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Abstract – In this paper we propose a new technique for Semi-Supervised Learning based on attraction forces. The main idea
behind the SSL paradigm is to perform a classification task taking into account a few labeled instances and the information pro-
vided by many unlabeled instances. Essentially, the proposed technique considers each data instance as dimensionless points on
a n-dimensional space and performs their dynamics accordingly to the resultant forces. The labeled points act as fixed attraction
points whereas the unlabeled ones move towards them, whereby the unlabed instances are labeled through a label propagation
mechanism when they approximate a defined neighborhood region around a fixed attraction point. The technique mainly takes
into account two important SSL assumptions: smoothness and cluster. The results obtained from simulations performed on arti-
ficial datasets exhibit the effectiveness of the proposed method.

Keywords – Semi-supervised learning, data classification, machine learning, label propagation, dynamical system and attrac-
tion force.

1. INTRODUCTION

The study of new machine learning techniques and applications in many and diverse areas as computer science, engineering,
medical, physics, biology etc, have been increasing more and more. There are many different approaches to perform pattern
recognition and classification tasks. In the branch of classification methods, a common and traditional division is the groups of
Supervised and Unsupervised Learning [1]. The first, Supervised Learning (SL), aims at finding a rule that predicts the output
of a given input data, i. e., it works finding relationships between input-output data pairs. On the other hand, Unsupervised
Learning (UL) paradigm seeks underlying structures in a given dataset. SL works using labeled input-output pairs of data, in
a way that the prediction rule is more accurate as more labeled examples is given, whereas a UL technique works with only
unlabeled instances. However, a problem can occur when a technique requires labeled instances and they are hard to provide.
For instance, if one wants to classify a group of web pages over the Internet accordingly to their areas of interest, e. g., news,
literature, movies, sports etc, it becomes difficult to provide too much labeled examples as the Internet has billions of pages and
the initial categorization of each web page must be performed by a human or expert. In this case the labeling task becomes
expensive and time-consuming, a non-trivial work to perform.

To overcome this problem a different paradigm called Semi-supervised Learning (SSL) has been studied extensively over
the past years. The main idea behind this paradigm is to perform a classification task using just a few labeled instances and the
information provided by many unlabeled instances [2, 3, 4]. Hence, the SSL approach could provide higher accuracies using less
human efforts and exploiting the unlabeled massive group of data.

Many SSL algorithms have been proposed [4, 3]. Some algorithms are mainly developed from generative models, including
the Gaussian mixture model [5], mixture of experts [6] and extensions [7, 8], tranductive support vector machines (SVM) and
semi-supervised SVM [9, 10, 11, 12, 13, 14] and boosting algorithms [15, 16, 17]. Also, the co-training is another important
methodology [18]. Some techniques are graph-based as [3, 19, 20, 21]. These techniques basically map the data instances in
a graph and then uses the graph underlying structure to perform and enhance the classification task. As mentioned in [4], an
important problem in these algorithms is the model correctness. That is, with an incorrect model assumption, unlabeled data may
even hurt the accuracy.

The SSL can be classified into two categories, namely transductive learning (TL) and inductive learning (IL). The IL seeks
for a decision rule from a training set that can be applied further to new or unseen data. In contrast, TL concerns the problem of
labelling the test data based on labeled data by taking both of them at the same time in the classification process. In this paper
we focus on a TL algorithm.

In a SSL scenario, three important assumptions are commonly made [4]: manifold, smoothness and cluster. The manifold
assumption states that the high-dimensional data lies on a low-dimensional manifold whose properties ensure more accurate
density estimation and more appropriate similarity measures. The smoothness assumption states that if two points are close to
each other in a high density region, then their correpondent labels should be close to each other as well. Finally, the cluster
assumption states that if two points are in the same cluster, then they are likely to be of the same class (or, in other words, to
have the same label). Therefore, accordingly to these two last statements, one way to correctly accomplish a SSL task is by an
algorithm such that labels spread stronger in high density regions whilst, in regions between different clusters, they have weak
propagation.

