations in their insulating

oil. Taking in consideration that there are not efficient

mathematical models to describe the relationship between

the rate of evolution of these concentrations and the failures,

and the process of gathering historical data is a common

practice nowadays, the development of pattern classifiers
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based on Support Vector Machines [2,3], Neuro-Fuzzy tools

[4,5], Wavenets [6], Neural Networks [7, 8] and Decision

Trees [9, 10] has received a great deal of attention.

It is used in the present work a method for fault detection

in power transformers proposed by [1]. The pattern

classification is carried out based on the levels of the

dissolved gases in the power transformer oil such as

Ethylene (C2H4), Methane (CH4), Acetylene (C2H2),

Hydrogen (H2) and Ethane (C2H6). The two main goals here

are: 1) to present a comparative study between NN and DT

for the problem of incipient faults classification in power

transformers; 2) to work towards the development of an

artificial intelligence-based predictive maintenance tool for

power transformers. In order to validate the proposed

methodologies, we have made use of real data from

chromatography tests of power transformers.

This paper is divided as it follows. In Section II –

Development – it is presented the database description, and

the conception of the neural classifiers and DT-based

classifiers are discussed as well. All six tests considered in

this work are fully described in Section III and analyzed in

depth in Section IV. The main conclusions of the paper and

suggestions for future work appear in Section V.

II. DEVELOPMENT

The tests for the classification of the faults described in

this paper follow the process of Knowledge Discovery

Database (KDD). KDD process refers to the procedure of

extracting knowledge from rough data. Data mining is one of

the steps of this process. Its main goal is to transform the

data pre-processed into information. The data mining task

requires an algorithm known as data miner. In this particular

paper, we utilize both NN and DT as data miners.

A. Database Description

The preprocessing of power transformer oil databases

relied on a method proposed by Duval [1], which only takes

into account the relative percentage concentration of the

gases acetylene, ethane and methane. In the triangle shown in

Fig.1, it is represented the evolution of the produced gases to

some failures. The ratio between each gas and the total

amount of the produced gas is calculated in order to find the
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coordinates. Besides, there are some tags to be considered,

namely: PD (Partial Discharge), T1 (Thermal Failure for

Temperature T<300°C), T2 (Thermal Failure for

300ºC<T<700°C), T3 (Thermal Failure for T>700°C), D1

(Low Energy Discharges), D2 (High Energy Discharges),

DT (Mix of failures). Thus three electrical failures (D1, D2,

DT) and three thermal failures (T1-T3) can be found in the

Duval’s triangle.

Fig.1: Duval Triangle (Source: [1]).

It was considered here three different databases containing

the concentration of dissolved gases in the power

transformers insulating oil (input data) and the fault

diagnosis (output data) each. These data appear in [11]. The

databases are composed for concentrations of the five most

important gases found in the power transformer oil, namely:

Hydrogen (H2), Methane (CH4), Ethylene (C2H4), Ethane

(C2H6) and Acetylene (C2H2). The formation of these gases

is due to:

- Hydrogen: large quantities of this gas are associated with

the partial discharge conditions;

- Hydrogen, Ethane, Methane and Ethylene: the

production of these gases results of the thermal

decomposition of the oil due to the its contact with hot parts

of the power transformer;

- Acetylene: its production is associated with the

formation of electrical arc in the oil.

The first database is called ‘IEC’ which comprises part of

a database made available by IEC TC 10 [12]. It is

composed of 53 samples divided in the three following sets:

(a) 16 ‘Normal’ samples, (b) 22 samples diagnosed as

‘Electrical failure’ and (c) 14 samples related to ‘Thermal

faults’. The second database is called ‘BASE1’ and includes

data made available by the Research Center in Electrical

Power (CEPEL). This database is composed of 224 samples

divided in 83 normal samples, 61 electrical failure samples

and 80 thermal fault samples. Finally, the third database is

named ‘BASE2’ and it is composed of 212 samples divided

in 180 normal samples, 10 electrical failure samples and 22

thermal fault samples [11]. As a matter of fact, when a

database presents a different number of instances by class, it

is said that this database is ‘unbalanced’. For instance,

BASE2 instances are divided in three classes and each class

has a different number of instances (180+10+22). Finally, all

the aforementioned pattern classification tasks were carried

out by experts via specific measurements.

