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Abstract – An Artificial Neural Network (ANN) is designed to investigate a application for data assimilation. This proce-
dure provides an appropriated initial condition to the atmosphere to weather forecasting. Data assimilation is a method to insert
observational information into a physical-mathematical model. The use of observations from the earth-orbiting satellites in ope-
rational numerical prediction models provides large data volumes and increases the computational effort. The goal here is to
simulate the process for assimilating temperature data computed from satellite radiances. The numerical experiment is carried
out with global model: the ”Simplified Parameterizations, primitivE-Equation DYnamics”(SPEEDY). For the data assimilation
scheme was applied anMultilayer Perceptron(MLP) with supervised training. The MLP-ANN is able to emulate the analysis
from theLocal Ensemble Transform Kalman Filter(LETKF). The ANN was trained with first three months for years1982, 1983,
and 1984 from LETKF. A hindcasting experiment for data assimilation cycle was for January 1985, with a MLP-NN performed
with the SPEEDY model. The results for analysis with ANN are very close with the results obtained from LETKF. The simu-
lations show that the major advantage of using MLP-NN is the better computational performance, with similar quality of analysis.

Keywords –Artificial neural networks, multilayer perceptron, data assimilation, numerical weather forecasting.

1. INTRODUCTION

The procedure which takes atmospheric observed data and creates meteorological fields over some spatial or temporal domain
is usually calledanalysisor data assimilation. The data are distributed in time and the procedure uses an explicit dynamical
model for the time evolution of the atmospheric flow. The fields produced by an analysis or an assimilation must satisfy two
basic requirements: they must be close to the observations and, they must verify dynamical and/or statistical relationships which
are known to be satisfied by the real atmospheric fields.

In atmospheric modeling the scientist is generally faced with a set of observations of parameters, for instance, wind, tempe-
rature, water, ozone, etc., as well as either the knowledge or expectation of correlated behavior between the differentparameters.
The use of numerical techniques to represent the partial differential equations that represent the model physics is a straightforward
way to develop a model. There are many approaches to discretization of the dynamical equations that govern geophysical pro-
cesses [1].

The numerical weather prediction (NWP) was confronted withhaving to solve an initial-value problem. Data assimilation
is the objective melding of observed information with model-predicted information. Data assimilation rigorously combines
statistical modeling with physical modeling; thus, formally connecting the two approaches.

Atmospheric Data Assimilation is an important task in NWP Centers. Several methods of data assimilation have been applied
in models of atmospheric and oceanic dynamics. Methods using Artificial Neural Networks (ANN) have been proposed showing
consistent results regarding implementation in simple models. This paper presents an ANN approach to emulate an Ensemble
Kalman Filter (EnKF) as a method of data assimilation with anAtmospheric General Circulation Model(AGCM), with dynamical
nonlinear, using synthetic temperature data simulating satellite radiances.

In meteorological data assimilation the conventional dataare very important to the quality of the analysis and the forecast.
The satellite data assures high quality global analyses. Itis very clear that assimilation of satellite observations will make a key
contribution to that improvement in forecast skills, giventhe future growth (five orders of magnitude increase in satellite data
over ten years) and improvement of the global observing system expected in the area of space-borne observing systems. Asa
result there is a need an assimilation method able to get the initial field for the numerical model in time to make a prediction. At
present most NWP centers cannot assimilate all the data due to computational costs and limitations in storing the data.Operational
satellite data are taken and processed in real-time and distributed around the world.

Data assimilation adds an additional forcing to the representative equations of the physical model; namely, information from
the observations. From mathematical point, the assimilating process can be represented by

xa = xf +W [yo −H(xf )], (1)

W = (HP fHT +R) (2)

the in the equation are as follows:xa is the analysis filed with innovation that represents the observation-based correction to
the model;yo are observations of the constituent,xf is a model forecast, simulated, estimates of the constituent often called
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X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa
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the first guess;H is the observation operator andthe superscriptT is the matrix transform operation..W is the weighting
matrix, generally computed from the covariance matrix of the prediction errors from forecasting and observation.P f is the
error covariance function of the forecast;R is the error covariance function of the observations. This explicitly shows that data
assimilation is the error-weighted combination of information from two primary sources.