In this paper we propose a new technique for SSL based on attraction forces in which models the data instances as dimen-
sionless points on a n-dimensional space and performs their motion accordingly to the resultant force applied over them. The
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labeled instances act as attraction points while the unlabeled instances move towards them. At a certain moment of the dynamics,
the unlabeled instances receive a label propagated from the labeled points and become new attraction points. The model is very
simple and, in spite of that, is effective and provided good results on the simulations performed.

This paper is organized as follows: Section 2 introduces and provides an explanation of the technique overall behavior and its
mathematical modelling. Sections 3 and 4 analyze the system stability and parameters adjustment, respectively. Finally, Section
5 offers some simulation results and discussion, and Section 6 concludes the paper.

2. PROPOSED TECHNIQUE

A model that can fit well into the SSL smoothness and cluster assumptions is the use of attraction forces between labeled
and unlabeled instances. The process is quite simple. The labeled instances are considered as fixed attraction points that apply
attraction forces on the unlabeled instances. The latter are expected, in turn, to move towards the resultant force direction and,
eventually, to converge to the closest attraction point (which provides the strongest attraction force). Once close enough (say,
inside a neighborhood region δ), the label propagates from the attraction point to the newest unlabeled neighbor and it becomes
a new attraction point. At the end of the process is expected that all points converge to some attraction point.

One constraint for the process correct functioning is that at least one instance of each class be initially labeled. Otherwise,
in the extreme case when just one class have labeled instances, all instances result having the same label. On the other hand,
the advantage is that the process uses the initially labeled instances information to propagate their label to the nearest neighbors
which, in turn, after being labeled, propagates it to their nearest neighbors and so on. In other words, this dynamic makes use
of unlabeled data (the nearest neighbors) information to perform the classification task which is, in turn, the main idea of a SSL
technique. Even more, the model allows fine adjustment as one can use any attraction force function and adjust its parameters.

Another interesting observation is that this model works with a kind of competition between labels. In some way the labeled
instances compete for unlabeled ones using their attraction forces: the winner must had applied the strongest force or, in others
words, the winner is the nearest instance. It can also be noticed here the important role the two previously mentioned assumptions,
cluster and smoothness, play in this process.

Despite the simplicity of the model, two considerations are necessary to accomplish the above mentioned behavior and
correctly classify the unlabeled instances. One of them is to guarantee that the process is stable and, the other, is to certify that
the labels will propagate correctly through the unlabeled instances, in the sense that the algorithm will converge and achieve
the best possible classification rates. The stability issue can be treated using similar approaches from smarm aggregation works
[22, 23, 24, 25], while the label propagation dynamics can be analized in terms of the attraction force function parameters. Both
are explained in the next subsections.

Mathematical Modelling

Consider a dataset D = {L
⋃
U} composed as a union between the sets of labeled L and unlabeled U instances, in an

n-Euclidean space. The instances are modeled as points, ignoring their dimensions. We assume synchronous motion and no time
delays, i. e., all points move simultaneously and know the exact positions of each other. Each unlabeled point xu

i is governed by
the following equation of motion:

ẋu
i (t) =

|L|∑
j=1,j 6=i

f(xu
i (t)− xl

j(t)), i = 1, . . . , |U |, (1)

where f(.) is the attraction force function between labeled and unlabeled points. As defined in Eq. 1, each unlabeled instance
xu
i will receive attractive forces from all labeled instances xl

j and the resultant force will be the sum of them. Therefore, the
direction and magnitude of xu

i motion will be determined by all labeled instances.
In this work, we define the attraction function as a Gaussian field with parameters α, β and ηl:

f(y) = −y α

ηleβ‖y‖
2 . (2)

The attraction function has been chosen so that the more a point is close to an attractor point the more the force applied over it
will be strong. Moreover, its parameters provide an easy way to adjust the function amplitude and range, which will be necessary
to the correct functioning of the process as explained further in Sec. 4.

