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Abstract – The financial forecasting is considered a rather difficult problem due to many complex features present in these
time series. Several linear and nonlinear techniques have been proposed in the literature to solve this problem. However, a
dilemma arises from all these techniques, known as random walk dilemma, where the forecasts generated show a characteristic
one step delay regarding the real time series data, that is, a time phase distortion in the reconstruction of phase space of financial
phenomena. In this sense, this work presents a quantum-inspired evolutionary learning process with automatic phase adjustment
to design the dilation-erosion perceptron (DEP) in order to overcome the random walk dilemma for financial forecasting. Further-
more, an experimental analysis is presented using the Dow Jones Industrial Average Index, where five well-known performance
metrics and an evaluation function are used to assess forecasting performance.
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1 Introduction

The financial forecasting represents a hard problem to be solved due to many complex features frequently present in these
time series, such as irregularities, volatility, trends and noise. Many efforts have been made to the development of linear and
nonlinear statistical models able to determine the future behavior of financial phenomena [1–5].

Several alternative approaches have been employed to solve this problem [6–13]. In the last two decades, the most popular
approach for nonlinear modeling of time series is based on artificial neural networks (ANNs) [14, 15]. However, to define a
solution to a given problem, ANNs require setting several system parameters, some of which are not always easy to determine.
In this context, evolutionary approaches for the definition of neural network parameters have produced interesting results [16–23].

However, a dilemma arises from all these models regarding financial time series, known as random walk dilemma (RWD)
[7, 24], where it is possible to verify that the forecasts generated by arbitrary models present a characteristic one step delay
regarding real time series data, that is, a time phase distortion in the reconstruction of phase space of financial phenomena
[13, 21–23]. Therefore, as overcoming the RWD is a too hard task, some researchers have been argued that these time series
cannot be predicted [7, 24].

In this sense, this paper presents a quantum-inspired evolutionary learning process (using a quantum-inspired evolutionary
algorithm (QIEA) [25]) with automatic phase adjustment (using an automatic phase fix procedure (APFP) [13]) to design the
dilation-erosion perceptron (DEP) [13] in order to overcome the RWD for financial forecasting. Furthermore, an experimen-
tal analysis is conducted with the proposed model using the Dow Jones Industrial Average Index (DJI series), where we can
demonstrate that the proposed model can successfully overcome the RWD, having good forecasting performance according to
five well-known performance metrics and an evaluation function defined in [13].

2 Fundamentals

In this section we present the fundamentals and theoretical concepts for the proposed model.

2.1 The Time Series Forecasting

A time series is a sequence of observations about a given phenomenon observed in a discrete or continuous space. In this
work all time series will be considered time discrete and equidistant, and formally defined by

x = {xt ∈ R | t = 1, 2, . . . , N}, (1)

where t is the temporal index, which is called time and defines the granularity of observations of a given phenomenon, and N is
the number of observations.

The aim of forecasting techniques applied to a given time series is to provide a mechanism that allows, with certain accuracy,
the forecasting of the future values of x, given by xt+h, h = 1, 2, . . . ,H , where h represents the forecasting horizon of H steps
ahead. These techniques try to identify certain regular patterns present in the data set, creating a model capable of generating
the next temporal patterns, where, in this context, a most relevant factor for an accurate forecasting performance is the correct
choice of the past window, or the time lags, considered for the representation of a given time series. In mathematical sense, the
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relationship which involves time series historical data defines a d-dimensional phase space, where d is the minimum dimension
capable of representing such relationship. Therefore, a d-dimensional phase space can be built so that it is possible to unfold
its corresponding time series. Takens [26] proved that if d is sufficiently large, such phase space is homeomorphic to the phase
space that generates the series. The Takens’ Theorem [26] is the theoretical justification that it is possible to rebuild a phase space
using the correct time lags.

2.2 The Random Walk Dilemma

A naive forecasting strategy is to define the last observation of a time series as the best forecasting of its next future value
(xt+1 = xt). This kind of model is known as the random walk (RW) model [7], which is defined by

xt = xt−1 + zt, (2)

where xt is the current observation, xt−1 is the immediate observation before xt, and zt is a noise term with a Gaussian dis-
tribution of zero mean and standard deviation sd (zt ≈ N(0, sd)). The model above clearly implies that, as the information
set consists of past time series data, the future data is unpredictable. Therefore, on average, the value xt−1 is indeed the best
forecasting of value xt, and proof of this statement is given in Araújo [13].

