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Abstract — Sonar systems use the underwater sound propagation to detect, identify and locate targets (such as vessels or
of fishes). One of the most important tasks in passive sonar signal processing is target identification, which relies on sona
erators who listen to the acoustic signatures and assign to them a certain class of vessel. When there are acoustic signal
multiple targets arriving at adjacent directions, target identification becomes a harder task due to cross-channel interference
purpose of this work is to develop a neural design support system for target identification, specially in multiple target applicatic
In order to improve the discrimination performance when cross-interference is present, independent component analysis (|
was used as a preprocessing step. It is shown that the proposed approach improved considerably the discrimination efficier
an experimental two-target problem.
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1. INTRODUCTION

Sonar systems [1] are used in several applications for military and civilian purposes such as underwater surveillance, t
detection, location and identification, determination of water depth, bottom contours and composition and shoals of fishes
cation. Active sonar consists on emitting acoustic pulses and analyzing the received echoes. Otherwise, passive sonar sy
record and process the acoustic signals emitted by other vessels aiming at target detection and identification.

In order to detect and classify signals against background noise, passive sonar systems [2] listen to the noise radiate
targets using an array of hydrophones. The background noise may be produced by the sea ambient noise or the self-noise
sonar platform. From the acquired signals, the direction of arrival (DOA) is estimated, in order to inform the eventual preser
of a target in a determined direction (bearing). After DOA estimation, relevant features of the target may be extracted fror
given direction. For passive sonar systems, target identification is usually performed by experienced human operators (s
operators).

LOFAR (Low Frequency Analysis and Recording) [3] which is a broadband analysis usually employed in passive sor
systems, estimates the noise vibration of the target machinery. The LOFAR analysis is based on spectral estimation and suy
targets classification.

Depending on the bearing resolution and the geographical positioning of the targets, signal interference may occur for adjs
directions, contaminating the acquired signals and making even more difficult the target classification task.

As for passive sonar systems target classification is a very important task, some works have been developed in ord
produce decision support systems to help sonar operators in this job. Neural networks have successfully been used in pz
sonar signal classification [4—7]. Additionally, other techniques have been applied to perform the classification task, in [8
hidden Markov model with Hausdorff similarity measurement was used to detect and classify targets. Another way to perfc
the detection and classification of targets is achieved through the Prony’s method [9].

This work proposes a decision support system for target identification, specially in the multiple target case. For this, indef
dent component analysis (ICA) [10] is used to minimize the cross-channel interferences. ICA transformation has been apy
recently as a preprocessing step in classification problems [11-13]. By projecting the multidimensional signals into a new ¢
space where the statistical dependency among the variables is eliminated ICA may (in some cases) favor the signal classific
task. In our particular problem, ICA contributes to reduce the cross-interference between adjacent bearings, revealing the oril
acoustic signatures of the vessels, as demonstrated in previous works [4, 14]. Here ICA is applied after LOFAR analysis
preprocessing step for classification, in order to recover the acoustic characteristics of the original sources and thus improv
discrimination efficiency. For automatic classification, a neural network (multi-layer perceptron architecture) [15] was used.

The paper is organized as it follows. Section 2 describes how the signals were acquired, and provides a brief descriptic
LOFAR analysis. The proposed methodology is detailed in Section 3. Section 4 shows the results obtained before and after
preprocessing. Finally, Section 5 brings the conclusions.
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2. THE PROBLEM

A passive sonar system is typically used by submarines to perform the surveillance in a given operation area. The beamf
ing purpose is to estimate the DOA from a given target as captured by the hydrophone array. The Figure 1 shows the beamfor
display for a given experimental setup. The main purpose of the DOA is to estimate the target energy for a particular direc
of interest. The horizontal axis represents the bearing positid8(° to 180°) and the vertical axis represents time (waterfall
display). In this case, an acquisition window of one second was applied [16].
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Figura 1: Bearing time display of a passive sonar system.

When there are multiple targets and signal interference at neighbor bins occurs, as it may be the case foi §&aands
205° (see Figure 1), the original target features may be masked and thus the target classification efficiency decreases. Be
that, the self-noise, beaririy6°, may interfere on both target signals. Thus, a preprocessing scheme aiming at reducing sigr
interferences would be attractive, as it may, facilitate target classification.

2.1 LOFAR Analysis

The LOFAR [2] is a broadband analysis that provides the machinery noise spectra to the sonar operator and goes from C
15,625 Hz. The block diagram of the LOFAR analysis is shown in Figure 2.
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Figura 2: LOFAR analysis block diagram.