3. STABILITY ANALYSIS

The stability of the system as defined by Eq. 1 and 2 is analized through the Lyapunov stability method [26]. Firstly, note that
the labeled instances xl are fixed points of the system, as they do no receive any attraction function and so do not move. Now,
consider an unlabeled point xu

i that has been attracted in the direction of the resultant function and now is closer to a specific
labeled point xl

p than to all others. Hence, xl
p is applying the strongest force over xu

i which, in turn, will putatively enter into xl
p

neighborhood δ and become labeled.
Using the difference variable ei(t) = xu

i (t)− xl
p, the Lyapunov candidate function is defined as:
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Vi =
1

2
ei

T (t)ei(t). (3)

Taking its derivative we have:

V̇i = ‖ei(t)‖
ei(t)

T

‖ei(t)‖
ẋi(t) = ei(t)

T
ẋu
i (t). (4)

Substituting ẋi by the expressions on Eq. 1 and 2, and dropping the time index for convenience, it results in:

V̇i = −eiT
|L|∑

j=1,j 6=i

α(xu
i − xl

j)

ηle
β‖xu

i −xl
j‖2

=

−eiT
 α(xu

i − xl
p)

ηle
β‖xu

i −xl
p‖2 +

|L|∑
j=1,j 6=i,j 6=p

α(xu
i − xl

j)

ηle
β‖xu

i −xl
j‖2

 =

− α‖ei‖2

ηle
β‖xu

i −xl
p‖2 + (xl

p − xu
i )

|L|∑
j=1,j 6=i,j 6=p

α(xu
i − xl

j)

ηle
β‖xu

i −xl
j‖2
≤

− α‖ei‖2

ηle
β‖xu

i −xl
p‖2 +

∥∥∥∥∥∥(xl
p − xu

i )

|L|∑
j=1,j 6=i,j 6=p

α(xu
i − xl

j)

ηle
β‖xu

i −xl
j‖2

∥∥∥∥∥∥ =

− α‖ei‖2

ηle
β‖xu

i −xl
p‖2 + ‖ei‖

∥∥∥∥∥∥
|L|∑

j=1,j 6=i,j 6=p

α(xu
i − xl

j)

ηle
β‖xu

i −xl
j‖2

∥∥∥∥∥∥ =

−α‖ei‖

 ‖ei‖
ηle

β‖xu
i −xl

p‖2 −

∥∥∥∥∥∥
|L|∑

j=1,j 6=i,j 6=p

(xu
i − xl

j)

ηle
β‖xu

i −xl
j‖2

∥∥∥∥∥∥
 .

(5)

Our previously mentioned constraint states that xu
i is closer to a specific labeled point xl

p than to all others and xl
p is applying

the strongest force over xu
i . Therefore, we have:

‖ei‖
ηle

β‖xu
i −xl

p‖2 ≥

∥∥∥∥∥∥
|L|∑

j=1,j 6=i,j 6=p

(xu
i − xl

j)

ηle
β‖xu

i −xl
j‖2

∥∥∥∥∥∥ , (6)

which results:

V̇i < 0, (7)

assuring that the system achieves a locally asymptotically stable equilibrium.

4. PARAMETERS ADJUSTMENT

After assuring the system stability, we need to assure the algorithm will converge and achieve good classification results. A
way to do that is preventing the system to undergo some undesired situations. Firstly, consider the case in which a point xu

i is
approximating towards a labeled attractor point xl

j and getting very close to the neighborhood limit δ, where the attraction force
is at at its highest amplitude before xu

i enters the neighborhood and becomes labeled. In this situation, it can occur that instead
of entering the neighborhood of xl

j , the point xu
i overpasses it and start oscillating around xl

j . Other undesired situation can
occur when the attraction force fields act on a big neighborhood, forcing the algorithm to converge too fast. In this case, a dense
group of labeled points emerges too fast and attracts the majority of unlabeled points, preventing the other labels to correctly
propagates as it would be done on a slower convergence. To avoid these situations, we need to correctly adjust the attraction
function parameters, β, ηl and α. To adjust these parameters we estimate the limit values in function of the studied dataset and
then set their values below those limits.

