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Abstract – The diagnosis of pleural tuberculosis (pTB) is still a challenge, because the de facto stan-
dard diagnostic test (histopathological examination) and all classical diagnostic tests require thoracen-
tesis, which is an invasive procedure and incurs on increased costs and risks. Innovative approaches
which take in account only clinical features are thus highly relevant to provide less invasive diagnos-
tic tools for pTB. This paper proposes the investigation of non-linear models using artificial neural
networks to develop a diagnosis support tool based solely on the clinical variables available without
the need to perform thoracentesis exam. Models based on multilayer perceptrons achieved 84.7%
(95%CI, 82.4% to 87.1%) of diagnostic accuracy versus 82.5% (95%CI, 80.2% to 84.8%) obtained
through histopathological examination. Moreover, the sensitivity of the models was again tested, but
only on patients that were diagnosed with pTB based only on clinical grounds, as classical testing did
not yield positive results; the resulting estimated sensitivity indicates that the models can exploit the
underlying clinical features even in pTB cases undetected by classical testing, but the low number of
patients in this situation poses a limitation to this analysis.
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Resumo – O diagnóstico da tuberculose pleural (pTB) ainda se apresenta como um desafio, pois o
teste diagnóstico tido como padrão de facto (exame histopatológico) e todos os testes diagnósticos
clássicos requerem a realização da toracocentese, procedimento invasivo que incorre em custos e
riscos elevados. Abordagens inovadoras que levem em conta somente aspectos clínicos são portanto
muito relevantes para prover ferramentas para um diagnóstico menos invasivo da pTB. Este artigo
propõe a investigação de modelos não-lineares utilizando redes neurais artificiais para desenvolver
uma ferramenta de suporte ao diagnóstico baseada tão somente no processamento de variáveis clínicas
disponíveis sem a realização da toracocentese. Perceptrons multicamadas alcançaram 84.7% (95%CI,
82.4% to 87.1%) de acurácia no diagnóstico, versus 82.5% (95%CI, 80.2% to 84.8%) obtidos pelo
exame histopatológico. Adicionalmente, a sensibilidade dos modelos foi novamente avaliada, mas
somente em pacientes cujo diagnóstico de pTB se deu apenas com base no acompanhamento clínico,
não tendo obtido resultado positivo em nenhum dos testes clássicos; a sensibilidade estimada desta
maneira indica que os modelos são capazes de extrair características relevantes dos dados clínicos,
mesmo em casos em que a pTB não é detectada pelos testes usuais, mas o pequeno número de pa-
cientes nesta situação se apresenta como uma limitação para esta análise.

Palavras-chave – Redes neurais artificiais, tuberculose pleural, suporte ao diagnóstico, modelos não-
lineares.
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1. INTRODUCTION

The tuberculosis (TB) is an infectious disease considered a world emergency by the World Health Organization, as
it has high infection rates worldwide and is the main cause of death in people aged between 15–49 years [1]. The most
frequent extrapulmonary site of infection is the pleura, in which case it is denominated pleural tuberculosis (pTB) and has
been found to be a major cause of pleural effusion in many countries [2–4]. However, accurate pTB diagnosis is still a chal-
lenge, because acid-fast bacillus (AFB) smear and M. tuberculosis culture in pleural fluid removed through thoracentesis
procedure exhibit low sensitivity [5–8] and pleural biopsy is thus frequently required, usually through histopathologi-
cal examination, but lack of specificity, increased risk of complications and costs added by the biopsy procedure pose
limitations to this approach [8]. Newer tests have been proposed to achieve higher accuracy in diagnosing pTB using
pleural fluid specimens only [9], but innovative approaches which take into account only clinical features and provide less
invasive yet accurate diagnostic tools for pTB are highly relevant, specially in areas with high TB prevalence and poor
resources available.

Decision support systems based on computational intelligence may provide a useful tool in pTB diagnosis. In this
context, artificial neural networks (ANNs) are a non-linear signal processing tool, frequently used in multidisciplinary
problems, due to their universal function approximation properties [10]. They are capable of extracting non-evident but
meaningful linear and non-linear relationships buried deep even in high-dimensional data sets with complex interactions
between its variables and implement useful mapping functions [10]. In addition, they are valuable tools due to their
ability to generalize and yield reasonably good models with relatively few data points [10]. Extensive use of ANNs in
medical applications can be found in the existing literature, ranging from pattern recognition in medical images applied
to decision support systems, to prediction of treatment outcomes and physiological measurements [11]; earlier works
have applied binary classification trees and artificial neural networks in predicting smear negative pulmonary TB [12].
Given the challenges faced in the development of simple, efficient, non-invasive and low-cost tools for pTB diagnosis,
this paper proposes ANN prediction models as tools to tackle those challenges. These models may provide an aid tool for
non-invasive diagnosis of pTB, avoiding the need for thoracentesis and pleural biopsy procedures.