It is possible to verify that the use of an arbitrary model to make forecasts have an intrinsic limitation, since the generated
forecasts have a characteristic one step ahead delay regarding the original time series values, in which this behavior is common
in the finance and economics and is called random walk dilemma or random walk hypothesis [7]. Therefore, in these conditions,
to escape of the random walk dilemma is a hard task [13].

3 The Dilation-Erosion Perceptron (DEP)

According to Araújo [13], financial forecasting problems can be modeled in terms of functions Ψ : Rd
±∞ → R±∞ (d repre-

sents the minimum necessary dimension to determining the characteristic phase space that generates the time series phenomenon,
or, the time lags dimensionality), which can be approximated in terms of vectors a,b ∈ Rd, and given by

Ψ ≃ δa and Ψ ≃ εb, (3)

where

δa(x) =

d∨
i=1

(xi + ai) and εb(x) =

d∧
i=1

(xi +
′ bi), (4)

in which x ∈ Rd, terms
∨

and
∧

represent infimum and supremum operators [13], and the main differences between “+′” and
“+” are given by the following rules:

(−∞) + (+∞) = (+∞) + (−∞) = −∞, (5)

and
(−∞) +′ (+∞) = (+∞) +′ (−∞) = +∞. (6)

Let x ∈ Rd a real-valued input signal inside an d-point moving window of the time series and let y the output of the DEP.
Then, the DEP is defined by a translation invariant morphological operator (Ψ like) with local signal transformation rule x → y,
given by

y = λα+ (1− λ)β, λ ∈ [0, 1], (7)

with
α = δa(x), (8)

and
β = εb(x), (9)

where λ ∈ R, terms a,b ∈ Rd represent the structuring elements of morphological operators of dilation and erosion, respectively.
In this way, it is worth mentioning that the DEP have a convex combination of its components, where when it increases the
contribution of one component, the other one tends to decrease.

4 The Proposed Quantum-Inspired Evolutionary Learning Process

According to the DEP definition, we can see that the main objective of its design is to determine a set of parameters defined
by a ∈ Rd, b ∈ Rd and λ. Therefore, the weight vector (w ∈ Rn with n = 2d+1) to be used in the learning process is given by

w = (a,b, λ). (10)

During the proposed quantum-inspired evolutionary learning process, the weights of the DEP are adjusted according to an
error criterion until convergence or until the end of quantum-inspired search generations. Each i-th individual from classical
population at g-th generation represents a candidate weight vector (denoted by w

(g)
i ) for the DEP model. The scheme to adjust
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the weight vector is initially to define a fitness function f (which must reflect the solution quality achieved by the parameters
configuration of the system), given by

f(w
(g)
i ) =

1

M

M∑
j=1

e2(j), (11)

where M is the number of input patterns and e(j) is the instantaneous error, given by

e(j) = t(j)− y(j), (12)

where t(j) and y(j) are the target output and the actual model output for the j-th training pattern, respectively.
The proposed quantum-inspired evolutionary learning process, called DEP(QIEA), employ a quantum-inspired evolutionary

algorithm (QIEA) to train the DEP model. According to previous experiments with some quantum-inspired evolutionary algo-
rithms versions [25,27–29], we decided to use the version presented in [25], which employ a novel real-valued representation for
quantum individuals in order to explore the state space more efficiently and to enhance convergence speed. A further discussion
about this choice is beyond the scope of this work, and we refer the reader to an upcoming journal paper.

The QIEA procedure performs some steps to minimize the fitness function f : Rn → R, which is defined by Equation 11.
Recall that term n represents the dimensionality of the DEP model weight vector, which is given by 2d+1. These steps consists
on the generation of quantum individuals, using the concept of quantum bits (qubits) and the superposition of states, to build a
set of classical individuals, using the interference process. At the end, the best individual in the classical population is selected
as a solution to the problem. In our simulations, both quantum and classical populations comprises ten individuals (S = 10).