β Parameter

Firstly, the adjustment of the β parameter is explained. Since we defined the force field shape as a Gaussian function, its
maximum width can be adjusted. Consider the case in which there are two labeled points, xl

1 and xl
2, close to each other and

be S the distance between them (Fig. 1. Also, consider that there exists some unlabeled points xu
i between the labeled ones. As

all labeled points apply the same attraction force, xu
i will converge to its nearest labeled point, xl

1 or xl
2. In this situation, all

points close to xl
1 at a distance shorter than S/2 is attracted towards it, while all points with at a distance longer than S/2 (or

smaller than it considering xl
2 as the origin) is attracted towards xl

2. Hence, we can limit the force field of each labeled point at
3
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a half distance, S/2, by changing the force function tail length. To accomplish that, S is set as the shortest distance between two
initially labeled instances. Therefore, we can assure that the attraction forces will act only on a defined neighborhood estimated
by the distance amplitudes of each dataset in particular.

Figure 1: Two points with different labels, blue cross and red circle, at a distance S from each other surrounded by unlabeled
instances, squares.

The Fig. 2 depicts the attraction force function shape. Note that for higher dimensions the same function shape is extended for
each coordinate. We want the point at its maximum value, y∗, be at length S/2. Therefore, the information of the first derivative
for each dimension is used:

ḟ(y) = − α

ηl

1− 2βy2

eβy2 , (8)

in which, after calculating ḟ(y) = 0, y∗ is found to be:

y∗ = 1√
2β

. (9)

With this result in hand we are able to define the attraction force function tail by doing S/2 = 1/
√
2β, or:

β =
2

S2
. (10)

Figure 2: Attraction force function shape showing its maximum value at points y* and -y*.

ηl Parameter

Consider the situation in which the labels are already propagating and dense groups of labeled points are being formed. In
this case, all points inside the labeled groups are applying attraction forces. Moreover, from xu point of view, all these forces
will sum up and, consequently, the adjustment of α parameter will not serve anymore to limit the forces’ amplitude. To avoid
this situation, we need to insert a normalization parameter so that when a new point is labeled, the force applied by the labeled
points of the same class is proportionally decreased. Otherwise, this can result the system oscillating because each new labeled
point cause the resultant force to increase. Hence, the normalization parameter used in this work is the number of labeled points
ηl for each label l at each time step. Note that the parameter value must be updated every time a point receives a new label.

α Parameter

Now, the α parameter must be adjusted. For doing that, consider the extreme case in which a labeled point xl is applying the
maximum force amplitude over an unlabeled point xu. In this situation, xu is as close as possible to xl, i. e., at the border of
the labeling region δ. Moreover, to guarantee covering all cases, suppose the extreme case in which only one of the xu attributes
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is reponsible for the distance between the two points, i. e., all the other attributes match. To avoid oscillation, it is necessary
that the force applied over xu moves it inside xl neighborhood instead of throwing it around xl and, consequently, outside the
neighborhood. Therefore, we want the force in this case be smaller than a limit and, if this limit is set so that xu moves towards
xl no far than the actual distance between the two points, we assure that xu final position will lie inside the desired neighborhood.
So, we can constraint the maximum force as:

y
α

ηleβy
2 ≤

S

2
, (11)

in which, setting y = S/2 (at the border of the xl neighborhood), ηl = 1 (when the force amplitude is at its maximum) and using
β = 2/S2 from the previous calculation, it is found that:

α < 1.64. (12)

Summarized Algorithm

In a concise form, the proposed technique can be summarized by the following algorithm:

Algorithm 1
U ← ReadUnlabeledInstances()
L← ReadInitiallyLabeledInstances()
AdjustParameters(α, β, ηl)
while U 6= Ø do
CalculateDistancesBetweenAllPoints(U,L)
CalculateAttractionForces(U,L)
UpdatePointsPositions(U,L)
UpdateLabels(U,L, ηl, δ)

end while

in which the parameters α and β are adjusted accordingly the Eq. 12 and Eq. 10, respectively. ηl is computed for each label l
accordingly to the simple calculation exposed in the subsection ηl Parameter. The points’ motion and the attraction forces are
calculated using Eq. 2 and Eq. 1, respectively. The label updating funcion updates the instances labels taking into account the δ
neighborhood.

Time Complexity

The algorithm time complexity is chiefly determined by the previously showed (Algorithm 1) computations CalculateDis-
tancesBetweenAllPoints and CalculateAttractionForces. Both procedures have O(n2) time complexity in big O notation, in
contrast to many O(n3) graph-based methods and others [3, 4]. The while loop must receive specific attention as it depends
on the set U which, in turn, depends on the algorithm convergence. As explained in Sec. 4, the parameters α and β governs
the convergence so as we have a trade-off between two opposite situations: a faster convergence (in detriment of accuracy) or a
slower convergence (in detriment of time).

