
X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
c© Sociedade Brasileira de Inteligência Computacional (SBIC)

DIGITAL DATA NETWORKS DESIGN USING HYBRID METAHEURISTIC

Gilberto F. de Sousa Filho
Departamento de Ciências Exatas, Universidade Federal da Paraı́ba

gilberto@dce.ufpb.br

Lucidio dos Anjos F. Cabral
Departamento de Informática, Universidade Federal da Paraı́ba

lucidio@di.ufpb.br

Abstract – This work emphasises the contruction of two strategies for refinement phase used in the hybrid metaheuristic GILS
for configuration of a service, called Dynavideo, applied in the video distribution. This problem can be formulated as Steiner
Tree Star Problem (STSP). At first strategy is employed the Descent Method in its Local Phase, at second is used a hybridization
of GILS with a restrict formulation of the mathematical model for the STSP. In following, we describe some computational
experiments compared with the instances of literature. The results indicate that the new strategies discussed were able to improve
some results better than previous solutions.
Keywords – Steiner Tree Star Problem, Metaheuristics, GRASP, ILS.

1 INTRODUCTION

Servers that deal with video distribution, such as digital TV broadcasting and transmission of live events over the Internet,
usually work with abrupt changes in their demand. The number, type and location of service clients can vary greatly in a short
period of time. For example, this occurs every time a program premium starts to be displayed.

Currently many systems are able to distribute video in digital networks. These systems are capable of transmitting video
streams in various formats. However, once configured, if it occurs some variation in demand during the broadcast of a video,
these distribution services are unable to automatically adjust your settings.

In order to circumvent the difficulty of the foregoing, was designed plataform Dynamic Video Distribution Service(Dynavideo)
exposed by [1]. The main feature of DynaVideo is the ability to dynamically adjust the configuration for a given demand. The
costs involved with the design of Dynavideo’s reconfiguration are: activation cost of the servers; cost of connection between the
servers; cost allocation of clients to servers. Therefore, the configuration of backbone of video distribution must meet all clients
at a minimal cost.

The main feature of DynaVideo is the ability to dynamically adjust the configuration for a given demand. The adjustment
is based on the concept of replication of mobile video servers described by [2]. These replicas can be created in real time and
moved to locations on the network enabling us to serve a given demand.

The current work proposes the contruction of two strategies for refinement phase used in the hybrid metaheuristic called
GILS, presented in [3], at first strategy is employed the Descent Method in its Local Phase, at second is used a hybridization of
GILS with a restrict formulation of the mathematical model for the STSP. To check the efficiency of this used strategies, were set
two parameters: computacional time and quality of the solution.

This article is organized into seven sections. In Section 2, we present a brief description of the system DynaVideo, the
problem of dynamic reconfiguration of service delivery of video and its relationship with the Steiner Tree Problem. Section 3,
we present a mathematical formulation for the Steiner Tree Star Problem. In Section 4, we describe the hybrid metaheuristic
GILS found in the literature and the use of a Descent Method, section 5, present the hybridization of GILS with a reformulation
of mathematical model for STSP. In Section 6, we present the computational results. Finally, section 7, some conclusions are
made.

2 SYSTEM ARCHITECTURE DYNAVIDEO

The service DynaVideo as described by [4] is dynamically configured. This flexibility allows the service to automatically
adjust for variations in demand, the idea is that the service continually try to find an optimal configuration to meet a given
demand. In DynaVideo, demand is defined by the number and location of customers. Figure 1 shows the main components of
DynaVideo through a component diagram.

The DynaVideo Manager (DM) controls the assignment. When a client requests a video stream, this module looks for a
server with capacity to meet it. If found, the DM client associates with that server. Otherwise, a server containing a replica will
be activated to meet the same.

The Distribution Server (DS) is the component that works in a distributed having an instance on each server and having direct
access to video sources, which can be encoded in real time or video file servers. When the DS does not make direct access to
video, he works as a reflector receiving the stream from a server and passed to clients associated with it or to another server.

1

X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
c© Sociedade Brasileira de Inteligência Computacional (SBIC)

Figura 1: Major components of DynaVideo.

The arrival of a customer requires a change in service configuration. This event activates the Traffic Monitor (TM) described
by [5], so this set servers to which the customer is closer, by tracing the routes of active servers to the client. Thus, the role of
TM is to create and update a data structure, the routing graph, which stores the routes of active servers to clients.