The simulations performed in the three data are described

as it follows. In the first group, both data miners were trained

with 70% of the IEC’s data and validated with the remaining

data (the learning stage). Both NN-based classifier and DT-

based classifier were used to classify BASE1 and BASE2

databases (the test stage). In the second group, other

classifiers were trained with 70% of BASE1 data and

validated with the remaining data. These Artificial

Intelligence(AI)-based classifiers were tested with IEC and

BASE2 data. Finally, the third group of data is formed by

merging IEC and BASE1 databases. As in the previous

groups, 70% of the data were used in the training stage and

the remaining data were used for validation purposes. The

AI-based classifiers were tested with BASE2 data. It is

important to notice that although it was used different

databases in the test stage, the same inputs as in the learning

stage were taken into account. This technique is thought here

as a kind of cross-validation and its main objective is to

evaluate the generalization ability of the classifiers. Also, it

is worth mentioning here the following codification for the

power transformer failures considered in this work:

- Class A: for power transformers diagnosed as NORMAL

(N);

- Class B: for power transformers presenting

ELECTRICAL FAILURE (EF);

- Class C: for power transformers presenting THERMAL

FAILURE (TF).

B. Simulation Details

All simulations regarding NN were performed using the

software MatLab®. All databases were allocated in two

different matrices: Input Matrix (IM) and Output Matrix

(OM). The type of gas and its concentration appear in the IM

(5 types of gases have been considered) and the codification

for the power transformer, i.e., the class it belongs (N, EF or

TF), can be found in OM.

Multi-Layer Perceptrons (MLP) trained with the Resilient

Backpropagation algorithm [13] has been used in this work.

Many different network configurations have been evaluated.

Parameters such as activation functions, number of hidden

neurons, and number of iterations have been set up based on

the previous work of Zhang et al.[7], Lu et al. [14], and

Wang et al. [15]. Three particular activation functions have

been employed. ‘Hyperbolic Tangent’ and ‘Sigmoid’

activation functions have been used in the hidden layer while

the linear function has been used in the output layer only. For

every neural classifier, the number of iterations has been



modified (1000, 4000, and 8000 iterations) as well as the

number of hidden neurons (4, 6, 8, and 10 neurons). A

minimum training error equals to 1e10
-5

 has been defined as

an additional training stop criterion. The learning rate and

the momentum rate have been set up as 0.4 and 0.5,

respectively. At the end, 36 different MLP schemes have

been evaluated. The following results have been obtained

with those classifiers that presented the best generalization

ability.

On the other hand, all the simulations concerning the DT

classifiers were performed using the software WEKA

(Waikato Environment for Knowledge Analysis). The

software is formed by a set of several machine learning

algorithms and it is indicated to derive useful knowledge

from databases that are too large to be analyzed by hand [16-

17]. WEKA is implemented in Java language and it was

developed in the University of Waikato, New Zealand, in

1999. The algorithm is based on the concepts of entropy and

Information Gain (IG) in order to construct the tree. It

always aims to reduce the entropy (i.e., the randomness of

the objective variable), to be consistent with the database

and to have the smaller number of nodes.

The classification task was carried out according the same

three explainedclasses. All databases were allocated in an

.arff file. In that file appear the type of gas and its

concentration (the same 5 types of gases have been

considered) and the codification for the power transformer,

i.e., the class it belongs (N, EF or TF) represented as A, B or

C, respectively (ABC labels for classes is an WEKA’s

requirement).