2. NEURAL NETWORK DESIGN

Neural models used two-layered feedforward multilayer perceptron neural network (MLP) with one output node for
a binary pTB diagnosis decision. The optimal size of the hidden layer was defined through a cross-validation approach.
Hyperbolic tangent was set as the transfer function for all nodes. The cost function adopted was the mean square error
(MSE) and early stop was used as the learning mechanism control to avoid overtraining [10]. Target outputs were set as
+1 for a positive pTB diagnosis and -1, otherwise. The database was split into training and test sets, the latter used as
the validation set for early stop. Variables with values outside of the range [-1, +1] were normalized so that the biggest
and smallest values found in the training set were linearly mapped to +1 and -1, respectively. The parameters obtained to
normalize the training set were used to normalize the test set as well; values eventually mapped outside of the range [-1,
+1] were squashed to +1 or -1.

In order to estimate the performance of the ANN models, a stratified random subsampling (stratified hold-out) [13]
method was used, which consists on repeatedly and randomly split the data set into training and test sets, with both sets
exhibiting the same proportion of positively and negatively diagnosed pTB patients as found in the original data set. Each
split considered a proportion of 70% of the available events dedicated to the training set and the 30% remaining ones for
the test.

Models produced had their performance measured regarding sensitivity, specificity, accuracy and the sum-product (SP)
index value. Performance metrics based on the SP index are suitable to select classifiers which show balanced values of
sensitivity and specificity, as a significant drop in either of them forces a dramatic drop in the index [14]. The expressions
for calculation of the different performance indexes are summarized in Table 1.

The measure of the proposed model’s classification performance considered the mean performance attained over all
runs (100 in this work). In order to lower the model uncertainty associated with weight and bias initialization, in each
split the ANN was randomly initialized and trained several times (100 in this work) and the best performing model (with
regard to SP index) was taken as the sample performance of that split. The complete procedure is outlined in Algorithm
1.

Training was made in batch mode [15] and the performances using four different training algorithms were compared:
Resilient Backpropagation [16] (RPROP), Levenberg-Manquardt [17] (LM), BFGS quasi-Newton [18] and One Step
Secant [19] (OSS). The classifier was completed by feeding the output of the ANN to a hard decision device, which maps
non-negative output values into positive pTB diagnosis and negative pTB diagnosis otherwise.
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Table 1: Calculation of the different performance indexes used.
Sensitivity (S) Specificity (E) Accuracy (A) Sum-product (SP)

S = TP
TP+FN E = TN

TN+FP A = TP+TN
TP+FN+TN+FP SP =

√(
S+E
2

)
.
√
S.E

Where TP, TN, FP and FN stand respectively for the number of true-positive, true-negative, false-positive and false-
negative classification outcomes.

Algorithm 1 Estimating network performance via a stratified random subsampling method.

f o r n := 1 . . . 2 0 :
r e p e a t 100 t i m e s :

draw randomly 30% of p o s i t i v e l y d i a g n o s e d pTB p a t i e n t s t o
t o form t h e t e s t s e t ;

draw randomly 30% of n e g a t i v e l y d i a g n o s e d pTB p a t i e n t s t o
t o form t h e t e s t s e t ;

form t r a i n i n g s e t w i th r e m a i n i n g p a t i e n t s ;
n o r m a l i z e v a r i a b l e s ;
r e p e a t 100 t i m e s :

randomly i n i t i a l i z e ne twork wi th n nodes i n t h e
h i dd en l a y e r ;

t r a i n ne twork wi th t h e t r a i n i n g s e t ;
s i m u l a t e ne twork on t h e t e s t s e t ;

end ;
s e l e c t t h e b e s t p e r f o r m i n g ne twork ;

end ;
s t o r e a l l pe r f o rm an ce s , n e t w o r k s and t r a i n / t e s t p a r t i t i o n s ;

end ;

