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Abstract – This paper presents a proposal of leptonjets/jet discriminator system for operating at the Second Level Trigger of
ATLAS. The system processes formated calorimetry data, so that high performance can be achieved. The data processed, based
in specialist knowledge, feed linear or non-linear classifiers with somewhat close performance. This implementation resulted on
high leptonjets detection efficiency for a low false alarm.
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1. Introduction

Data filtering system are used in different fields of research, aiming at isolating signal of interest from patterns related to a
given background noise. Actually, in many complex applications, the input data space dimensionality is very high, as well as
the incoming data rate. In this case, the difficulty of the input data stream analysis increases significantly. Also, the processing
speeding plays a critical role when the filtering system is envisaged for online operation. Finally, the signal of interest may rarely
occur, forcing the experiment to keep running for a long period of time in order to acquire a reasonable amount of events for
better measure estimation. In general, online filtering system should have the following features:

• High detection efficiency for a low false alarm probability.

• Flexibility in order to accomplish future requirements.

• Execution speed capable of achieving the desire time requirements.

• Robustness, in order to keep its filtering features trough its liftime operation.

To cope with such high-input data dimension, smaller selected area of analysis and feature extraction techniques may be
applied in order to isolate the relevant information from the event data description, eventually reducing its dimension. For this,
different techniques have been developed using expert information or/and stochastic processing. Inteligent processing schemes
may even reduce the complexity of the classifier (signal against background) design.

In many applications, neural networks [1] may play a role in signal classification. On the other hand, reducing the classifier
design complexity by means of signal processing, it might be possible to restrict the nonlinear processing implemented by a
neural network to perform slight adjustments in the linear signal classification. It may also be the case where signal classification
can go linear (through a Fisher Discriminant) [2], as a result of highly-efficient processing scheme.

In experimental high-energy physics, stringent conditions make signal processing a challenge, as there is often a large gap
between the experiment requirements and the technology currently avaible, forcing the development of new technologies. This is
particulary the case for modern particle collider experiments, in which particles are accelerated at high speed and put in collision
route. Analyzing the resulting products of collision, one can probe deeper into the structure of matter [3]. One important aspect
in particle collider experiments is that events of interest are typically very rare, since most of the produced events are from
background noise. In addition, the fine-grained segmentation of the particle detectors placed around the collision point for the
resulting interaction readout produces terabytes per second of information. Therefore, an online filtering system must be applied
for selecting only physics channels, while rejecting, as much as possible, the huge amount of background noise.

Presently, the Large Hadron Collider (LHC) at CERN [4] is the largest particle accelerator in the world. LHC has a total
length of 27km and will be colliding protons with 14TeV at their center of mass, at a rate of 40MHz and at a luminosity of
1034cm−2s−1 [3]. Multiple collisions points occur around the LHC ring. Around each collision point, a detection laboratory
is placed to analyze the sub-products of the collisions. Among such detectors, ATLAS [5] is the largest one. It may comprises
multiple sub-detectors, such as tracking, calorimeter and muon detection systems. Due to the detector granularity, each collision
produces ≈ 1.5MBytes of information, resulting in a total rate of ≈ 60TB/s of information. Therefore, an online filtering system
is mandatory for proper ATLAS operation.

This paper is organized as follow: in section 2 the ATLAS filtering system is showed, as well as the proposed procedure. In
section 3 the obtained results for such application are discussed. Finally, conclusions are derived in section 4
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Figura 1: Block diagram of the ATLAS Trigger/DAQ system.

2. The proposed leptonjets ATLAS channel

The filtering system comprises three cascaded operation level, applying sucesive cuts to the incoming data [6], as showed in
figure 1.

The first level (LVL1) receives full data and reduces the input event rate to ≈ 75kHz. It is responsible for marking the
regions in the detector that have effectively been excited. These regions are known as Regions of Interest - RoI, and are the only
information passed to the second level analysis. A RoI selected by the first-level filtering system amounts, in average, to 1, 000
calorimeter cells.

The second level (LVL2) receives the RoIs marked by the first level and it does a more specific analysis on them. For
meeting a time latency requirement of 14ms per event, a set of 500 off-the-shelf server processors are employed, providing a
multi-processed environment. The third and last filtering level, known as Event Filtering - EF, takes the final decision on events
approved by previous levels.

One of the ATLAS main research goals is to experimentally prove the Higgs boson existence [7]. Being the Higgs boson
highly unstable, it soon decays into more stable particles. Therefore, the physicists will prove its existence not by detecting the
Higgs boson directly, but by analyzing its decaying signatures. The same occurs with other unexperimentally proved theories.