After bearing, the signal is convolved to a Hanning window to emphasize the frequency range of interest [17]. Then, the ¢
nal is separated in blocks of 1,024 samples, which are transformed into frequency-domain using a short time Fourier transfi
A spectrum module is implemented and the spectra are normalized using the TPSW algorithm [18]. The normalization was
plemented by estimating the background noise that is present at each spectrum and computing a normalized frequency bin
this estimation as normalization factor. This procedure removes the spectrum bias and equalizes the spectrum amplitude [1

3 PROPOSED CLASSIFICATION SYSTEM

In passive sonar systems, target identification is usually performed by trained operators that listen to the noise radiated
given direction and assign it to a certain class of ship. This procedure is susceptible to human errors and becomes more dif
when additive noise or multiple targets are present. In this work it is proposed a neural network based classifier to assist s
operators by indicating the most probable class of a acoustic signal. As illustrated in Figure 3, considering that two acou
signals are arriving at adjacent bearings (180d 203), the received signatures are firstly processed by LOFAR analysis. The
obtained average spectra are used as inputs to an ICA algorithm. The estimated independent components are then used to
neural (multi-layer perceptron) classifier.
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Figura 3: Proposed classifier system block diagram.

In the following subsections, the main concepts involved in both ICA and neural classification are described.
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3.1 Independent Component Analysis

The basic ICA model considers that a seNobbserved signalg(t) = [z1(t), ..., zn(t)]T is generated by a linear combina-
tion of unknown sources(t) = [s1 (), ..., sy (t)]7:
x(t) = Ws(t) @)

whereW is the NxN mixing matrix [10].
Formulated this way ICA is also referred to as Blind Source Separation (BSS) and its purpose is to estimate the source sic
s(t) using only the observed datdt). A solution is obtained if one can find the inverse of the mixing ma&ix W ! and so:

s(t) = Bx(t) (2)

A general principle for estimating the matiX can be found by considering that the source signals are statistically indepen:
dent. There are many mathematical methods for estimating the coeffigigntshe nonlinear decorrelation and the maximally
nongaussianity are the most applied ones [20].

In this work, JADE algorithm [21] was used for independent components estimation. In a previous work [14], it was demc
strated that, among popular ICA algorithms (such as FastICA and Akuzawa’s Newton-like method [10]) JADE presents a Cc
promise between good separation performance and fast convergence.

3.1.1 JADE algorithm

In JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm [21], second and fourth order statistics are appli
for independent component estimation through a tensorial approach. Cumulant tensors are matrices containing the cross ¢
lants [22]. Considering this, the second-order cumulant tensor is the covariance matrix (C) and the fourth-ord€eF f¢nisor (
formed by the fourth-order cross cumulants ¢umz;, z, x;), that for zero mean random variables are defined as:

cum(z;, xj, or, 1) = E{w;, xj, xp, 01} — E{a;, xj }E{xr, 1} — E{z,, xp yE{xj, 2} — E{xy, x;}E{x;, 2} 3)

The tensofTy is a four dimensional array, in which for each elem@afy; = cum(z;, x;, zx, 1), the indexes, j, k, [ vary
from1to NV (whereN is the number of signals).

The ICA tensorial methods are derived through a procedure analogous to the diagonalization of a covariandg, matrix
which produces signal decorrelation. Considering fhatis a fourth-order counterpart &, independence can be achieved
by diagonalizingT'4, as for independent signals the only non-zero fourth-order cross cumulant appears whesa k£ = [.
Analogous to the second order case, diagonalization of the fourth-order tensor can be achieved through eigenvalue decompa
(EVD) [23].

Although the idea of the ICA tensorial methods is quite simple, the diagonalizatiBy tifrough an analytical procedure de-
mands very large computational resources and is prohibitive in most applications. Considering this, JADE algorithm propose
approximate method for diagonalization®j. If the input datax) is pre-whitened (using for example PCA transformation [24])
it can be demonstrated that the cumulant tensor lodis a special structure and its eigenmatrices are described through [10]:

M =w,,wl 4)

m

wherem = 1, ..., N andw,, are the rows of the ICA mixing matri¥v (x = Ws).
JADE algorithm uses the linear transformatiby applied toM:

Fij(M) = kalCUTT@"ux]’,fEk,l‘z) (5)
ki

wheremy,; is an element oM, and searches for a matiW that make<) = WF(M;)W as diagonal as possible.
3.2 Neural Classifier

In this work, multi-layer perceptron networks with a single hidden layer were used. The number of hidden neurons w
chosen after testing exhaustively the discrimination performance of each network.