3. CONFIDENCE INTERVAL ESTIMATION

Performances found in study results in medical research are often reported along with p-values to assess the statistical
significance of the results, but in the past two decades the reporting of confidence intervals in addition to or instead of
p-values is widely used and has been increasingly adopted as a guideline by the main medical journals [20]. Briefly,
confidence intervals are estimates of the precision of the population parameters’ estimates inferred from a limited sample
[20]. A 95% confidence interval is thus defined as the interval which will contain the true population parameter for 95%
of the samples randomly drawn from the population [21]. The actual percentage value used is arbitrarily set according
to how strict one wants to be when considering the statistical significance of findings; common values usually found in
literature are 99%, 95% and 90%. [20]

As models in this work are evaluated in terms of the mean value of performance indexes obtained for different data
splits, confidence intervals can provide information about the precision of the performances’ estimates.

In order to construct the confidence interval, a conservative approach based on Chebyshev’s inequality [22], i.e.:

P (|x− x̄| ≥ δ) ≤ σ2
x

δ2
(1)

One should note that no assumption over the samples’ distributions is considered.
The 95% confidence interval CI is thus calculated as follows:

CI = (µ̂− δ, µ̂+ δ) (2)

δ =

√
σ̂2
M

0.05
, σ̂M =

σ̂√
N

(3)

where µ̂ is the mean value of the performance index values attained across all runs, σ̂ is the standard deviation of the
sample’s performance index values and N is the number of runs.
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Table 2: Best performance obtained with each training algorithm.
Algorithm Mean SP-index 95% CI Mean Accuracy 95% CI No. of hidden layer neurons

Levenberg-Manquardt 83.8% 81.8% to 85.9% 84.7% 82.4% to 87.1% 6
BFGS quasi-Newton 82.9% 80.8% to 84.9% 84.2% 82.3% to 86.2% 20

One Step Secant 81.9% 79.7% to 84.0% 83.9% 81.9% to 85.9% 20
Resilient Backpropagation 81.4% 79.3% to 83.5% 84.2% 82.3% to 86.1% 20

4. DATABASE

The database used in this work was also used in previous works by Trajman et al [9], which assessed novel pleural fluid
tests in the diagnosis of pTB. All patients with pleural effusion admitted for diagnostic at the Hospital Geral da Santa
Casa da Misericórdia (Rio de Janeiro, Brazil) were included in the study. Each patient’s record was consulted to gather
information on 12 variables derived from different sources: anamnesis (age, gender, smoking status, HIV status), classical
test results (histopathologic, pleural tissue culture, pleural fluid culture, AFB smear), experimental test results (adenosine
deaminase -ADA, IgA-ELISA and nucleic acid sequences by amplification tests -NAAT- using in house polymerase chain
reaction -PCR) and the final diagnosis of the patient [9]. The variables were coded as +1 for a positive result, -1 for a
negative result, or zero in case the specified test was not available or the patient failed to provide information, except for
age, whose numerical value (in years) was kept, and gender, which was coded as +1 for male and -1 for female patients.

The database contains records of 137 patients, two of which were excluded from this study because of their records’
lack of final diagnosis information. Of the remaining 135 patients, 96 have been diagnosed with pTB and 22 of them were
so based solely on clinical grounds, i.e. none of the tests yielded a positive result. Only the anamnesis variables and HIV
testing results were used as inputs of the network, as they are the only ones that would be available in case thoracentesis
had not been performed.

5. RESULTS

The effect of the number of neurons in the hidden layer on the mean value of the SP-index can be seen in Figure 1. The
confidence intervals estimated as detailed in Section 3 are represented by the error bars. A slight increasing tendency can
be observed in the performance number of hidden neurons grows. The performance of the ANN models derived through
different training algorithms was similar as well, with the best overall performance attained by LM algorithm. The best
mean SP-index obtained through each training algorithm are summarized in Table 2.

The performance of the classical tests was estimated in a similar fashion as those of the models, i.e. their accuracy,
sensibility, specificity and SP-index were evaluated 100 test sets randomly generated containing 30% of the patients. The
mean performances attained by the classical tests, accompanied by the corresponding confidence intervals, can be found
in Figure 2, along with the results for the best performances reached with the networks using different training algorithms
(see Table 2).

Model uncertainty associated with weight and bias initialization was also estimated. For this analysis, only models
with 6 hidden neurons and trained with LM algorithm were considered. Performance estimation in the same fashion
as before and, for each of the 100 splits, two models (out of 100 generated) were picked as the sample performance of
that split. One was picked at random, so the performance estimation will take in account the uncertainty introduced by
initialization, and the other was picked by choosing the best performing model according to the SP-index. The mean
performance and confidence intervals were estimated for accuracy, sensibility, specificity and SP-index. These results are
plotted in Figure 3.