The Component Configuration Optimizer (CO) was initially designed to work in a centralized manner, see [4], but with the
parallelism of the optimization algorithm, this module now has an instance on each server system, and they are activated by DM
for these to communicate and compute an optimal configuration for the service. CO is run in background, looking for a better
setting for service delivery, considering the current demand represented by the graph of routes and the cost of processing and
communication involved in reconfiguration. Being evaluated the new configuration, the CO requests to the DM that:

• Move a client from one server to another;

• Enable or disable a server;

• Move a server from one location to another;

2.1 OPTIMIZING THE SERVICE CONFIGURATION

In DynaVideo, demand is defined by the number and location of customers. The costs involved with the design of automatic
reconfiguration are:

• Activation cost (or configuration) of the servers (DS);

• Cost of connection between the servers (DS);

• Cost allocation (or connection) of clients to servers (DS);

Connection costs and allocation can be assessed, respectivamante through a function that indicates quantitatively the quality
of the connection between servers and the quality of the connection with the client being serviced by a server. This function can
take as parameters, for example, the number of hops, which gives an idea of distance between client and server. The design of the
backbone infrastructure must meet the requirements of customers, at minimal cost. Since the costs of activation can be evaluated
using a function that would present the following parameters: the waiting time to enable the application server and the time to
load configuration data from the server.

The problem of finding a minimum cost tree, connecting a set of nodes, possibly using auxiliary nodes, is classically known
as Steiner Tree Problem (STP), described by Winter [6]. Thus, the problem of network design discussed above is a special case
of the STP, called Steiner Tree-Star Problem (STSP), presented by [7] and [8], since each destination node is connected only one
active node (server) in a star topology. This problem was addressed in [4] using the metaheuristic GRASP and [9] using genetic
and transgenetic algorithms. In [3] were proposed three hybrid metaheuristic parallelization for the STSP.

3 MATHEMATICAL FORMULATION

The STS network consists of m client nodes that are interconnected through n Steiner nodes; each Steiner node j that is used
to connect to at least one client node or other Steiner nodes is called an active Steiner node and will incur a fixed cost Bj ; each
client node i must be connected to exactly one active Steiner node, incurring a connection cost Cij ; two distinct Steiner nodes j
and k that are directly connected incur a connection cost Djk. The design problem is to find the minimum cost tree that spans
all client nodes through selected active Steiner nodes. The STS problem can be formulated as an integer-programming model
presented in [8].

The following notation is used in the formulation:

Indices:
i :index of client nodes; i = 1, 2, . . . , M;
j, k : index of Steiner nodes; j, k = 1, 2, . . ., N;

2

X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
c© Sociedade Brasileira de Inteligência Computacional (SBIC)

M : set of client nodes;
N : set of Steiner nodes.

Parameters:
Cij : cost of connecting target node i to Steiner node j;
Djk : cost of connecting Steiner nodes j and k;
Bj : cost of activating Steiner node j;
S : subset of N;
W : node of set S.

Decision variables:
Xij := 1 if and only if client node i is linked to Steiner node j;
otherwise Xij = 0;
Yjk := 1 if and only if Steiner node j is linked to Steiner node k;
otherwise Yjk = 0;
Zj := 1 if and only if Steiner node j is selected to be active;
otherwise Zj = 0.

The formulation is presented as follows:

Minimize
∑

i∈M

∑

j∈N

CijXij +
∑

j∈N

∑

k>j,k∈N

DjkYjk +
∑

j∈N

BjZj (1)

Subject to
∑

j∈N

Xij = 1, i ∈ M, (2)

Xij ≤ Zj , i ∈ M, j ∈ N, (3)

Yjk ≤ (Zj + Zk)/2, j < k, j, k ∈ N, (4)

∑

j∈N

∑

k>j,k∈N

Yjk =
∑

j∈N

Zj − 1, (5)

∑

j∈S

∑

k>j,k∈S

Yjk ≤
∑

j∈{S−w}
Zj , w ∈ S, S ⊂ N, |S| ≥ 3, (6)

Xij ∈ {0, 1}, Yjk ∈ {0, 1}, Zj ∈ {0, 1}, i ∈ M, j > k, j, k ∈ N. (7)