The analysis is the best estimate of the state of the system based on the optimization criteria and error estimates.The ob-
servation operator,H , is a function that maps the parameter to be assimilated ontothe spatial and temporal structure of the
observations. In the case of satellite observations the measurements are radiances and the observation operator mightinclude a
forward radiative transfer calculation from the model”s geophysical parameters to radiance space.

The computational challenge to the traditional techniquesof data assimilation lies in the size of matrices involved inopera-
tional NWP models, currently running at a million equations(equivalent to full matrix elements of the order of1012!). In this
scenario the applications of ANN in data assimilation were suggested by [2, 3], [4] and [5]. But the first implementation of the
ANN as a approach for data assimilation was employed by [6, 7], improved by [8, 9]. [6] used an ANN over the entire domain
space, the [9] strategy is generate the analysis at each gridpoint, it had large gain in computacional efforts. Continuing these
investigations, [10] evaluated the performance of an ANN toemulate Kalman filter, the Particulate Filter and Variational data
assimilation method applied to Lorenz chaotic system. And em [11], this approach was applied with a atmospheric circulation
model with sybthetic conventional data.

The ANN technique uses neural networks to implement the function:

xa = FRNA(y
o, xf ) (3)

whereFRNA is the data assimilation process.
Methods using Artificial Neural Networks (ANN) have been proposed showing consistent results regarding implementation

in simple models. This paper presents a experiment using an Atmospheric General Circulation DYnamics (AGCM) the SPEEDY
model, see [12], which is a 3D dynamic model, with simplified physics parameterization by [13]. Here is employed a set of
Multilayer Perceptron (MLP)( see [14]), which were trainedto emulate the LETKF (Local Ensemble Transform Kalman Filter)
by [15,16].

2. Methodology

2.1 The SPEEDY Model

The modelSimplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) is an atmospheric general circulation mo-
del (AGCM) developing to study global-scale dynamics and numerical weather prediction. The dynamic variables on the primi-
tive meteorological equations are integrated by spectral method in the horizontal at each vertical level, see [17, 18].The model
has a simplified set of physical parameterization schemes that are similar to realistic weather forecasting numerical models. The
goal of this model is to achieve computational efficiency while maintaining characteristics similar to the state-of-the-art AGCMs
with complex physics.

The model is global with spectral resolution T30L7 (horizontal truncation of 30 numbers of waves and seven vertical levels),
corresponding to regular grid with 96 zonal points (longitude), 48 meridian points (latitude) and 7 vertical pressure levels (100,
200 , 300, 500, 700, 850, 925 hPa). The computational cost is one order of magnitude less than that of state-of-the-art AGCMs
at similar horizontal resolution. According to [13], the SPEEDY model simulates the general structure of global atmospheric
circulation fairly well, and some aspects of the systematicerrors are similar to many AGCMs. The package is based on same
physical parameterizations adopted in more complex schemes of AGCM like convection (simplified diagram of mass flow), large-
scale condensation, clouds, short-wave radiation (two spectral bands), long-wave radiation (four spectral waves), surface fluxes
of momentum and energy (aerodynamic formula), and verticaldiffusion. Details of the simplified physical parameterization
scheme can be found in [13].

The boundary conditions of the SPEEDY model includes topographic height and land-sea mask, which are constant, and sea
surface temperature (SST), sea ice fraction, surface temperature in the top soil layer, moisture in the top soil layer and the root-
zone layer, and snow depth, all of which are specified by monthly means, and bare-surface albedo and fraction of land-surface
covered by vegetation, which are specified by annual-mean fields. The lower boundary conditions such as SST are obtained by
ECMWF”s reanalysis in the period 1981-90. The incoming solar radiation flux and the boundary conditions (SST etc.), except
bare-surface albedo and vegetation fraction, are updated daily. The SPEEDY model is a hydrostatic model in sigma coordinates,
and the transformed vorticity-divergence scheme is described by [17]. The prognostic variables of input and output model are the
absolute temperature (T), surface pressure (ps) componentof zonal wind (u), component of meridian wind (v) and an additional
variable and specific humidity (q).