An interesting issue in Experimental Physics is Dark Matter (DM). In light of recent astrophysical observations, the authors
of [8] have proposed a broad class of theories in which the annihilation of ≈TeV scale dark matter in the galactic halo accounts
for the anomalous excess of cosmic ray leptons. While this dark matter is probably inaccessible to colliders, it is accompanied
by a ≈GeV scale dark sector which couples, albeit very weakly, to the standard model (SM). The dark sector states are relatively
light and can be produced at high energy colliders, only to cascade decay through the dark sector and ultimately return to the
visible sector as electrons, muons, and possibly pions. The outgoing leptons emerge in the detector as leptonjets [9], which are
highly collimated multiple muons or electrons that result from the decay of these highly boosted dark sector states. Recently,
experimental effort in searching for such objects has been reported in [10].

On the other hand, a cascade of quark and anti-quark pairs can be produced during the vector decay, which quickly merge into
more stable particles, producing a pattern known as jet. These jet may deposit their energy in a manner very similar to electrons
(leptons), making the correct identification of leptonjets a tricky process. Our analysis will focus on the leptonjets/jet separation
problem at the second level of the ATLAS filtering system.

The system is based in calorimeter information. Calorimeters are total absorption detectors [7]. Typically, they use a (passive)
material for absorbing the energy of the incoming particle and sample the energy being deposited in the detector by using a active
material. Calorimeter play a major role in collider experiments. They provide fast response, their energy resolution improves
with increasing energy, and they interact with charged and non-charged particles.

The ATLAS calorimetry system is composed by two calorimeter sections [7]: the electromagnetic (EM) calorimeter is re-
sponsible for detecting electrons, positrons and photons. The hadronic (HAD) calorimeter is responsible for detecting hadrons
(kaons, pions etc) and it is placed on top of the electromagnetic calorimeter. Both detectors comprise 3 sequential layers with
distinct granularity and depth providing detailed information of incoming paticles. The electromagnetic calorimeter has, in ad-
dition, a very thin layer in front of it, which is called Pre Sampler (PS). The figure 2 displays the energy deposition profile for
leptonjets and jet interaction at the eletromagnetic middle layer.

Isolated electrons have the property of depositing their energy in a punctual way, differently from jets, which, for LVL2 data,
tend to slightly spread their energy over multiple cells within a layer. For leptonjets, the collimated feature of their leptons would
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(a)

(b)

Figura 2: Example of segmnted calorimeter information obtained from the eletromagnetic middle layer: (a) an incoming lepton-
jets; (a) an incoming jet.

lead to properties similar to isolated eletrons events but the multiplicity of leptons in it results in energy over multiple cells as
well as the jets events.

Therefore, the relevant information relies not at the impact point center, but at its surrounding area. Aiming at exploiting this
feature, a topological procedure based on ring sums has been tried by some LVL2 algorithms for data formatting [11, 12]. In this
approach, the cell that samples the highest energy value (also known as the hottest cell) is considered the center of our RoI in
each calorimeter layer (seven in total). Then, a set of concentric rings are built around this hottest cell in a pattern similar to the
one presented in figure 3. The ringer procedure is performed on a per layer basis, resulting, at the end, in a total of 100 rings per
RoI (table 1).

Tabela 1: Number of rings per layer of calorimeter.

Layers Rings
RoI ∆R < 0, 1 ∆R < 0, 2 ∆R < 0, 3

Pre Sampler 8 1 2 3
EM front layer 64 1 2 3

EM middle layer 8 3 6 8
EM back layer 8 1 2 3
HAD layer 0 4 1 2 3
HAD layer 1 4 1 2 3
HAD layer 2 4 1 1 2

Even with the ringer procedure, the number of rings represents a high dimension space of analysis. To further reduce this
number others studies are being investigated. According to the literature [13] a smaller part of the RoI could be used in the
process of detection/classification. This small concentric region, based on the energy profile around the center of the RoI, would
be enough to separate the patterns. This region is determined through

∆R =
√

∆η2 + ∆φ2 (1)

where η and φ are the coordinates of the ATLAS detector, and ∆η and ∆φ are the respective granularities in each layer. The
figure 4 ilustrates these regions for diffents values of ∆R. The table 1 shows the number of rings per layer cosidering three
diferents values of ∆R. All of them represents a considering smaller space of analysis.
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(a) (b)

(c) (d)

Figura 3: Ring formatting for calorimetry: (a) Pre Sampler; (b) EM middle layer; (b) EM back layer; (d) HAD layer 0.

3. Results

The available data set was obtained through Monte Carlo simulation and comprises apprimately 450, 000 jets and 1, 000
leptonjets (4 electrons) signatures. The simulation considers the detector characteristics and the first-level filtering operation.
The jet data was equally split into trainning, validation and testing sets. The leptonjets were split in two sets. The first one, with
75% of the events, was replied until achieve the number of jets used in the trainning stage. The procedure adopted to equalize
the a priori probabilities of the two events, since the simulation of leptonjets is a hard task. The rest of the leptonjets were used
in the validation and test stages.