In this formulation, the objective function (1) is to minimize the total cost, which includes the connection cost between a client
node and a Steiner node, the connection cost between Steiner nodes, and the fixed cost to activate Steiner nodes. Constraint set
(2) indicates that each client node is connected to exactly one Steiner node. Constraint set (3) indicates that the Steiner node must
be activated before client node can be connected. Constraint set (4) indicates that two Steiner nodes must be activated before they
can be connected to each other. Constraint set (5) expresses the constraints of a spanning tree that the total connections among
Steiner nodes must be equal to the number of activated Steiner nodes less one. Constraint set (6) is an anti-cycle constraint that
ensures that the backbone network solution is a spanning tree without any cycles. Constraints (7) indicate that the three decision
variables are binary. In the formulation, constraint set (2) contains M constraints. Constraint set (3) generates M × N constraints.
Constraint set (4) provides (N2 - N)/2 constraints. Constraint sets (5) and (6) sum up to N(2N−1 - N) + 1 constraints. The total
constraints are N(2N−1 + M - (N - 1)/2) + M + 1. Eqs. (7) contain 1/2(N2 + N) + M ∗ N + N decision variables. Although,
a number of studies have attempted to solve the problem, the computational complexity makes it difficult to solve large size
problems. Therefore, researchers have been designing efficient heuristics to solve large scale problem.

4 HYBRID METAHEURISTIC GILS

In this section, we describe the hybrid metaheuristic GILS that combines the metaheuristics GRASP [10] and ILS [11], aside
from using a Descent Method which replaces the local search phase of GRASP.

3

X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
c© Sociedade Brasileira de Inteligência Computacional (SBIC)

4.1 REPRESENTATION OF THE PROBLEM

The main factor in solving the STSP is to identify the best servers that can meet customer demand. We assume that the set N,
with |N| = n, represent the set of servers while the set M, with |M| = m, represent the set of customers.

The objective function that evaluates each solution is set according to costs: activation of the selected servers (actives) j ∈ N;
connection of active servers j, k ∈ N in a minimum spanning tree; assignment of customers i ∈ M for its active servers j ∈ N.
Apart from these costs, we must note that the capacity of each server must not be exceeded.

To calculate the cost of assigning two greedy algorithms were implemented: one that uses the ordering of the values of the
matrix Cij of costs from customers i to j servers in ascending order, called GreedyOrd, and another does not make the ranking of
these values, called GreedyNOrd. Both algorithms try to assign each customer to the best active server, respecting the capacity
of the chosen server.

To determine the value of the connections between servers, in each solution S, used the Kruskal algorithm to find a minimum
spanning tree.

4.2 CONSTRUCTION GRASP

The construction phase, start with an empty solution S, i.e., we don’t have the presence of active servers. At each iteration is
chosen, randomly, a server from the restricted candidate list (RCL). The RCL list corresponds to one of the best inactive server.
This list is obtained with the help of a greedy function, called g(j), set for each inactive server j:

g(j) = gc(j) + gl(j) + gs(j), (8)

where:

• gc(j): represents the arithmetic average of the costs of the customers to server j;

• gl(j): matches the best connection cost of server j with the other servers already active;

• gs(j): corresponds to the cost of activating the server j.

The best candidates formed by inactive servers will be those that satisfy the condition:

g(j) ≤ gmin + α(gmax − gmin), (9)

where gmin = ming(j)|jisinactive, gmax = maxg(j)|jisinactive and α ∈ (0, 1).
Finally, after obtaining RLC and choosing a random server j ∈ RLC, performed the process of adaptation, i.e., add the server j

in the list of active solution S. The condition for stopping the construction phase was set so that the initial solution reach viability,
i.e., the choice of inactives servers continues until the service capacity of active servers is greater than or equal to the total number
of customers.

4.3 DESCENT METHOD

This work proposes the replacement of GRASP’s local search phase by a Descent Method, which uses three movements in
following neighborhood used in literature [9]: ADD, DROP and SWAP , iterating in a exhaustively way and moving forward
with best improvement strategy, i.e., the current solution S is updated as you find a better solution.

These movements consist of:

• ADD: consider a server j that does not belong to the solution S. In this case, the server j will become active in solution S;

• DROP : consider a server j that belong to the solution S. In this case, the server j will become inactive in solution S;

• SWAP : corresponds to an 2-opt exchange, i.e., server j that is active in the solution S, becomes inactive in S while the
server k was inactive is replaced to active state.

These exchanges allow the formation of neighboring solutions to the current solution S.

4.4 GILS (GRASP + ILS)

The hybrid metaheuristic GILS, whose pseudocode was presented in [3] was modify with adition of Descent Method like
is showed in Figure 2. It receives the following parameters: the evaluation function f(.), constructor function greedy g(.),
neighborhood structure N(.), number of movements for the disturbance kmax, and the percentage size of the list greedy α.