The first step is to build the quantum population, which is given by a superposition of states that are observed to generate
classical individuals (candidate solutions of the problem), and defined by

QP(g) = (QP
(g)
1 ,QP

(g)
2 , . . . ,QP

(g)
S ), (13)

with
QP

(g)
i = (QPi1, QPi2, . . . , QPin), (14)

and
QPij = (ρij , σij), (15)

in which QP(g) denotes the quantum population at generation g; QP
(g)
i denotes i-th quantum individual of the population

QP(g); QPij denotes the j-th parameter of the i-th individual of the population. Terms ρij , σij ∈ R represents the center and
the width of a square pulse, which is used to build the set of possible observable values over the problem domain [25]. The
height (hij) of each pulse is defined using the quantum gene width (σij) and the maximum number of quantum individuals (S)
in quantum population, given by [25]

hij =
1/σij

S
. (16)

The second step is to build the classical population, where we use the interference process among quantum individuals to
generate a probability density function (PDF). The PDF consists of summing up the quantum individuals genes, that is, the first
gene of all quantum individuals are summed, and all other genes of a given quantum individual do the same. The PDF is defined
by [25]

PDFj =
S∑

i=1

QPij , (17)

where QPij represents the square pulse with width σij and center ρij of the j-th gene of the i-th quantum individual.
These PDFs are used to build the classical individuals, which are real-valued vectors with same amount of quantum individuals

genes, where these values are randomly selected using the PDFs as probability function. In the attempt to perform a random
selection, it is necessary to define a cumulative distribute function (CDF), which is given by [25]

CDFj(x) =

∫ u

l

PDFj(x)dx, (18)

where u and l represent the upper and lower bounds of PDFj function.
Then, as all PDFs are built by a sum of square pulses, we can calculate the PDF area by dividing the function curve in

rectangles and by summing up its corresponding area. Note that CDFs can be calculated using these PDFs based on such
rectangles [25]. Through these CDFs, we can build a set of classical individuals by using such curves. Therefore, the classical
population is created by an uniform choice of random numbers in the range [0, 1] and by the identification of these points in CDF.
Therefore, we can generate the j-th parameter of i-th individual at g generation of classical population by [25]

w
(g)
ij = CDF−1(r), (19)

where r is a random number in the range [0, 1].
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This procedure allows to build the temporary classical population (TCP ), which stores all classical individuals generated
using the quantum population. At first QIEA generation, the classical population (CP ), which is the best observations (in terms
of fitness function) of quantum population, is a clone of the TCP . For next generations, the multi-point crossover operator [25]
is applied in the classical QIEA population to generate better classical individuals, hence improving the quantum population
update process.

After the CP generation, it is necessary to update the quantum population. First we use a translate operation, which is
responsible to update the center (ρ) of each quantum genes. A simple procedure to do this is to replace the mean of each gene
values to the genes values from classical individuals. This step is formally defined by

ρij = w
(g)
ij , (20)

where ρij represents the center of j-th gene of the i-th quantum individual from quantum population, and w
(g)
ij denotes the j-th

gene of the i-th classical individual at g generation from CP .
Then we use a resize operation, which is responsible to reducing or enlarging the width (σij) of quantum gene. This change

should be made homogeneously for all quantum genes and for all quantum individuals. We use the 1/5th rule to determine if
such width should be enlarged or reduced, which is given by [25]

σij =

 σij · r if φ < 1/5
σij/r if φ > 1/5
σij otherwise

, (21)

where σij represents the width of j-th gene of the i-th quantum individual from quantum population, r denotes a random number
in interval [0, 1], and φ is the rate of how many classical individuals generated in a new generation have their overall evaluation
improved.

Besides, in order to automatically adjust time phase distortions in some time series representation, we have included an
automatic phase fix procedure (APFP) [13] in the proposed learning process of the DEP model. Figure 1 presents the APFP.

Figura 1: Automatic phase fix procedure.

According to Figure 1, in the first step an input pattern x is presented to DEP generating the output y1. The first output y1
is used to rebuild the input pattern in the second step. This reconstructed pattern is presented to the same DEP generating the
second output y2, which is the phase fixed forecasting.

