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Abstract — An Artificial Neural Network (ANN) is designed to investigaa application for data assimilation. This proce-
dure provides an appropriated initial condition to the api®re to weather forecasting. Data assimilation is a ndethmsert
observational information into a physical-mathematicatiel. The use of observations from the earth-orbiting kgin ope-
rational numerical prediction models provides large datlames and increases the computational effort. The goa& isetio
simulate the process for assimilating temperature datgoted from satellite radiances. The numerical experinmsenairied
out with global model: the "Simplified ParameterizationspptivE-Equation DYnamics”(SPEEDY). For the data assation
scheme was applied avultilayer PerceptrofMLP) with supervised training. The MLP-ANN is able to emigldhe analysis
from theLocal Ensemble Transform Kalman Fil{€ETKF). The ANN was trained with first three months for yea@82, 1983,
and 1984 from LETKF. A hindcasting experiment for data adlaiion cycle was for January 1985, with a MLP-NN performed
with the SPEEDY model. The results for analysis with ANN aeeywclose with the results obtained from LETKF. The simu-
lations show that the major advantage of using MLP-NN is téeo computational performance, with similar quality néadysis.
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1. INTRODUCTION

The procedure which takes atmospheric observed data astesmaeteorological fields over some spatial or temporakitom
is usually calledanalysisor data assimilation The data are distributed in time and the procedure uses @itiexlynamical
model for the time evolution of the atmospheric flow. The feffoduced by an analysis or an assimilation must satisfy two
basic requirements: they must be close to the observatiahgley must verify dynamical and/or statistical relasiips which
are known to be satisfied by the real atmospheric fields.

In atmospheric modeling the scientist is generally faceti wiset of observations of parameters, for instance, wamdpe-
rature, water, ozone, etc., as well as either the knowledgrpectation of correlated behavior between the diffepanameters.
The use of numerical techniques to represent the partfatdiftial equations that represent the model physics rs@bktforward
way to develop a model. There are many approaches to dizatieti of the dynamical equations that govern geophysical p
cesses [1].

The numerical weather prediction (NWP) was confronted \Wiking to solve an initial-value problem. Data assimilatio
is the objective melding of observed information with megdetdicted information. Data assimilation rigorously dunes
statistical modeling with physical modeling; thus, forigalonnecting the two approaches.

Atmospheric Data Assimilation is an important task in NWHhtes. Several methods of data assimilation have beereappli
in models of atmospheric and oceanic dynamics. Methodgusitificial Neural Networks (ANN) have been proposed shayvin
consistent results regarding implementation in simple @&dThis paper presents an ANN approach to emulate an Etesemb
Kalman Filter (EnKF) as a method of data assimilation witlamospheric General Circulation Model(AGCM), with dynaral
nonlinear, using synthetic temperature data simulatitgjlga radiances.

In meteorological data assimilation the conventional daavery important to the quality of the analysis and thedase
The satellite data assures high quality global analyses.viry clear that assimilation of satellite observatioiilswake a key
contribution to that improvement in forecast skills, givbe future growth (five orders of magnitude increase in Begtalata
over ten years) and improvement of the global observingesysixpected in the area of space-borne observing systems. As
result there is a need an assimilation method able to geniti@ field for the numerical model in time to make a predicti At
present most NWP centers cannot assimilate all the dataaertputational costs and limitations in storing the dape@tional
satellite data are taken and processed in real-time anibdistd around the world.

Data assimilation adds an additional forcing to the reprigive equations of the physical model; namely, infororatrom
the observations. From mathematical point, the assim@girocess can be represented by

2 = ol + Wy — H(a)], 1)
W = (HP'HT + R) (2)

the in the equation are as follows? is the analysis filed with innovation that represents theeolzion-based correction to
the model;y° are observations of the constituent, is a model forecast, simulated, estimates of the constitoiéen called
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the first guess;H is the observation operator andthe superscfips the matrix transform operation. is the weighting
matrix, generally computed from the covariance matrix @ firediction errors from forecasting and observatidty. is the

error covariance function of the foreca&t;is the error covariance function of the observations. Thieitly shows that data
assimilation is the error-weighted combination of infotioa from two primary sources.

The analysis is the best estimate of the state of the systeedlan the optimization criteria and error estimates.The ob
servation operatorf, is a function that maps the parameter to be assimilated thetepatial and temporal structure of the
observations. In the case of satellite observations thesanements are radiances and the observation operator imijinde a
forward radiative transfer calculation from the model’®@ghkysical parameters to radiance space.