To further investigate the performance of the models, we analyzed the output of each of the networks trained (except
for the ones discarded to lessen the performance fluctuation due to initialization – see Section 2) when presented to
each one of the 22 patients whose diagnostics was based solely on clinical grounds, i.e. those for which none of the
classical diagnostic tests yielded a positive result but a continuous medical accompaniment led to the conclusion that the
patient indeed suffered from pleural tuberculosis. For each model derived through a training training algorithm, the 22
patients’ data was fed to the 100 networks generated and the overall diagnosis accuracy obtained by the models for this
group of patients was determined, expressed in terms of mean value and its associated confidence interval. To check for
generalization, the diagnosis accuracy obtained by the models for the patients in this group that were not used to train that
network, i.e. those that were drawn to form the test set of that particular iteration. Across all splits, of those 22 patients,
at most 11 and at least 2 were drawn to the test set, while the median number was 7. The results can be seen in Figure 4.
Note that, in this scenario, the accuracy is equal to the sensitivity, as only patients with positive pTB diagnosis are taken
in account.
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Figure 1: The effect of the number of neurons in the network’s hidden layer in the mean SP-index value. Error bars reflect
the estimated confidence intervals.
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Figure 2: Comparison of two of the classical tests and the best performing network topologies obtained with different
training algorithms.
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Figure 3: Effects of random initialization on estimated performance. Comparison of estimation results with and without
compensation for fluctuations associated with the initialization of weights and bias.
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Figure 4: Accuracy (sensitivity) of the networks for diagnosing pleural tuberculosis undetected by classical diagnostic
tests.

6. Conclusions

Pleural biopsy through histopathological examination is currently the best available diagnostic tool for pleural tuber-
culosis [9], but it is a highly invasive procedure which incurs in increased risks and costs. Diagnostic tests using only the
pleural fluid collected via the somewhat less invasive procedure of thoracentesis are available but exhibit several short-
comings [5], and thus the development of novel diagnostic tools is highly relevant, specially to assist doctors practicing in
low resource settings in areas with high rates of tuberculosis infection. This paper evaluated the potentials and challenges
involved in the development of artificial neural network models for diagnosis support of pleural tuberculosis with the main
aim of greatly diminishing the need for invasive procedures such as the aforementioned thoracentesis and pleural biopsy.

The results obtained show that the ANN models derived using only simple and readily available clinical information
(age, gender, smoking status, and HIV status) were able to correctly identify patients in accordance with their final pTB
diagnosis in most of the cases, attaining performances similar to that of histopathological examination, the de facto
standard for pTB diagnosis [9], and definitely superior to other classical tests in which a positive result grants a positive
pTB diagnosis (AFB-smear and M. tuberculosis culture in pleural tissue or fluid). It should be noted that the results, albeit
promising, were obtained using a database with a small number of control patients not diagnosed with pTB (around 30%).
This fact poses one of the major limitations of this study, as it can affect the assessment of specificity [5] and, in turn,
of the performance indexes used (SP-index and accuracy). These results do however serve the purpose of evaluating the
potentials and challenges of such an approach for the support of pTB diagnosis. Analysis of Figure 3 confirms that an
accurate assessment of specificity is more difficult to be made and that the model learning suffers considerably from the
lack of control patients. A proper selection of bias and weight initialization may, however, compensate this fact, leading
to a model which correctly identifies control patients almost as well as pTB patients, as confirmed by the small difference
between accuracy and SP-index attained by the models.

An interesting finding is that good mean accuracies were obtained even for patients whose tuberculosis went unde-
tected through classical diagnostic testing. The small number of patients in this category (22) is however a major limitation
in this analysis, and specially when testing for generalization, as the number of such patients in the test set is even lower
for any given split. Nevertheless, the estimated accuracies in both cases are close, indicating good generalization, and
they are close to the accuracies obtained earlier for the entire test sets as well, which indicates that the underlying clinical
characteristics are sufficient to predict pleural tuberculosis diagnosis, a very useful result considering the reported lack of
sensitivity in most classical diagnostic tests [5–8].

Future research may include refinement of the presented models, the use of a larger database currently under con-
struction featuring more patients and more clinical variables, and the use of other techniques, e.g. clustering tools and
component analysis, as the development of risk profile analysis tools.
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