2.2 Brief Description on Local Ensemble Transform Kalman Filter

The analysis is the best estimate of the state of the system based on the optimization criteria and error estimates. The
probabilistic state space formulation and the requirementfor the updating of information when new observations are encountered
are ideally suited for the Bayesian approach. The Bayesian approach and in ensemble Kalman Filter (EnKF) or particle filtering
(PF) methods are a set of efficient and flexible Monte-Carlo methods to solve the optimal filtering problem. Here one attempts
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to construct the posterior probability density function (PDF) of the state based on all available information, including the set
of received observations. Since this PDF embodies all available statistical information, it may be considered to be a complete
solution to the estimation problem. In the field of data assimilation, there are only few contributions in sequential estimation
(EnKF or PF filters).

The ensemble Kalman filter (EnKF) was first proposed by [19] and developed by [20] and [21]. It is related to particle
filters in the context that a particle is identical to an ensemble member. EnKF is a sequential filter method, which means that
the model is integrated forward in time and, whenever observations are available; these are used to reinitialize the model before
the integration continues. The EnKF originated as a versionof the Extended Kalman Filter (EKF) by [22], for large problems.
The classical KF [23] method is optimal in the sense of minimizing the variance only for linear systems and Gaussian statistics.
Similar to the particle filter method, the EnKF systems from aMonte Carlo integration of the Fokker-Planck equation governing
the evolution of the PDF that describes the prior, forecast,and error statistics. In the analysis step, each ensemble member is
updated according to the KF scheme and replaces the covariance matrix by the sample covariance computed from the ensemble.

The first application of EnKF to an atmospheric system by [24,25]. It applies an ensemble of model states to represent the
model statistical error of the estimate. The scheme of analysis acts directly on the ensemble of model states when observations
are assimilated. The ensemble of analysis is obtained by assimilation of perturbed observations for each member of the set of
the reference model. Several ways of perturbed observations used to represent the covariance matrix of the analysis, have been
derived many schemes from the EnKF approach: the Local Ensemble Transform Kalman Filter (LETKF) is one of them.

LETKF was proposed by [15] as an efficient upgrade of LEKF [26]. LETKF separate the entire global grid into independent
local patches. The LETKF scheme first separates an entire grid vector into local patch vectors with observations. The basic idea
of LETKF is perform analysis at each grid point simultaneously using the state variables and all observations in the local region
centered at that point. Each member of the ensemble gets its forecast:

x
f(i)
n−1 : i = 1, 2, 3 · · ·k

wherek is the total members at timetn, to estimate the state vectorx̄f of the reference model is used the mean the ensemble
forecasts:

x̄f = k−1
k∑

i=1

xf(i), (4)

then the model error covariance matrix is:

P f = (k − 1)−1
k∑

i=1

(xf(i) − x̄f )(xf(i) − x̄f )T . (5)

and the ensemble analysis is:
x
a(i)
n−1 : i = 1, 2, 3 · · ·k

with the its average and error covariance. LETKF in the localanalysis, allows different linear combinations of the ensemble
members in different regions, and comprehensive analysis explores a larger spatial scale. For local implementation separates
groups of neighboring observations to a central point for a region of the model grid. The LETKF scheme first separates an entire
grid vector into local patch vectors. Each grid point has on local patch, the number of vectors equals the number of globalgrid
points, each local patch is treated independently [12].

2.3 Multilayer Perceptron

Different ANN architectures are dependent upon the learning strategy adopted. Detailed introduction on ANNs can be found
in [27] and [28].

Multilayer perceptrons ( MLP) with backpropagation learning algorithm are feedforward networks composed of an input
layer, an output layer, and a number of hidden layers, whose aim is to extract high order statistics from the input data [29] Neural
networks will solve nonlinear problems, if nonlinear activation functions are used for the hidden and/or the output layers.

A feedforward network can input vectors of real values onto output vector of real values. The connections among the several
neurons have associated weights that are adjusted during the learning process, thus changing the performance of the network.
Two distinct phases can be devised while using an ANN: the training phase (learning process) and the run phase (activation of
the network). The training phase consists of adjusting the weights for the best performance of the network in establishing the
mapping of many input/output vector pairs. Once trained, the weights are fixed and the network can be presented to new inputs
for which it calculates the corresponding outputs, based onwhat it has learned.