The computational challenge to the traditional technicpfetata assimilation lies in the size of matrices involvedjpera-
tional NWP models, currently running at a million equatig¢eguivalent to full matrix elements of the order &f'2!). In this
scenario the applications of ANN in data assimilation werggested by [2, 3], [4] and [5]. But the first implementatidrite
ANN as a approach for data assimilation was employed by [6p¥jroved by [8, 9]. [6] used an ANN over the entire domain
space, the [9] strategy is generate the analysis at eaclpgind, it had large gain in computacional efforts. Contiquthese
investigations, [10] evaluated the performance of an ANNnwulate Kalman filter, the Particulate Filter and Variatibdata
assimilation method applied to Lorenz chaotic system. AndEL], this approach was applied with a atmospheric citauha
model with sybthetic conventional data.

The ANN technique uses neural networks to implement thetfomc

$a=FRNA(yO,$f) (3)

whereF'r N A is the data assimilation process.

Methods using Artificial Neural Networks (ANN) have beenposed showing consistent results regarding implemenmtatio
in simple models. This paper presents a experiment usingmongpheric General Circulation DYnamics (AGCM) the SPEEDY
model, see [12], which is a 3D dynamic model, with simplifidd/pics parameterization by [13]. Here is employed a set of
Multilayer Perceptron (MLP)( see [14]), which were trairntecemulate the LETKF (Local Ensemble Transform Kalman Filte
by [15, 16].

2. Methodology
2.1 The SPEEDY Model

The modelSimplified Parameterizations PrimitivE-Equation Dynas(fSPEEDY) is an atmospheric general circulation mo-
del (AGCM) developing to study global-scale dynamics ancherical weather prediction. The dynamic variables on tlimipr
tive meteorological equations are integrated by spectedhod in the horizontal at each vertical level, see [17, I8 model
has a simplified set of physical parameterization schenaste similar to realistic weather forecasting numericadlels. The
goal of this model is to achieve computational efficiencyle/hiaintaining characteristics similar to the state-a-tit AGCMs
with complex physics.

The model is global with spectral resolution T30L7 (horitadtruncation of 30 numbers of waves and seven verticaldgve
corresponding to regular grid with 96 zonal points (lond@y 48 meridian points (latitude) and 7 vertical pressavels (100,
200, 300, 500, 700, 850, 925 hPa). The computational costadader of magnitude less than that of state-of-the-art M&C
at similar horizontal resolution. According to [13], the EEDY model simulates the general structure of global atesp
circulation fairly well, and some aspects of the systematiors are similar to many AGCMs. The package is based on same
physical parameterizations adopted in more complex schef®GCM like convection (simplified diagram of mass flowyde-
scale condensation, clouds, short-wave radiation (twotsgébands), long-wave radiation (four spectral wavesijfage fluxes
of momentum and energy (aerodynamic formula), and verddalsion. Details of the simplified physical parametetiaa
scheme can be found in [13].

The boundary conditions of the SPEEDY model includes togplgic height and land-sea mask, which are constant, and sea
surface temperature (SST), sea ice fraction, surface teiye in the top soil layer, moisture in the top soil layed éime root-
zone layer, and snow depth, all of which are specified by mpmtieans, and bare-surface albedo and fraction of landeceirf
covered by vegetation, which are specified by annual-mekisfid@he lower boundary conditions such as SST are obtaiped b
ECMWEF"s reanalysis in the period 1981-90. The incomingismdiation flux and the boundary conditions (SST etc.), pkce
bare-surface albedo and vegetation fraction, are updaigd @he SPEEDY model is a hydrostatic model in sigma couatés,
and the transformed vorticity-divergence scheme is desdrdy [17]. The prognostic variables of input and output elade the
absolute temperature (T), surface pressure (ps) compoheahal wind (u), component of meridian wind (v) and an aiddl
variable and specific humidity (q).

2.2 Brief Description on Local Ensemble Transform Kalman Fiter

The analysis is the best estimate of the state of the systeedhban the optimization criteria and error estimates. The
probabilistic state space formulation and the requirerfaeribhe updating of information when new observations ae»entered
are ideally suited for the Bayesian approach. The Bayegiproach and in ensemble Kalman Filter (EnKF) or particlerfittg
(PF) methods are a set of efficient and flexible Monte-Carlthots to solve the optimal filtering problem. Here one attesmp
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to construct the posterior probability density functio®{P of the state based on all available information, inahgdihe set
of received observations. Since this PDF embodies all @vailstatistical information, it may be considered to be mmete
solution to the estimation problem. In the field of data a#ation, there are only few contributions in sequentiairaation
(EnKF or PF filters).