The particular experimental setup comprises two distinct acoustic signatures (two ship classes) arriving at adjacent direct
Considering this, the designed classifier has a single output neuron (with training target output 1 for class 1 and -1 for class

For training, the resilient back-propagation algorithm (RPROP) [25] was used. In order to account for statistical variatic
in the available signals, a cross-validation procedure was adopted by restarting the training procedure 10 different times u
different sample arrangements into training, validating and testing sets.
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4. RESULTS

An experimental run comprising the recordings of approximately 220 seconds was used. Two ships (targets) were dete
at adjacent directions (19Gand 203). LOFAR analysis was performed using time-windows~d@ ms in length (resulting
in ~3600 windows). The average LOFAR spectra, considering all time windows, was computed for both directions and
illustrated in Figure 4-(left). The JADE algorithm was applied to the time-windowed LOFAR spectra and two frequency-doma
independent components were estimated for each time-window (Figure 4-(right) illustrates the average LOFAR+ICA spectra
can be observed that the LOFAR spectra for both directions present similar characteristics (probably due to the existing cr
interference). After ICA, the frequency contents in different bearings are quite different, favoring the target classification task
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Figura 4: LOFAR analysis (average spectrum) applied to raw data (left) and after ICA (right).

For designing the classifiers, the available LOFAR time window3600) were split into training, validation and testing
sets. In order to evaluate the effects of ICA pre-processing, the neural classifier was trained using both LOFAR spectra ant
frequency-domain independent components (LOFAR+ICA).

In order to compare both classifier design approaches, discrimination performance was evaluated through both ROC (Rec
Operating Characteristic) curve [26] and SP product. The ROC illustrates how both the det€gfjaan( false alarmy)
probabilities vary with respect to the decision threshold. The SP product index is defined as [27]:

_ Efi+Ef, y
2

whereE f; = Pp is the detection efficiency for class 1 aftfs = (1 — Pr) is the corresponding efficiency for class 2. The
threshold value that maximizes the SP tend to produce bothMigand low Pg.

In order to chose the optimum number of hidden neurons for the MLP classifiers an iterative procedure was employ
Initially a neural network with a single hidden layer was trained and the efficiency estimated (through SP). New neurons
added to the hidden layer and the training procedure restarted until the SP index stabilizes near its maximum. As illustrate
Figure 5, for the classifiers based on LOFAR the maximum SP was achieved for five hidden neurons and in the LOFAR+I
approach three neurons were enough to reach the maximum efficiency. It can also be observed that the use of ICA resul
higher discrimination efficiency.

SP (Ef1 x Efs) (6)
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Figura 5: Discrimination efficiency (SPL00) variation as the number of hidden neurons is increased.
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Figure 6 illustrates the neural network outputs (considering the number of hidden neurons that produced higher discrimina
efficiencies) for classifiers based on LOFAR and LOFAR+ICA. One can see that ICA favors the separation of distinct class
which implies on a higher area under the ROC curve as shown in Figure 7. Table 1 summarizes the obtained results.
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Figura 6: Neural classifier outputs using LOFAR (left) and LOFAR+ICA (right).

Iff oo ===%t=
0.8 f
/]
1
1
0.6 1
A ' SPx100 = 87,87
a ' PD= 87,03%
oall! / PF=11,29%
1
A i SPx100 =99.97
L | ——LOFAR +ICA X109 =95
0.2y PD= 99,94%
PF=0,00%
0 i i i i
0 0.2 0.4 0.6 0.8 1
PF

Figura 7: ROC curves for both classifiers.

Tabela 1: Discrimination efficiency obtained for both classifiers

Preprocessing| SPx100 | Eff. Clas 1 (%) | Eff Clas 2 (%)
LOFAR 87.87 87.03 88.71
LOFAR+ICA 99.97 99.94 100.00

5. CONCLUSIONS

Sonar systems are widely used in military and civilian applications. In passive sonar, target identification is usually perforn
by trained human operators which listen to the acoustic signatures and also analyze frequency information obtained from LOI
analysis. The identification tasks becomes more difficult when acoustic signals from different vessels arrive at adjacent direc
of the hydrophone array. In this case, either the acoustic sighatures and the LOFAR spectra are distorted by the cross-interfer
In this work was proposed the application of independent component analysis (ICA) in order to reduce the efects of crc
interference when targets are at adjacent directions. ICA was applied in frequency-domain after LOFAR analysis and a m
layer perceptron classifier performed the hypothesis testing. The obtained results indicate that using a combination of LOFAR
ICA the discrimination efficiency was considerably improved, fre®i7% for class 1 and-89% for class 2 to for respectively

~99.9% and 100%.
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