The file has the following structure: the first valid line

indicates the relation name to find (i.e. @ relation

relation_name). In the following lines one needs to list all the

attributes and its kind (i.e. type of attribute and nature of its

values). The classes’ labels must be put between "{}" and be

separated by commas. All numerical data appear in the

sequel. Fig.2 is an example of an arff code fraction.

Fig.2: An arff code fraction.

All simulations were made changing (or not changing

sometimes) the pruning parameters of the tree and the

Confidence Factor (CF). The CF is a suitable form to

evaluate the precision of the obtained rules in the training

stage. This factor is calculated by the ratio X/Y, where X is

the number of records that satisfies the predecessor and the

successor of the rule, and Y is the total number of records

that satisfies the predecessor of the rule [18]. The J4.8

algorithm does the pruning task by means of the post-pruning

approach. [19], [20].

III. TESTS

In order to carry out the classification of incipient faults in

power transformers via monitoring their gases

concentrations, six tests were performed for each AI-based

classifier and their results can be found in Tables 1-12. Each

single test is fully explained below.

A. TEST1

In this test, it was considered the three rough data sets

IEC, BASE1, and BASE2, which are unbalanced data sets,

and a global concordance index. Here the interest was in

analyzing the overall performance of the neural classifier;

there is not discrimination among the classes A, B, and C.

The Global Percentage Concordance Index (GPCI) for the

training and validation data sets are shown in Tables 1 and 2

as well as the GPCI for the test sets. It is important to affirm

that all the six tests were performed in a database that did not

take part of the learning process of the classifier. Indeed, in

the very first analysis reported in Table 1, the classifier had

been trained/validated with IEC database and tested with

BASE1 and BASE2 databases.

TABLE 1 – GLOBAL PERCENTAGE CONCORDANCE INDEX FOR TRAINING,

VALIDATION AND TEST SETS FOR UNBALANCED DATABASES (NN-BASED

CLASSIFIER).

TABLE 2 – GLOBAL PERCENTAGE CONCORDANCE INDEX FOR TRAINING,

VALIDATION AND TEST SETS FOR UNBALANCED DATABASES (DT-BASED

CLASSIFIER).



B. TEST2

In this test it was taken into account the same three

unbalanced data sets used in TEST1. However, at this time,

individualized concordance indexes were used. The aim here

was to analyze the performance of the neural classifier for

each one of the classes A, B, and C.

The Individualized Percentage Concordance Index (IPCI)

for the training and validation data sets are shown in Tables

3 and 4 as well as the IPCI for the test sets. Notice now that

the performance of the classifiers for classes A (Normal), B

(Electrical Failure), and C (Thermal Failure) are evaluated

separately.

TABLE 3 –INDIVIDUALIZED PERCENTAGE CONCORDANCE INDEX FOR

TRAINING, VALIDATION AND TEST SETS FOR UNBALANCED DATABASES (NN-

BASED CLASSIFIER).

TABLE 4 –INDIVIDUALIZED PERCENTAGE CONCORDANCE INDEX FOR

TRAINING, VALIDATION AND TEST SETS FOR UNBALANCED DATABASES (DT-

BASED CLASSIFIER).

C. TEST3

In this test, the three data sets IEC, BASE1, and BASE2

were considered. Nevertheless, at this time, the data sets

were balanced by duplicating those data in smaller number

of samples [21, 22]. As in TEST1, a global concordance

index was considered as well.

The Global Percentage Concordance Index (GPCI) for the

training and validation data sets is shown in Tables 5 and 6

as well as the GPCI for the test sets.

TABLE 5 – GLOBAL PERCENTAGE CONCORDANCE INDEX FOR TRAINING,

VALIDATION AND TEST SETS FOR BALANCED DATABASES (NN-BASED

CLASSIFIER).



TABLE 6 – GLOBAL PERCENTAGE CONCORDANCE INDEX FOR TRAINING,

VALIDATION AND TEST SETS FOR BALANCED DATABASES (DT-BASED

CLASSIFIER).

D. TEST4

In this test the same three balanced data sets used in

TEST3 were taken into account but this time individualized

concordance indexes were applied. The aim here was

analyzing the performance of the classifiers for each one of

the classes A, B, and C.