The ensemble Kalman filter (EnKF) was first proposed by [19] daveloped by [20] and [21]. It is related to particle
filters in the context that a particle is identical to an enskenmember. EnKF is a sequential filter method, which meaats th
the model is integrated forward in time and, whenever olatiEms are available; these are used to reinitialize theefrtmefore
the integration continues. The EnKF originated as a versfdhe Extended Kalman Filter (EKF) by [22], for large profie.
The classical KF [23] method is optimal in the sense of migirg the variance only for linear systems and Gaussiarsstati
Similar to the patrticle filter method, the EnKF systems froMante Carlo integration of the Fokker-Planck equation goirey
the evolution of the PDF that describes the prior, forecasl, error statistics. In the analysis step, each ensembigberes
updated according to the KF scheme and replaces the covanaaitrix by the sample covariance computed from the engembl

The first application of EnKF to an atmospheric system by 283, It applies an ensemble of model states to represent the
model statistical error of the estimate. The scheme of aimfcts directly on the ensemble of model states when cdisang
are assimilated. The ensemble of analysis is obtained lyietion of perturbed observations for each member of #teo$
the reference model. Several ways of perturbed obsengtised to represent the covariance matrix of the analysis, theen
derived many schemes from the EnKF approach: the Local Bolsefnansform Kalman Filter (LETKF) is one of them.

LETKF was proposed by [15] as an efficient upgrade of LEKF [2E TKF separate the entire global grid into independent
local patches. The LETKF scheme first separates an enttevgcior into local patch vectors with observations. Thedidea
of LETKF is perform analysis at each grid point simultandpusing the state variables and all observations in the l@taon
centered at that point. Each member of the ensemble getsétsast:

oI i=1,23 -k
wherek is the total members at timig, to estimate the state vectof of the reference model is used the mean the ensemble
forecasts:

k
= k3 0, )

then the model error covariance matrix is:
k
Pl=k-1)"") (/O — 2@/ — 2T (5)
=1

and the ensemble analysis is:
220 i=1,2,3k

with the its average and error covariance. LETKF in the laralysis, allows different linear combinations of the enkske
members in different regions, and comprehensive analygifoees a larger spatial scale. For local implementatigpasgtes
groups of neighboring observations to a central point fagaan of the model grid. The LETKF scheme first separates treen
grid vector into local patch vectors. Each grid point hasawral patch, the number of vectors equals the number of glypixl
points, each local patch is treated independently [12].

2.3 Multilayer Perceptron

Different ANN architectures are dependent upon the learsirategy adopted. Detailed introduction on ANNs can badou
in [27] and [28].

Multilayer perceptrons ( MLP) with backpropagation leagnialgorithm are feedforward networks composed of an input
layer, an output layer, and a number of hidden layers, whiosésao extract high order statistics from the input data [28ural
networks will solve nonlinear problems, if nonlinear aation functions are used for the hidden and/or the outpetriay

A feedforward network can input vectors of real values onttpat vector of real values. The connections among the akver
neurons have associated weights that are adjusted duerlgaming process, thus changing the performance of theonet
Two distinct phases can be devised while using an ANN: theitrg phase (learning process) and the run phase (activafio
the network). The training phase consists of adjusting thigkts for the best performance of the network in estalghie
mapping of many input/output vector pairs. Once trainee wiights are fixed and the network can be presented to neusinpu
for which it calculates the corresponding outputs, basedtuat it has learned.

The backpropagation training is a supervised learningrdlgo that requires both input and output (desired) datah$uairs
permit the calculation of the error of the network as theeddhce between the calculated output and the desired vadier
weight adjustments are conducted by backpropagating suchte the network, governed by a change rule. The weighds ar
changed by an amount proportional to the error at that umgg the output of the unit feeding into the weight. 6 shoves th
general weight correction according to the socalled theadale

Awij = 775;' Yi (6)
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where,d; is the local gradienty; is the input signal of neurofy and is the learning rate parameter that controls the strength of
change.