5. RESULTS

In this section we provide some simulation results on two kinds of artificial 2-dimensional datasets and on the benchmarks
provided in Chapelle et. al [4]. In all simulations it has been used the Euclidean distance to calculate distances between pairs of
points and the parameter δ has been set to δ = S/2, accordingly to the analysis performed for β in Section 4.

Firstly, we test the proposed technique on a Gaussian distribution dataset containing 1000 instances equally distributed be-
tween two classes. This dataset is depicted on Fig. 3. Three different combinations of the Gaussian set is generated by varying the
means of each class (in every case it has been kept an identity covariance matrix): (5, 5), (14, 5), (5, 5), (10, 5) and (5, 5), (7, 5),
as can be seen on Figs. 3a, 3b and 3c, respectively. These combinations gradually violate the SSL assumptions as the clustering
and smoothness become less defined, thus making the SSL a more difficult task. The second dataset is a two moon dataset (Fig.
4) which was generated using the PRTools toolbox [27]. The data is uniformly distributed along the moons and is superimposed
with a normal distribution with standard deviation in all directions. In order to violate the SSL assumptions, it has been generated
using 3 different standard deviations: 0.3, 0.6 and 1, as can be seen on Figs. 4a, 4b and 4c. This dataset also has 1000 instances
equally distributed between two classes.

Tables 1 and 2 show the classification erros from the simulation results. The classification error is defined as the fraction of
incorrectly labeled instances over the whole dataset. To perform the tests, it has been created 10 different splits for each set. Each
of these splits contains 10 different initially labeled instances ranging from equally balanced (5 labeled instances for each classes)
to completely unbalanced (9 labeled instances for one class and 1 labeled for the other). It can be seen on the tables that the
technique achieved good classification results, with classification error ranging from 0 to 25% (correponding to 250 misclassified
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instances). It is worth noting that the technique is very sensitive to the balancing of the initially labeled examples. For instance,
consider the test errors on Table 2 for set number 2 and splits 1 (0.1%), 6 (0.1%), 5 (2.0%) and 10 (4.7%). The fist two results
correspond to equally balanced initial labeled instances while the last two results correspond to completely unbalanced initial
labeled instances which, consequently, compose the group of the worts results for set 2 (including splits 4 (2.7%) and 9 (3.1%),
which corresponds to 8 to 2 unbalanced labeled instances). However, all of them are competitive small error rates.

It also can be noted that the classification performance decreases, as one can expect, as there are more mixture between two
different classes. In this case, the mixture creates a high difficult decision region in which an attraction point lying inside it
attracts, in an extreme situation, points from both classes without distinction. Finally, it has been observed that the technique
is also sensitive to the initial disposal of the labeled instances. When two initially labeled instances is too close to each other,
the value of parameter S becomes very small and so the range of the attraction forces. In this case, the system convergence
is very slow. It should be noted that on the parameters’ adjustment it has been considered the extreme limit cases which, in
turn, guaratees a slow convergence but the most accurate results. Nevertheless, for specific cases one can adjust the function
parameters accordingly to the dataset studied so that a very slow convergence is avoided.
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Figure 3: Examples of dataset for 3 artificial 2-dimensional Gaussian data.

Table 1: Gaussian set classification error rates (%).

Split
Set 1 2 3 4 5 6 7 8 9 10 Mean
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 5.1 11.8 22.9 19.8 4 0.8 2.1 19.8 22.9 11.8 12.1
3 10.1 20.0 17.4 32.8 48.7 60.5 11.7 21.7 10.7 16.7 25.0
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(c) Set 3.

Figure 4: Examples of dataset for 3 artificial 2-dimensional two moon data.