It is presented in figure 5 the block diagram of the leptonjets/jet discriminator. The raw calorimeter data is received and the
topological procedure on ring sums is performed. Next, the rings feed the classifier algorithm for the hypothesis making. In this
work the Fisher Linear Discriminant (FLD) and the Supervised Multi-Layer Perceptrons (MLP) neural classifiers were used to
perform the particle identification (hypothesis testing) over processed calorimeter information. The neural network were trained
using the backpropagation algorithm [1]. In order to compare the discrimination efficiency for the proposed classifiers, the SP
index [1, 14] was applied. The SP index is computed through

SP =

√√√√√
∑j

i=1 PDi

j
× j

√√√√
j∏

i=1

PDi (2)

where PDi is the efficiency for the ith class of event. The threshold value that maximizes the SP provides both high PD and
low PF.

The table 2 shows the final performance, where PDlj is the leptonjets acceptance rate, PFj is the false alarm rate and, SPlj/j
is the SP index considering the leptonjets/jet separation. Accordind to the numbers, we can say that the Fisher classifier can
not correctly separete the patterns by the rings from the RoI. The poor PDlj prevents its use. The neural classifier worked much
better, mainly because its nonlinear properties can contour the problems where rings presents close cluster to the signal and the
background. The neurons in the hidden layer ranged from 2 to 15. The best topology was obtained with 7 neurons.

As mentioned in previous sections, the available calorimeter signatures are topologically formated, generating 100 rings
for an incoming event. This number is much smaller than the avareged number of cell in RoI, but it is still considered high.
The investigation of the potencial of separation with a smaller number of rings presents interesting results. The Fisher Linear
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Figura 4: ∆R regions of the RoI per layer.

Figura 5: Processing chain of the leptonjets/jet separation system.

Discriminant has a huge improvement with the three values of ∆R studied. It means, the rings in the edge of the RoI (almost no
energy) were, as we supposed, the responsible by the confusion between the patterns. We can observe that increasing the ∆R
implies a better performance, as shows the SPlj/j index. We consider the maximized functional SPlj/j as the indicative of the best
classifier. From this, with a SPlj/j value of 0.7243, the best Fisher classifier can accept 58.56% of the leptonjets with a false alarm
rate of 12.22%.

In order to verify whether a non-linear classifier suffices, the signals were also used to feed a neural network. We varied the
number of hidden neurons from 2 only to 5, because of the smaller number of rings. Analogously, to that observed with the FLD,
increasing the ∆R implies a better performance.

The best neural classifier presents the topology 25− 5− 1. The use of only 25 rings (belonging to the region of ∆R = 0.3)
means 75% of compactation. The final SPlj/j index, indicates, also, a somewhat close performance to obtained with the processing
of the RoI. Another interesting observation is that for all the ∆R scenarios investigated, the final performance of the FLD was
close to the presented by the neural classifier. As neural classifiers are much more fast to train and perform, and much more easy
to investigate, it is a positive issue.

It can be seen that the ∆R processing was able to improve the discrimination obtained trough both classifiers (linear and
non-linear) providing more separated patterns. Through the proposed processing chain, the results of the linear classifier indicate
that is not necessary a neural classifier (non-linear) to achieve good detection efficiency. An important issue is the computational
cost, which, for a linear classifier is smaller. This might be a striking advantage for a online filtering. However, if the detection
of leptonjets is mandatory a less complex neural network topology could be employed.
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Tabela 2: Performance of the Fisher and Neural classifiers.

Region of Analysis Classifier Hidden Neurons PDlj PFj SPlj/j threshold

RoI Fisher 46.39 46.42 0.4992 -0.09
Neural 7 68.44 17.28 0.7541 0.07

∆R

0.1 Fisher 66.92 27.17 0.6984 -0.19
Neural 4 72.62 31.95 0.7032 0.11

0.2 Fisher 63.50 21.42 0.7084 0.01
Neural 5 62.36 16.20 0.7268 0.25

0.3 Fisher 58.56 12.22 0.7243 0.29
Neural 5 68.06 20.46 0.7369 0.13

4. Conclusions

The hard triggering task of high-dimensional data find parallel aplications in many areas. Combining accumulated knowledge
by experts about the problem with inteligent signal processing techniques is being shown to be an efficient design approach.
Among the benefits, high signal compactation rates, relevant feature extraction and reduced computational load are accomplished.

It was shown that processing the calorimeter data with the knowledge provided by expert play a interesting role for additional
applications to be developed at the actual infrastructure of the ATLAS detector. Efficient feature extraction, about 25% of the RoI
rings data, reduced significantly the computational load, wich is attractive due to the low latency time required by the application.
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