3 MLP-ANN and experimental settings

The experiment was conducted with the forecast SPEEDY mmudationed and LETKF core modules are applicable to any
dynamical model to obtain training data to ANN. The Forti@n@des (SPEEDY and LETKF) originally developed by [12]. The
error covariance at upper levels and surface is treatectisdme way as in [12] to LETKF data assimilation.

The observational data used in data assimilation simgjatatellite data. These data include vertical observafiarms
radiance (temperature) profiles. The satellite data hage bssential of weather forecasts.

The observations were generated from “true” model fielddjredrandom noise with standard deviation (1) to tempeeatur
values. The variables were located at some grid points moide grid points chosen were simulating satellite obseymat
obtaining values for a merged point model (a grid point haseokation and a grid point no observation) shown in Figufgdth
assimilation scheme, LETKF or ANN, have the same numberfsévations at the same grid points.
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Figura 1. Dense network of observations synthetic reguididtributed grid points in the SPEEDY model. Representi§6
stations of satellite data (23 per cent of total observaion

In this configuration SPEEDY was run for a long time integra$ of the state to create "true” to start the integrations of
the model. The true integration of the model was made foretlgears: from 1 January 1982 to 31 January 1985, generating
outputs in four times a day (00, 06, 12 and 18 UTC). The datianélation (DA) LETKF was performed with these synthetic
observations (about 6,600 points) of the temperature bimsao generate the vector analysis and obtain the desirtpditoto
train the neural network. The executions of the model witiTKE were made for the periods mentioned to true model. The
ensemble of forecasts LETKF has 30 members and the "petioinsaof ensemble” consist of random numbers with Gaussian
distribution. These integrations were obtained input@ector ANN, recent forecast from SPEEDY with LETKF analysis

In ANN data assimilation scheme we need the local obsemvatituence at neighboring grid points like observationsipoi
in zonal and meridional indices, as for the vertical bouretaat the bottom and top levels. We eliminate indices aty(@le. no
observations at boundaries grid points). This calculatias based on the distance from its neighbor:

N
o YDy + o
9° = l eré( l ) (7)

r = distancéy; + 4, y;) (8)

where N is the total neighbors’ grid pointeithout observationsy is a cubelike shape characterized by the horizontal and
vertical grid lengths, this is based on the distance of edewation point:d = (z/ — y2)% + (:cf —y9)* + (z] — y2)?
wherez/ is grid point without observation that has the forecastalald valuey® is observation in a grid point; the subscripts
i, j, k, are the indices of localizations points as latitude, lamtdg, level respectively. The input vectors (observatiforgcast
value and analysis value at grid points) was collected fontertical regions in the globe( the northern hemispheresanithern
hemisphere), d0° to north and)0° to south; three horizontal regions to each hemispher@)®to each region. This division is
based on size of regions not in number os observations. Beadthis division we developed a set of thirty MLP to tempenma
prognostic variable. These MLP has two inputs (model angldast vectors), one neuron in the output (to analysis Veeieven
neurons in a hidden layer, the activation function to ensordinearity of the problem used was the sigmoid tangenéhyglic.

The network was trained by entering input values of eachguidt once, i.e, the analysis is done at grid point wherest ha
observation. The training was made with collected dataefitst three months of 1982, 1983 and 1984. The MLP genetiliza
is initiated with ANN data assimilation cycle in the first 000 on 1 January 1985, generating the prediction model and the
initial condition of SPEEDY (new global analysis). In thepeximent the MLP generated analysis and forecasts ungtl@d1985
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Figura 2: Analysis fields for Temperature to 03/01/1985 122Ud level 950 hPa.

4. RESULTADOS

The input and output values were processed in grid pointisria integrations for an intermittent forecasting and asialy
cycle to the temperature (T) prognostic variables. Theltgshow analysis fields generated by the activation of thé>MINN
and analysis fields generated by LETKF data assimilario®833an/1985 at 12 UTC at level 950 hPa (near surface) and high
level 500 hPa. Figures 2 to 3 present global fields of analyie model fields and the differences between analysissfield
These results show that the application of MLP-ANN as adation system generates data analysis similar to the dssiomi
system LETKF. The first conclusion of this ecxperiment i MLP-ANN can emulate the analysis of LETKF to temperature
observations from sattelites sensors.