Figure 2 presents the proposed quantum-inspired evolutionary learning process steps including the APFP.
It is worth mentioning that three stop conditions are used in the proposed learning process:

1. The maximum generation number: g = 104;

2. The decrease in the training error process training (Pt) [30] of the cost function: Pt ≤ 10−6.

3. The increase in the validation error or generalization loss (Gl) [30] of the cost function: Gl > 5%;

5 Experimental Results

The Dow Jones Industrial Average Index (DJI time series) was used as a test bed for evaluation of the proposed model. The
time series was normalized to lie within the range [0, 1] and divided in three sets according to Prechelt [30]: training set (50%
of the data points), validation set (25% of the data points) and test set (25% of the data points). All constant parameters of the
QIEA used in the proposed learning process are the same values suggested by Cruz [25].

In order to establish a performance study, results with the random walk (RW) model [24], which represents the results
generated by classical forecasting models, is employed in our comparative analysis, where we investigate the same time series
under the same conditions. Additionally, we have used five well-known evaluation metrics formally defined in [13] to assess
the forecasting performance: mean square error (MSE), mean absolute percentage error (MAPE), u of theil statistic (UTS),
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begin DEP Learning Process
g = 0; // g: actual generation
create quantum population;
initialize the stop condition;
while not stop condition do

g = g + 1;
create the PDFs using quantum individuals;
for i = 1 to S do

create the temporary classical individual w(g)
i observing quantum population and using CDFs;

initialize DEP parameters with the values supplied by w
(g)
i ;

calculate y1, y2 and the instantaneous error for all input patterns;
evaluate the temporary classical individual f(w(g)

i ) using the Equation 11;
end
if g=1 then

classical population = temporary classical population;
else

temporary classical population = crossover operator between current temporary classical population
and classical population;
initialize DEP parameters with the values supplied by temporary classical population;
calculate y1, y2 and the instantaneous error for all input patterns;
evaluate temporary classical population;
classical population = K best individuals from temporary classical population;

end
apply translate operation;
apply resize operation;

end
end

Figura 2: Quantum-inspired evolutionary learning steps.

prediction of change in direction (POCID) and average relative variance (ARV). Also, we use an evaluation function (EF) defined
in [13] to serve as a global performance indicator for the proposed forecasting model. For each time series, five experiments
were performed, where we calculate the mean (MEAN) and the standard deviation (STD) in the attempt to obtain an average
forecasting performance of the proposed DEP(QIEA) model. Also, we calculate all confidence intervals (CI) with the assumption
of normal distribution with 99% of certainty degree.

In addition, we include in our analysis an additional measure referred to as the percentage gain (PG), which measures, in
percentage terms, how much better is the DEP(QIEA) regarding RW model. The PG is formally defined by

PG = 100− 100
pmm

imm
, (22)

or
PG = 100

pmm

imm
− 100, (23)

in which pmm and imm represent the evaluation metric value found by DEP(QIEA) and by RW, respectively. Note that the
Equation 22 must be used to measure the obtained gains for MSE, MAPE, UTS and ARV metrics, while the Equation 23 must
be used to measure the obtained gains for POCID and EF metrics.

5.1 DJI Series

The Dow Jones Industrial Average Index is the main important international stock market index, which shows how thirty
large, publicly-owned companies based in the United States have traded during a standard trading session in the stock market.
The DJI series corresponds to daily records of Dow Jones Industrial Average Index from 1998/01/01 to 2003/08/26. For the DJI
series forecasting (with one step ahead of forecasting horizon – H = 1), we use the same time lags presented in [13] to create
the input patters (lags 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 – note that here d = 10). The Table 1 shows the experiments performed
with the DEP(QIEA) model, where we calculate all evaluation metrics, as well as their MEAN, STD and CI.

According to the Table 1, we can see that in all experiments the POCID metric greater than 50%, indicating that the
DEP(QIEA) model has much better performance than a “coin-tossing” experiment. The obtained UTS metric value (≃8.2e-
004) indicates that the DEP(QIEA) model was able to overcome the random walk dilemma. Note that the MAPE metric value
(≃2.6e-003) is very small, that is, without high percentage deviations. According to ARV metric value (≃2.8e-005), we can see
a much better performance of the proposed model regarding a naive forecasting model. Also, we can verify a small value of MSE
metric (≃6.9e-007), which means that the forecasts are too close to real values. The EF metric value (≃99.4) shows that the

5



X Congresso Brasileiro de Inteligência Computacional (CBIC’2011), 8 a 11 de Novembro de 2011, Fortaleza, Ceará
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Tabela 1: Results for all experiments with the proposed DEP(QIEA) model for DJI series (test set).
Statistics Evaluation Metrics