In GILS after GRASP construction phase and the Descent Method as intensification phase of the neighborhood of the solution
built, will be applied the metaheuristic Iterated Local Search (ILS) as diversification phase. The objective of ILS is to improve
upon stochastic Mutli-Restart Search by sampling in the broader neighborhood of candidate solutions and using a Local Search
technique to refine solutions to their local optima.

4

X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
c© Sociedade Brasileira de Inteligência Computacional (SBIC)

procedure GILS(MaxIterGILS, RandomSeed, f(.) , g(.), N(.), kmax,α)
1. f(s∗) ←∞;
2. for i ← 1 to MaxIterGILS do
3. s ← ConstructGreedyRandomizedSolution(g(.),α);
4. s0 ← DescentMethod(s);
5. if f(s0) < f(s∗) then
6. s∗← s0;
7. end-if
8. sILS ← ILS(f, N, kmax, s0, MaxIterILS);
9. if f(sILS) < f(s∗) then
10. s∗← sILS ;
11. end-if
12. end-for
13. return(s∗).
end GILS.

Figura 2: Hybrid algorithm GILS (GRASP+ILS).

In each iteration of the loop of lines 2-12 is made GRASP iteration followed by an iteration ILS. Here neighborhoods ADD,
DROP and SWAP are used. In the construction phase of GRASP just ADD neighborhood is used, while the local search phase
all three neighborhoods are used exhaustively. For the ILS algorithm is passed as the initial solution the best solution obtained
by local search and random moves are made kmax type ADD or DROP , these movements after the local search procedure
GRASP algorithm is triggered on the solution.

5 STRATEGY EXACT ASSIGNMENT (EA)

The mathematical model for the STSP, presented in section 2, need an exponential number of constraints to ensure no exis-
tence of cycle in the graph of active servers, so its execution is impractical for large instances, however, we noticed experimentally
that the location of active servers and the generation of the minimum tree defined by the GILS metaheuristic obtained results, in
average, close to those achieved by the exact model with runtimes computationally good for small instances, however, calculating
the allocation of customers through greedy algorithms GreedyOrd and GreedyNOrd had poor results, due to its combinatorial
nature, since each server has a limited capacity for serving clients.

We propose in this paper a new phase of refinement of the solutions generated by GILS, trying to get the best of both worlds,
i.e., delegates the responsibility to creates the tree of active servers for metaheuristic GILS and responsibility to assignment
customers to active servers for a restrict formulated model of STSP.

5.1 RESTRICT FORMULATED MODEL OF STSP

For the assignment of customers, the original model STSP had restrictions (4-6), responsible for creating the minimal tree,
relaxed and the objective function of the model reduced. The set M of servers is changed by the set Ma, a subset of M formed by
active servers defined by GILS.

The reformulation is presented as follows:

Minimize
∑

i∈Ma

∑

j∈N

CijXij (10)

Subject to
∑

j∈N

Xij = 1, i ∈ Ma, (11)

Xij ≤ Zj , i ∈ Ma, j ∈ N, (12)

Zj = 1, i ∈ Ma, (13)

Xij ∈ {0, 1}, i ∈ Ma, j > k, j, k ∈ N. (14)

As the metaheuristic locates the servers and sets their interconnection, there is a need to add the constraint set 13 that indicates
for model which the servers are already considered to be active.

5

X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
c© Sociedade Brasileira de Inteligência Computacional (SBIC)

Figura 3: Filter matrix Cij

5.2 FILTERING MATRIX Cij

Because servers considered inactive staying out of the restrict formulated model, can decrease the size of the instance to this
model, order to reduce its computational time, for this, after execution of GILS it will provide a boolean array of size n, indicating
which servers should be active or inactive, the matrix Cij , containing the cost of connecting customer i to server j, will be filtered,
leaving only the columns corresponding to actives servers. The Figure 3 illustrates the filter Cij guided by a solution of GILS.

This strategy that adds the execution of an exact model to solve the problem of assigning in a phase of refinement of solution
generated by the metaheuristic GILS to the problem of the STSP, will be called GILS+EA.

6 COMPUTATIONAL RESULTS

The hybrid algorithm GILS proposed by [3] and its intensification strategies, GILS+DM, that change the local search phase of
GRASP for a Descent Method, and GILS+EA, that make a hybridization of the algoritm GILS with a reformulation of the STSP
model, described in the previous sections, were developed in C++ language and the aid of mathematical solver CPLEX [12]. All
computational experiments were done on a machine consists of four Intel Core 2 Quad, each with the following specification: 4
processors 2.33 GHz with 2 GB of RAM and running the operating system Linux Ubuntu 9.04.