The Individualized Percentage Concordance Index (IPCI)

for the training and validation data sets are shown in Tables7

and 8 as well as the IPCI for the test sets. As in TEST2, the

performance of the classifiers for classes A (Normal), B

(Electrical Failure), and C (Thermal Failure) are evaluated

separately.

TABLE 7 – INDIVIDUALIZED PERCENTAGE CONCORDANCE INDEX FOR

TRAINING, VALIDATION AND TEST SETS FOR BALANCED DATABASES (NN-

BASED CLASSIFIER).

TABLE 8 – INDIVIDUALIZED PERCENTAGE CONCORDANCE INDEX FOR

TRAINING, VALIDATION AND TEST SETS FOR BALANCED DATABASES (DT-

BASED CLASSIFIER).

E. TEST5

In this test, the same three balanced data sets used in

TEST4 were considered, but, at this time, the percentage of

Total Combustible Gas (TCG) in the power transformer

insulating oil, which many times is related to overload

conditions, was considered as well. Roughly, the

concentration of each type of gas is divided by the sum of all

concentrations for that gas which implies that some kind of

normalization procedure was employed (see [23, 24] for

further details). As in TEST1 and TEST3, a global

concordance index was used.

The Global Percentage Concordance Index (GPCI) for the

training and validation data sets are shown in Tables 9 and

10 as well as the GPCI for the test sets.

F. TEST6

In this test the same three balanced and normalized data

sets used in the previous test was considered here, but, at this

time, individualized concordance indexes were applied. As

in TEST2 and TEST4, the interest was in analyzing the

performance of the classifiers for each one of the classes A,

B, and C.

The Individualized Percentage Concordance Index (IPCI)

for the training and validation data sets are shown in Tables

11 and 12 as well as the IPCI for the test sets. Again, the

performance of the classifiers for classes A (Normal), B

(Electrical Failure), and C (Thermal Failure) are evaluated

separately.



TABLE 9 –GLOBAL PERCENTAGE CONCORDANCE INDEX FOR TRAINING,

VALIDATION AND TEST SETS FOR BALANCED AND NORMALIZED DATABASES

(NN-BASED CLASSIFIER).

TABLE 10 –GLOBAL PERCENTAGE CONCORDANCE INDEX FOR TRAINING,

VALIDATION AND TEST SETS FOR BALANCED AND NORMALIZED DATABASES

(DT-BASED CLASSIFIER).

TABLE 11 –INDIVIDUALIZED PERCENTAGE CONCORDANCE INDEX FOR

TRAINING, VALIDATION AND TEST SETS FOR BALANCED AND NORMALIZED

DATABASES (NN-BASED CLASSIFIER).

TABLE 12 –INDIVIDUALIZED PERCENTAGE CONCORDANCE INDEX FOR

TRAINING, VALIDATION AND TEST SETS FOR BALANCED AND NORMALIZED

DATABASES (DT-BASED CLASSIFIER).

IV. DISCUSSION

In order to discuss the aforementioned results, we will

split this section in two parts. In the first part, we will

analyze the results with respect to processing techniques,

database design, and input data representation. Yet in the

second part, we will compare the performance of both AI-

based classifiers.

A. Overall analysis

When TEST1 is compared to TEST3 (unbalanced data)

and TEST2 to TEST4 (balanced data), it can be noticed that

the balancing in the database increased the generalization

ability of the classifiers. This is therefore a clear indication

that the preprocessing of the database should be treated with

attention to this problem.

On the other hand, three different analyses have been

performed for each one of the six tests. The difference

among them is related to the way that the available databases

(IEC, BASE1, BASE2) are arranged in order to form the

training/validation/test sets. For the first analysis, IEC

database has been used to train and validate the neural

classifiers, and BASE1 and BASE2 databases have been

used for test purposes. In the second analysis, BASE1 has

been used to train and validate the neural classifiers, and IEC

and BASE2 databases have been utilized for test purposes.