There are several aspects of the modeling and assimilatmrigm that stress computational systems and push capabili
requirements. The common ones in modeling are increasetuties, improved physics, inclusion of new processes, and
integration and concurrent execution of Earth-system aomapts. Often, real-time needs define capability requiregmé&Vhen
considering data assimilation the computational requér@smbecome much more challenging. The use of observatiomsfie
earth-orbiting satellites in operational numerical pc&idn models is performed for improving weather forecalstayever, the
use of this amount of data increases the computationalteffsra result there is a need an assimilation method ablettthge
initial field for the numerical model in time to make a prediat At present most numerical weather prediction centarsot
assimilate all the data due to computational costs anddtiuits in storing the data.

The figure 4 shows a cycle of 124 data assimilation, made faile8%k with 7032 satellite observations run in hours (00,
06, 12 and 18 UTC). The time was measured in millisecondd, EGrKF data assimilation and MLP-ANN activation for data
assimilation These measures show the computational peafuze of the ANN. It was higher than the performance of theegys
LETKF. These results show that the computational efficiesfayeural network to the problem of atmospheric data asatinil
is better with the similar quality in analysis field. The CRibte assimilation with MLP-NN is 75 times faster than LETK#F i
our numerical experiment, see table 1. Total run time indlgdorecasting and 30 members for ensemble to SPEEDY model.
Analysis time is only LETKF run time or MLP-ANN activation nuime (both for 124 runs).

Actually, considering the supervised ANN for data assititl® the most relevant issue is the computational speeftup
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Figura 3: Analysis fields for Temperature to 03/01/1985 1224d level 500 hPa.
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computing the analyzed initial condition.

Tabela 1: CPU-run time of 124 cycles of data assimilatiorafgsis and forecasting).
CPU-time of MLP-NN LETKF
124 cycles (hh:mm:ss)  (hh:mm:ss)
Total runtime  00:04:11 04:47:43

Total real
Analysistime  00:00:22 02:45:50

5 Acknowledgment

First | would like to thank Prof. Dr. José Demisio Simdes3llva who gave me the honor to work at INPE with him. The
authors thank Dr. Takemasa Miyoshi and Prof. Dr. Eugéniad{afor providing routines for the SPEEDY model and LETKF
system.

REFERENCES

[1] D. A. Randall. “An Introduction to The General Circulati of the Atmosphere”, 2009. Course Outline AT605 — Colorado
State University.

[2] K. H. W. W. Hsieh, B. Tang. “A neural network atmospheriodel for hybrid coupled modeling’Climate Dynamicsvol.
17 (5-6), pp. 445-455, 2001.

[3] Y. Tang and W. W. Hsieh. “Coupling neural networks to ingaete dynamical systems via variational data assimiétio
Mon. Wea. Rewvol. 129, pp. 818-834, 2001.

[4] A. Liagat, M. Fukuhara and T. Takeda. “Application of malinetwork collocation method to data assimilatio@omput.
Phys. Communvol. 141, pp. 350-364, 2001.

[5] VY. Tang, W. W. Hsieh, B. Tang and K. Haines. “A neural netlvatmospheric model for hybrid coupled modelling”.
Climate Dynamicsvol. 17, Numbers 5-6, pp. 445-455, March 2001.

[6] A. Nowosad, A. R. Neto and H. F. Campos Velho. “Data Astation in Chaotic Dynamics Using Neural Networks”.
In Anais.., pp. 212-221. International Conference on Nonlinear DyingymChaos, Control and Their Applications in
Engineering Sciencesa, 2000.

[7] N. L. Vijaykumar, H. F. Campos Velho, S. Stephany, A. JetBrand A. G. Nowosad. “A neural network implementation
for data assimilation using MPI, application of high penfiaice computing in engineering”. Kpplication of high per-
formace computing in engineeringdited by C. A. Brebia, P. Melli and A. . Zanasi, pp. Sectioi251-220. WIT Press,
Southampton, 2002.

[8] F. Harter and H. F. Campos Velho. “Recurrent and Feeddiod Neural Networks Trained with Cross Correlation Apglie
to the Data Assimilation in Chaotic DynamicRevista Brasileira de Meteorologigol. 20, pp. 411-420, 2005.

[9] F. P. Harter, E. L. Rempel, H. F. Campos Velho and A. Chi&pplication of Artificial Neural Networks in Auroral Data
Assimilation”. Journal of Atmospheric and Solar — Terrestrial Physiasl. 70, no. 10, pp. 1243-1250, margo 2008.