To provide comparisons for our technique we perform simulations on artificial and real-world data sets on the well-known
benchmarks provided by [4]. These benchmarks provide many desired data characteristics to validade semi-supervised algo-
rithms, such as balanced and imbalanced classes, binary and multi-classes, sparse and high-dimensional data, large sets and
misleading assumptions (cluster, manifold and smoothness). The datasets range from 400 (BCI) to 1500 instances, from 117
(BCI) to 241 attributes and from 2 to 6 (COIL) classes. The results are showed on Table 3 for 10 and 100 initial labeled
instances. It can be observed that our technique performed well specially on cases of g241c and g241d datasets. These are
Gaussian distributed datasets which benefits the omnidirectional force fields characteristic. It is also worth to mention the good
results obtained on BCI dataset, a collection of human brain signals acquired by electroencephalography. On the other cases
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Table 2: Two moon set classification error rates (%).

Split
Set 1 2 3 4 5 6 7 8 9 10 Mean
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.1 1.7 0.9 2.7 2.0 0.1 17.4 0.9 3.1 4.7 3.4
3 23.8 11.2 1.7 6.5 4.1 6.5 1.6 46.6 6.2 6.6 11.5

Table 3: Predictive errors (%) on datasets provided in Chapelle et. al [4].

10 initial labeled instances 100 initial labeled instances
g241c g241d Digit1 USPS COIL BCI g241c g241d Digit1 USPS COIL BCI

1-NN 47.88 46.72 13.65 16.66 63.36 49.00 43.93 42.45 3.89 5.81 17.35 48.67
SVM 47.32 46.66 30.60 20.03 68.36 49.85 23.11 24.64 5.53 9.75 22.93 34.31

MVU + 1-NN 47.15 45.56 14.42 23.34 62.62 47.95 43.01 38.20 2.83 6.50 28.71 47.89
LEM + 1-NN 44.05 43.22 23.47 19.82 65.91 48.74 40.28 37.49 6.12 7.64 23.27 44.83

QC + CMR 39.96 46.55 9.80 13.61 59.63 50.36 22.05 28.20 3.15 6.36 10.03 46.22
Discrete Reg. 49.59 49.05 12.64 16.07 63.38 49.51 43.65 41.65 2.77 4.68 9.61 47.67

TSVM 24.71 50.08 17.77 25.20 67.50 49.15 18.46 22.42 6.15 9.77 25.80 33.25
SGT 22.76 18.64 8.92 25.36 n/a 49.59 17.41 9.11 2.61 6.80 n/a 45.03

Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 13.49 4.95 3.79 9.68 21.99 35.17
Data-Dep. Reg. 41.25 45.89 12.49 17.96 63.65 50.21 20.31 32.82 2.44 5.10 11.46 47.47

LDS 28.85 50.63 15.63 17.57 61.90 49.27 18.04 23.74 3.46 4.96 13.72 43.97
Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 24.36 26.46 2.92 4.68 11.92 31.36
CHM (normed) 39.03 43.01 14.86 20.53 n/a 46.90 24.82 25.67 3.79 7.65 n/a 36.03

LGC 45.82 44.09 9.89 9.03 63.45 47.09 41.64 40.08 2.72 3.68 45.55 43.50

Proposed Method 41.78 40.63 36.44 32.03 72.95 31.41 21.89 21.30 15.42 19.51 49.83 46.85

our algorithm experiences not so good results. This can be due to the instances distribution which difficults the attraction force
approach.

6. CONCLUSIONS

This work presented a new semi-supervised learning technique based on attraction forces between data instances. Firstly, a
matemathical model has been formulated to verify the system stability through Lyapunov method. Subsequently, some heuristics
have been used to adjust the attraction function parameters based on the system desired dynamical behavior. Finally, simulation
results have been exposed and discussed. It has been verified that the technique is sensitive to the initially labeled instances
balancing and placement. However, the proposed technique showed good classification results even when SSL smoothness and
cluster assumptions were not completely satisfied. As future work it will be interesting to study the behavior of the system when
different distance functions are taken into account. In this work it has been used the Euclidean distance although it is known
that this measure has problems in higher dimensional spaces. Also, it could be explored different heuristics and refinements for
the parameters adjustment and the definition of the attraction point neighborhood, e. g. taking into account the data distribution
on that region, inside which labels propagate. Lastly, the balance between the relatively technique simplicity and the good
classification rates, shows that the proposed method can be well suited for performing accurate SSL tasks.
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