And, for the third analysis, IEC and BASE1 databases have

been used for training and validation purposes, whereas

BASE2 has been used to test the classifiers. After comparing

the three analyses for each one of the six tests, it can be

noticed that the best concordance indexes, both global and

individualized ones, have been obtained in the third analysis.



This outcome suggests that when IEC and BASE1 databases

are merged in the learning stage, the classification problem

representation is enhanced, and, consequently, the

generalization capacity of the classifiers is improved.

Therefore, it can be inferred that the design of the database,

both in terms of qualitative and quantitative point of view,

positively influences the performance of the neural

classifiers.

Finally, when TEST3 (five gases concentrations as inputs,

global indexes) is compared to TEST5 (normalized inputs,

global indexes) and TEST4 (five gases concentrations as

inputs, individualized indexes) is compared to TEST6

(normalized inputs, individualized indexes), it can be noticed

that the classifiers used in Tests 5 and 6 were more effective.

This result highlights the importance of the input data

representation for classification purposes.

B. Performance Comparison

Although both classifiers presented concordances rates

over 70 % (mean values, Tables 9-12), the DT approach was

superior most of the time in Tests 1-4. Nevertheless, in Tests

5-6, where the input data representation was improved, the

DT approach was slightly better. These outcomes suggest

that the DT approach, for this problem, is less sensitive to

the input data representation than the NN approach.

V. CONCLUSION AND FUTURE WORK

The growing demand for electricity and the fact that some

Electric Power Systems (EPS) have operated overloaded,

make the efficient distribution task of the existing energy a

crucial point for the electric utilities. The power transformer

is an indispensable equipment in the EPS. If this equipment

is out of order in an unplanned way, the damage for both

society (load shedding) and electric utilities (fines due to

unplanned interruption) are very significant. Hence, it is

evident the importance of monitoring this equipment

continuously.

In this work, Neural Networks and Decision Trees were

used to classify incipient faults in power transformers. The

presented procedures have been applied to real databases

derived from chromatographic tests of power transformers.

The outcomes of the best neural classifiers can be found in

Tables 9 and 11. The obtained results in Table 9 show that

the employed technique produced the following concordance

rates:  60.3% (MIN.), 72.4% (MEAN), and 83.7% (MAX.).

Yet in Table 11 it can be noticed that the neural classifiers

produced figures 54.9% (MIN.), 73.5% (MEAN), and 95.9%

(MAX.) as concordance rates. Yet the outcomes of the best

DT-based classifiers can be found in Tables 10 and 12. The

obtained results in Table 10 show that the employed

technique produced the following concordance rates:  73.6%

(MIN.), 80.18% (MEAN), and 87.8% (MAX.). Yet in Table

12 it can be noticed that the DT-based classifiers produced

figures 57.1% (MIN.), 79.6% (MEAN), and 98.6% (MAX.)

as concordance rates.

The main contributions of this paper are: 1) To provide an

affordable tool for predictive maintenance of power

transformers that can be used by both electric utilities and

companies that run their own power systems. Although this

subject has been studied for many years [14, 15], in many

under-developed and semi-developed countries the

corrective maintenance of the power transformers is still

widely employed. 2) In many cases, industries have a rough

power transformer database, but do not have the necessary

information regarding the real situation of the transformer.

The connection between a power transformer database and

its physical interpretation has been discussed here to some

extent as well. Further information regarding it can be found

in [12], [25].

Differences among power transformers such as volume of

the insulating oil, constructive aspects, voltage classes and

environmental operation conditions, added to the inherent

uncertainty in the chromatography process for power

transformers, make it impractical the goal of error-free

classification. Nevertheless, as it was highlighted in the

previous section, tasks such as database setup, input data

representation and data preprocessing, including the support

of power transformers experts, can improve the

generalization ability of the neural classifiers. Thus, in a

future work, these topics shall be investigated more deeply.
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