[10] H. C. Furtado. “Redes neurais e diferentes métodossdendacao de dados em dinamica ndo linear”. Masteesis,
Instituto Nacional de Pesquisas Espaciais (INPE), S& dos Campos, 2008.

[11] R. S. Cintra, H. F. Campos Velho and R. Todling. “Nova lementacéo em filtro do kalman estendido para assiavlag™
dados com redes neuraid’earning and Nonlinear ModeVol. 7, pp. 30-37, 2010.

[12] T. Miyoshi. “Ensemble Kalman filter experiments with @mitive—equation global model”. Ph.D. thesis, Univeysiif
Maryland, College Park, Maryland, USA, 2005. 197 p.

[13] F. Molteni. “Atmospheric simulations using a GCM withrgplified physical parametrizations. I:Model climatologgd
variability in multi-decadal experimentsClimate Dyn, vol. 20, pp. 175-191, 2003.

[14] R. Daley.Atmospherics aata analysi€ambridge University Press, New York, USA, 1991. 471 p.

[15] B. Hunt, E. Kalnay, E. J. Kostelich, E. Ott, D. Patil, Taiger, I. Szunyogh, J. A. Yorke and A. V. Zemin. “Four-dimemsil
ensemble kalman filteringTellus vol. 56A, pp. 273-277, 2004.

7



X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
(© Sociedade Brasileira de Intelig@ncia Computacional (SBIC)

[16] H. C. Bishop, B. J. Etherton and S. J. Majumdar. “AdapBampling With the Ensemble Transform Kalman Filter. Part |
Theoretical Aspects”™Monthly Weather Reviewol. 129, pp. 420-436, 2001.

[17] W. Bourke. “A multilevel spectral model: I. Formulatiand hemispheric integrationgflonthly Weather Reviewol. 102,
pp. 687-701, 1974.

[18] I. M. Held and M. J. Suarez. “A proposal for the intercaamigon of dynamical cores of atmospheric general ciraufati
models”. Bull. American Meteorological Societyol. 75, pp. 1825-1830, 1994.

[19] G. Evensen. “Sequential data assimilation with a nadr quasi—geostrophic model using Monte Carlo methods ¢aést
error statistics”.J. Geophys. Resol. 99, pp. 10143-10162, 1994.

[20] G. Burgers, P. J. van Leeween and G. Evensen. “Analydi®i@e in the Ensemble Kalman FilterMonthly Weather
Reviewvol. 126, pp. 1719-1724, 1998.

[21] G. Evensen. “The ensemble Kalman filter: theoreticatfalation and practical implementationQcean Dynamigsvol.
53, pp. 343-367, 2003.

[22] R. E. Kalman and R. S. Bucy. “New results in linear filtegiand prediction theoryTrans. of the ASME-Journal of Basic
Engineeringvol. 83(Series D), pp. 95-108, 1961.

[23] R. E. Kalman. “A new approach to linear filtering and potihn problems."Trans. of the ASME—Journal of Basic Engine-
ering, vol. 82(Series D), pp. 3545, 1960.

[24] P. L. Houtekamer and H. L. Mitchell. “Data Assimilatitising an Ensemble Kalman Filter Techniqu®Tonthly Weather
Reviewvol. 126, pp. 796-811, 1998.

[25] P. L. Houtekamer, H. L. Mitchell, G. Pellerin, M. Buelmd&l. Charron, L. Spacek and B. Hansen. “Atmospheric data
assimilation with the ensemble Kalman filter: results wigalrobservations”.Monthly Weather Reviewol. 133, pp.
605-620, 2005.

[26] E. Ott, B. R. Hunt, I. Szyniogh, A. V. Zimin, E. J. Kosteli, M. Corazza, E. Kalhay, D. J. Patil and J. York. “A local
ensemble Kalman filter for atmospheric data assimilatidellus A vol. 56, pp. 415-428, 2004.

[27] S. Haykin.Redes neurais prifipios e pética, volume 2. Editora Bookman, Porto Alegre, 2001.
[28] L. Tsoukalas and R. Uhrigzuzzy and Neural Approaches in Engineeridghn Wiley and Sons, New York, 1997.

[29] F. Miki, E. Issamoto, J. da Luz, P. de Oliveira, H. F. den@®s Velho and J. da Silva. “A Neural Network Approach in a
Backward Heat Conduction Problem”. Rroceedings of the Braz. Conf. Neural Networks, Proc. infdDM - paper code
0008 Sao José dos Campos-SP, 1999.