MSE MAPE UTS ARV POCID EF
1.4527e-008 4.8224e-004 1.7309e-005 5.9471e-007 99.43 99.3837
2.9588e-007 2.1764e-003 3.5256e-004 1.2113e-005 99.43 99.1814
2.7202e-008 6.5990e-004 3.2413e-005 1.1136e-006 99.43 99.3645
2.3716e-006 6.1618e-003 2.8260e-003 9.7095e-005 99.43 98.5380
7.3588e-007 3.4323e-003 8.7685e-004 3.0127e-005 99.43 99.0038

MEAN 6.8903e-007 2.5825e-003 8.2102e-004 2.8209e-005 99.43 99.0943
STD 9.8501e-007 2.3348e-003 1.1737e-003 4.0326e-005 0.00 0.3471
CI ±1.1365e-006 ±2.6940e-003 ±1.3542e-003 ±4.6528e-005 ±0.00 ±0.4005

DEP(QIEA) have good global forecasting performance. We can also notice that the proposed model obtained small STD values,
demonstrating the stability of the QIEA to train the DEP model.

Table 2 presents a performance study with the best results obtained by the proposed DEP(QIEA) with those presented with
the RW model for DJI series.

Tabela 2: Best results (test set) for DJI series with RW and DEP(QIEA) models.
Evaluation Metrics RW DEP(QIEA)

MSE 8.3877e-004 1.4527e-008
MAPE 9.6687e-002 4.8224e-004
UTS 1.0000e-000 1.7309e-005
ARV 3.4338e-002 5.9471e-007

POCID 46.46 99.43
EF 21.7931 99.3837

Analyzing the Table 2, we can note that the proposed DEP(QIEA) model overcame the RW model in this work. However, to
take more precise indications of the best performance of the proposed model, we present in Table 3 the obtained PG of the DJI
series.

Tabela 3: Percentage gain (test set) for DJI series of the DEP(QIEA) regarding the RW.
Evaluation Metrics PG (%) DEP(QIEA) / RW

MSE 100.00
MAPE 99.50
UTS 100.00
ARV 100.00

POCID 114.01
EF 356.03

According to Table 3 we can verify a better forecasting performance of the DEP(QIEA) regarding the RW (having a PG
equals to 100% for all metrics, except for MAPE metric, having a PG around 99%. In addition, assessing the DEP(QIEA) in
terms of overall forecasting performance (using EF metric), we have a PG around 356% regarding RW model.

Finally, we present in Figure 3 a comparative graphic between real (solid line) and predicted (dashed line) values generated
by DEP(QIEA) and RW model for the last ten points of the DJI series test set. We can note that the predicted values are
superimposed to the real values of the DJI series, where the one step delay regarding the forecasting values did not occur, that it,
the time phase distortion that causes the random walk dilemma was successfully adjusted.

6 Conclusion

In this work we presented a quantum-inspired learning process to design dilation-erosion perceptrons (DEP) with automatic
phase adjustment to overcome the random walk dilemma for financial forecasting. The evaluation performance of the proposed
DEP(QIEA) model regarding to random walk (RW) model was assessed in terms of five well-known performance measures and
using the DJI series (with all their dependencies on exogenous and uncontrollable variables). In addition, an evaluation function
served as a global indicator for the quality of solutions achieved by the investigated models.

The experimental results demonstrated a consistently better performance, of the proposed learning process, for training the
DEP model. With the inclusion of the APFP into the proposed learning process of the DEP model, we succeeded in automatically
correcting the time phase distortions that typically occur in financial forecasting problems, where our forecasts have not any one
step delay regarding real time series values. A feasible explanation for such behavior is that the APFP depend on the information
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Figura 3: Forecasting results of DJI series (last ten points of the test set): actual values (solid line) and predicted values (dashed
line).

complexity contained in the time series data and the ability to accurately define the best forecasting model parameters to estimate
the real time series values, in other words, the success of the APFP is strongly dependent on an accurate adjustment of the
forecasting model parameters. Therefore, we can verify that the QIEA used to train the DEP model was able to adjust more
precisely time phase distortions that occur in the analyzed DJI series.

Further studies must be developed to better formalize and explain the properties of the proposed model and to determine its
possible limitations with other time series with components such as trends, seasonalities, impulses, steps and other nonlinearities.
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