The backpropagation training is a supervised learning algorithm that requires both input and output (desired) data. Such pairs
permit the calculation of the error of the network as the difference between the calculated output and the desired vector. The
weight adjustments are conducted by backpropagating such error to the network, governed by a change rule. The weights are
changed by an amount proportional to the error at that unit, times the output of the unit feeding into the weight. 6 shows the
general weight correction according to the socalled the delta rule

∆wij = ηδjyi (6)
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where,δj is the local gradient,yi is the input signal of neuronj, andη is the learning rate parameter that controls the strength of
change.

3 MLP-ANN and experimental settings

The experiment was conducted with the forecast SPEEDY modelmentioned and LETKF core modules are applicable to any
dynamical model to obtain training data to ANN. The Fortran90 codes (SPEEDY and LETKF) originally developed by [12]. The
error covariance at upper levels and surface is treated in the same way as in [12] to LETKF data assimilation.

The observational data used in data assimilation simulating satellite data. These data include vertical observationsfrom
radiance (temperature) profiles. The satellite data have been essential of weather forecasts.

The observations were generated from “true” model fields, adding random noise with standard deviation (1) to temperature
values. The variables were located at some grid points model. The grid points chosen were simulating satellite observations,
obtaining values for a merged point model (a grid point has observation and a grid point no observation) shown in Figure 1.Both
assimilation scheme, LETKF or ANN, have the same numbers of observations at the same grid points.

Figura 1: Dense network of observations synthetic regularly distributed grid points in the SPEEDY model. Representing1056
stations of satellite data (23 per cent of total observations).

In this configuration SPEEDY was run for a long time integrations of the state to create ”true” to start the integrations of
the model. The true integration of the model was made for three years: from 1 January 1982 to 31 January 1985, generating
outputs in four times a day (00, 06, 12 and 18 UTC). The data assimilation (DA) LETKF was performed with these synthetic
observations (about 6,600 points) of the temperature variables to generate the vector analysis and obtain the desired output to
train the neural network. The executions of the model with LETKF were made for the periods mentioned to true model. The
ensemble of forecasts LETKF has 30 members and the ”perturbations of ensemble” consist of random numbers with Gaussian
distribution. These integrations were obtained input vectors for ANN, recent forecast from SPEEDY with LETKF analysis.

In ANN data assimilation scheme we need the local observation influence at neighboring grid points like observations point,
in zonal and meridional indices, as for the vertical boundaries at the bottom and top levels. We eliminate indices at poles (i.e. no
observations at boundaries grid points). This calculationwas based on the distance from its neighbor:

ŷo =
yol +

∑N

l=1(y
o
l + δ)

r2
(7)

r = distance(yol + δ, yol ) (8)

whereN is the total neighbors’ grid pointswithout observations,δ is a cubelike shape characterized by the horizontal and
vertical grid lengths, this is based on the distance of each observation point:δ = (xf

i − yoi )
2 + (xf

j − yoj )
2 + (xf

k − yok)
2

wherexf is grid point without observation that has the forecast variable value,yo is observation in a grid point; the subscripts
i, j, k, are the indices of localizations points as latitude, longitude, level respectively. The input vectors (observations,forecast
value and analysis value at grid points) was collected for two vertical regions in the globe( the northern hemisphere andsouthern
hemisphere), or90o to north and90o to south; three horizontal regions to each hemisphere, or90o to each region. This division is
based on size of regions not in number os observations. Because of this division we developed a set of thirty MLP to temperature
prognostic variable. These MLP has two inputs (model and forecast vectors), one neuron in the output (to analysis vector), eleven
neurons in a hidden layer, the activation function to ensurenonlinearity of the problem used was the sigmoid tangent hyperbolic.

The network was trained by entering input values of each gridpoint once, i.e, the analysis is done at grid point where it has
observation. The training was made with collected data of the first three months of 1982, 1983 and 1984. The MLP generalization
is initiated with ANN data assimilation cycle in the first 00 UTC on 1 January 1985, generating the prediction model and the
initial condition of SPEEDY (new global analysis). In the experiment the MLP generated analysis and forecasts until 01/31/1985
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(a) ANN Analysis SPEEDY Field (b) LETKF Analysis SPEEDY Field

(c) True SPEEDY Field (d) ANN-LETKF

Figura 2: Analysis fields for Temperature to 03/01/1985 12 UTC to level 950 hPa.