To investigate the performance of hybrid metaheuristic GILS and its intensification strategies were used 12 instances available
in literature [4], with varying number of servers N = {10, 50, 100} and varying number of customers in M = {10, 50, 100, 1000}.
Each vertex (server or customer) had their coordinates in <2, randomly generated with values between 0 and 100.

To demonstrate the efficiency in terms of solution quality of GILS metaheuristic and its intensification strategies, we made
comparisons with an exact procedure B&B. For each instance of Table 1 we have the first two columns representing the di-
mensions of the instances tested, and the remaining columns divided into four groups: B&B procedure, GILS, GILS+DM and
GILS+EA. In the procedure B&B, column z∗ denotes the optimal value and the column indicates the long computing time in
seconds spent solving the instance. For the groups of columns GILS, GILS+DM and GILS+EA additional time beyond the col-
umn, are: z that indicates the value obtained by algoritm and ∆ (gap) that indicates the percentage difference between the B&B
solution:

∆ = [(z − z∗)/z∗] ∗ 100 (15)

It was established that the number of iterations of algorithm GILS and its refinement strategies was equal to 120, for each
algorithm and each instance there were five plays. The value chosen for α was equal to 0.5, for which it gave the best performance
during the testing of algorithm GILS, see [3].

Instance B&B (CPLEX) GILS GILS+DM GILS+EA
n m z* Time Z ∆ (%) Time Z ∆ (%) Time Z ∆ (%) Time
10 10 587.08 0.63 587.08 0.00 0.04 587.08 0.00 0.058 587.08 0.00 0.068
10 50 1598.94 0.61 1662.32 3.96 0.06 1662.31 3.96 0.112 1602.97 0.25 0.116
10 100 2521.11 0.08 2593.73 2.88 0.082 2593.73 2.88 0.156 2521.11 0.00 0.156
10 1000 17873.46 0.390 17963 0.50 0.484 17963 0.50 1.094 17878.91 0.03 1.180

Tabela 1: Comparison of B&B results with intensifications strategies of GILS

We can see in Table 1 that GILS+EA find better results than the metaheuristic GILS, approaching of the result found by B&B,
obtaining a maximum gap of 0.25% compared to this. The procedure B&B had a good computational time for instance with
n=10, i.e., with ten servers. But for instances with n = 50, B&B was unable to reach an optimal solution in the limit of six hours
of processing, due to the exponential number of constraints required. Results for the B&B procedure were obtained using the

6

X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
c© Sociedade Brasileira de Inteligência Computacional (SBIC)

Instance GILS GILS+DM GILS+EA
n m Z Time Z ∆% Time Z ∆% Time
10 10 587.08 0.04 587.08 0.00 0.04 587.08 0.00 0.068
10 50 1662.32 0.06 1662.31 0.00 0.06 1602.98 -3.57 0.116
10 100 2593.73 0.082 2593.73 0.00 0.082 2521.11 -2.8 0.156
10 1000 17963 0.484 17963 0.00 0.484 17878.91 -0.47 1.18
50 10 547.69 11.3 531.12 -3.03 11.3 531.12 -3.03 11.2
50 50 2215.98 42.9 2134.82 -3.66 42.9 2081.54 -6.07 72.7
50 100 2788.46 53.3 2716.59 -2.58 53.3 2670.03 -4.25 93.4
50 1000 10536.92 185.0 10443.05 -0.89 185.0 10443.05 -0.89 503.9
100 10 561.35 273.3 529.79 -5.62 273.3 529.79 -5.62 265.2
100 50 2134.28 586.1 1880.36 -11.9 586.1 1871.13 -12.33 626.3
100 100 3965.42 1393.5 3721.94 -6.14 1393.5 3676 -7.3 2328.2
100 1000 10145.93 3259.7 9888.27 -2.54 3259.7 9737.54 -4.03 6967.8

Tabela 2: Comparison of GILS with its hybridization strategies

software CPLEX, under academic license. For the process B&B were not included limits previously calculated, so that the tool
use only the linear relaxation.