4. RESULTADOS

The input and output values were processed in grid points in time integrations for an intermittent forecasting and analysis
cycle to the temperature (T) prognostic variables. The results show analysis fields generated by the activation of the MLP-ANN
and analysis fields generated by LETKF data assimilarion for03/Jan/1985 at 12 UTC at level 950 hPa (near surface) and hight
level 500 hPa. Figures 2 to 3 present global fields of analysis, true model fields and the differences between analysis fields.
These results show that the application of MLP-ANN as assimilation system generates data analysis similar to the assimilation
system LETKF. The first conclusion of this ecxperiment is: the MLP-ANN can emulate the analysis of LETKF to temperature
observations from sattelites sensors.

There are several aspects of the modeling and assimilation problem that stress computational systems and push capability
requirements. The common ones in modeling are increased resolution, improved physics, inclusion of new processes, and
integration and concurrent execution of Earth-system components. Often, real-time needs define capability requirements. When
considering data assimilation the computational requirements become much more challenging. The use of observations from the
earth-orbiting satellites in operational numerical prediction models is performed for improving weather forecasts;however, the
use of this amount of data increases the computational effort. As a result there is a need an assimilation method able to get the
initial field for the numerical model in time to make a prediction. At present most numerical weather prediction centers cannot
assimilate all the data due to computational costs and limitations in storing the data.

The figure 4 shows a cycle of 124 data assimilation, made for 31days with 7032 satellite observations run in hours (00,
06, 12 and 18 UTC). The time was measured in milliseconds, forLETKF data assimilation and MLP-ANN activation for data
assimilation These measures show the computational performance of the ANN. It was higher than the performance of the system
LETKF. These results show that the computational efficiencyof neural network to the problem of atmospheric data assimilation
is better with the similar quality in analysis field. The CPU-time assimilation with MLP-NN is 75 times faster than LETKF in
our numerical experiment, see table 1. Total run time including forecasting and 30 members for ensemble to SPEEDY model.
Analysis time is only LETKF run time or MLP-ANN activation run time (both for 124 runs).

Actually, considering the supervised ANN for data assimilation, the most relevant issue is the computational speed-upfor
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(a) ANN Analysis SPEEDY Field (b) LETKF Analysis SPEEDY Field

(c) True SPEEDY Field (d) ANN-LETKF

Figura 3: Analysis fields for Temperature to 03/01/1985 12 UTC to level 500 hPa.

Figura 4: Real time for experiment: MLP-NN (pink color) and LETKF (blue color) methods for one month (124 cycles) assimi-
lation

6
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computing the analyzed initial condition.

Tabela 1: CPU-run time of 124 cycles of data assimilation (analysis and forecasting).

CPU-time of MLP-NN LETKF

124 cycles (hh:mm:ss) (hh:mm:ss)

Total run time 00:04:11 04:47:43
Total real
Analysis time 00:00:22 02:45:50
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[11] R. S. Cintra, H. F. Campos Velho and R. Todling. “Nova implementação em filtro do kalman estendido para assimilaç˜ao de
dados com redes neurais”.Learning and Nonlinear Model, vol. 7, pp. 30–37, 2010.

[12] T. Miyoshi. “Ensemble Kalman filter experiments with a primitive–equation global model”. Ph.D. thesis, University of
Maryland, College Park, Maryland, USA, 2005. 197 p.

[13] F. Molteni. “Atmospheric simulations using a GCM with simplified physical parametrizations. I:Model climatologyand
variability in multi-decadal experiments”.Climate Dyn., vol. 20, pp. 175–191, 2003.

[14] R. Daley.Atmospherics aata analysis. Cambridge University Press, New York, USA, 1991. 471 p.

[15] B. Hunt, E. Kalnay, E. J. Kostelich, E. Ott, D. Patil, T. Sauer, I. Szunyogh, J. A. Yorke and A. V. Zemin. “Four-dimensional
ensemble kalman filtering”.Tellus, vol. 56A, pp. 273–277, 2004.

7
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