Table 2 presents a comparison between the avarage solutions, in five play, found by the metaheuristic GILS and the refinement
strategies of the same. We can see this table that the strategy GILS+DM improves the outcome of the GILS in 8 of 12 instance
tested, obtaining an average negative gap of -2,56%, i.e., improving the previous solution founded. The strategy GILS+EA
improves the best result known in 11 of the 12 instances tested, obtaining an average negative gap of -3,8%. With regard to
computacional time, was noticed a significant increase in the GILS+DM compared to GILS, due to exhaustively neighborhood.
Comparing the times of GILS+DM and GILS+EA, was not noticed much variation.

7 CONCLUDING REMARKS

The use of the service reconfiguration of network servers, video distribution, as in the case of DynaVideo, reduces the impact
of increased demand on the network, since this reconfiguration reduces the total traffic volume due to customer service. The
replication tends to approach a video for a given client area, where it is having a high demand by placing a copy of the video on a
server closer to these customers. Whenever we find a better solution to the problem addressed we are improving the capabilities
of the distribution system, so finding better solutions of STSP is the main objective of this work.

The strategy of refinement GILS+DM achieved improvements in several solutions of metaheuristic GILS, reaching around
11.9% improvement, this proves that the refinement of Descent Method before the procedure ILS served for the algorithm
to converge to better solutions, a side effect of this strategy was the growth of computational time, due to its exhaustively
neighborhood.

The strategy GILS+ED used a hybridization of GILS with a restrict formulation of the mathematical model for the STSP, in
an attempt to improve the allocation of customers, improved all the solutions of GILS that did not reach the optimal solution. The
GILS+EA enough to get a gap of 12.33% compared to the GILS, in addition to approaching the results of the exact procedure
B&B, demonstrating that the strategy of handing responsibility the location of active servers and building the distribution tree
to metaheuristic GILS and the responsibility of customers’s allocation to the reformulated model, obtained good results, without
generating impact on the computational time.

REFERENCES

[1] L. L. E. C. de Souza Filho G. and B. T. “DynaVideo - A Dynamic Video Distribution Service”. In 6th Eurographics
Workshop on Multimedia, pp. 95–106, 2001.

[2] K. F. et al. “Dynamic Reconfiguration of Scalable Internet Systems with Mobile Agents”. Technical Report TD-5WYSEW,
Department of Computer Science at the University of Illinois at Urbana-Champaign, 1999.

[3] S. G. C. L. M. E. and L. G. “Metaheurı́stica Hı́brida Paralela para a Configuração de um Serviço de Distribuição de Vı́deo”.
In XIII CLAIO, Montevideo, Uruguai, September 2006.

[4] S. G. C. L. M. E. and L. G. “Uma metaheuristica GRASP para configuração de um serviço de distribuição de vı́deo baseado
em replicação móvel”. In SBPO, Gramado-RS, Brazil, September 2005.

[5] M. M. B. T. and L. G. “SMTA: Um Sistema para Monitoramento de Tráfego em Aplicações Multimı́dia”. In CLEI’2000,
Cidade do México, México, September 2000.

7

X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
c© Sociedade Brasileira de Inteligência Computacional (SBIC)

[6] W. P. and Z. M. “Euclidian Steiner Minimum Trees: An Improved Exact Algorithm”. Networks, vol. 30, no. 3, pp. 149–166,
1997.

[7] L. Y. C. S. and R. J. “A branch and cut algorithm for the Steiner tree-star problem”. Informs Journal on Computing, vol. 8,
no. 3, pp. 100–120, 1996.

[8] X. J. C. S. and G. F. “Using Tabu Search to solve the Steiner tree-star problem in telecommunication network design”.
Telecommunications systems, vol. 6, pp. 117–125, 1996.

[9] L. L. E. C. de Souza Filho G.; Goldbarg M. C. and G. E. F. G. “Comparando algoritmos genéticos e transgenéticos para
otimizar a configuração de um serviço de distribuição de vı́deo baseado em replicação móvel”. In XXII Simpósio Brasileiro
de Redes de Computadores, volume 1, pp. 129–132, 2004.

[10] P. Festa and M. Resende. “GRASP: an annotated bibliography”, Essays and Surveys on Metaheuristics”. In Essays and
Surveys on Metaheuristics, edited by C. Ribeiro and P. Hansen, pp. 325–367. Kluwer Academic Publishers,, 2002.

[11] L. H. R. M. O. and S. T. “Iterated local search”. In Handbook of Metaheuristics, volume 57 of Series in Operations
Research & Management Science, pp. 321–353. Kluwer Academic Publishers,, 2002.

[12] CPLEX. “ILOG CPLEX 11.2 User’s Manual and Reference Manual”, 2009.

8

