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Abstract – The classification of voice diseases has many applications in health, disease treatment, and the projection of new 
medical equipments for diagnosing these pathologies. This work uses the parameters of the glottal signal that are more likely to 
identify two types of voice disorders: vocal cord nodule and unilateral paralysis of vocal cords. The parameters of the glottal 
signal are obtained through the known inverse filtering method. The parameters of the glottal signal serve as input to a neural 
network that classifies into three different groups of speakers: speakers with pathology nodule on one’s vocal cords; with 
unilateral vocal cord paralysis; and finally speakers with normal voices. The database is composed of 248 voice recordings 
containing samples of the three groups mentioned. In this study we have used a larger database for the classification compared 
with similar studies, and its classification rate is superior to other studies, reaching 95.83%. 

Keywords – classification of diseases, parameters of the glottal signal, neural network. 

1 Introduction 

The most common pathologies of the vocal cords are vocal cord nodules and unilateral paralysis of vocal cords. The most 
common method for extracting voice features is directly from the voice signal [1]. However, many researchers have looked for 
some characteristics extracted from the so called glottal signal, which is the signal obtained just after the vocal folds and before 
the vocal tract. As most voice disorders are due to some discomfort on the vocal cords, it is best to work with parameters 
extracted from the glottal signal, since the signal is produced by the vocal cords.  Nowadays, obtaining this signal is easier due 
to the development of algorithms that can perform an inverse filtering from the voice signal, eliminating the influence of the 
vocal tract. Before, it used to be necessary to use equipment coupled with micro cameras to record sounds just after air passed 
from the vocal folds. This was an invasive technique and very difficult to be performed.  

In previous works, different methods have been used to classify diseases, such as Bayes, Hidden Markov Models (HMM) [2], 
Gaussian Mixture Models (GMM) and neural networks [3], using as inputs- Mel-frequency cepstral Coefficients (MFCC) and 
the parameters such as jitter and shimmer. In [4] [5], 37 input parameters have been used to classify a database composed of 12 
recordings for men and women, resulting in a maximum performance of 80% accuracy [4]. MFCC have also been proved to be 
effective in speaker recognition problems [6]. However, their performance is not as effective in the classification of voice 
pathologies. In [5], several models for the classification of voice pathologies are compared. The best performance has been 
provided by a neural network based model, differing from speaker recognition applications where best results are usually 
obtained with GMM and HMM. This is probably because classification of voice pathologies does not fully depend on temporal 
features of the voice, and the pathology causes change in the voice signal [4]. Therefore, the main objective of this work was to 
evaluate the performance of a voice pathologies classification model based only on parameters extracted from the glottal 
signal. Additionally, a new database was created, with a larger number of voice recordings, which allows a better evaluation of 
the influence of each parameter in the classification performance.   

This paper is organized as follows: Section 2 explains how the glottal signal is obtained and the extracted signal features used 
in this work. Section 3 presents the neural network model used to classify voice pathologies. Section 4 presents the database 
details and Section 5 present results, analysis and discusses the conclusions of this work. 

2 Feature Extraction from the Glottal Signal 

2.1 The Glottal Signal 

The voice signal, particularly the one related to voiced sounds, e.g. vowels, starts with the contraction-expansion of the lungs, 
generating a pressure difference between the air in the lungs and the air near the mouth. The airflow created passes through the 
vocal folds, which oscillate in a frequency called the fundamental frequency of the voice. This oscillation modifies the airflow 
coming from the lungs, changing it into air pulses. The pressure signal formed by the air pulses is quasi-periodic and it is 
called the glottal signal [13].  

2.2 Parameters Obtained from the Glottal Signal 
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As mentioned before, to obtain the glottal signal it used to be necessary to perform an invasive process, by installing micro 
cameras to record sounds just after the air passed through the vocal folds. Nowadays, it is possible to obtain the glottal signal 
using noninvasive methods, by performing an inverse filtering on the voice signal, which consists of eliminating the influence 
of the vocal tract and the voice radiation caused by the mouth, preserving the glottal signal characteristics [7]. Algorithms that 
obtain the glottal signal can be classified into two categories: semi-automatic and manual. In this paper, the inverse filtering 
algorithm used is of the semi-automatic category, called PSIAIF (Pitch Synchronous Iterative Adaptive Inverse Filtering) [8] 
[9]. The PSIAIF Algorithm was chosen due to its high performance and ease development. There is a toolbox implementation 
in Matlab, called Aparat [10], which was constructed especially based on the PSIAIF method to obtain the glottal signal and to 
extract its main features or parameters. The parameters which can be extracted from the glottal signal can be divided into three 
groups: time domain, frequency domain, and the ones that represent the variations of the fundamental frequency [8]. 

2.2.1 Time Domain Parameters 

The time domain parameters that can be extracted from the glottal signal are described below [8], [9]. 

(i) Closing phase (Ko): it describes the interval between the instant of the maximum opening of the vocal folds and 
the instant where they close [8], Ko is shown in Figure 1. 

(ii) Opening phase (Ka): it describes the interval between the instant where the vocal folds start the oscillation up to 
their maximum opening [8], Ka is shown in Figure 1. 

(iii) Opening quotient (OQ): The ratio between the total time of the vocal folds opening and the total time of a cycle 
(or period) of the glottal signal (T). It is inversely proportional to the intensity of the voice. The smaller it is, the 
higher the voice intensity [1][8].  

(iv) Closing quotient (CIQ): The ratio between the closing phase parameter (Ko) and the total length of a glottal pulse 
(T) [8]. It is inversely proportional to the voice intensity. The smaller it is, the higher the voice intensity.   

(v) Amplitude quotient (AQ): The ratio between the glottal signal amplitude (Av) and the minimum value of the 
glottal signal derivative (dmin) [11]. It is related to the speaker phonation [9]. 

(vi)  Normalized amplitude quotient (NAQ): It is calculated by the ratio between the amplitude quotient (AQ) and the 
total time length of the glottal pulse (T) [12].  

(vii) Opening quotient defined by the Liljencrants-Fant model (OQa): This is another opening quotient but calculated 
by the Liljencrants-Fant model for inverse filtering. Details about this model can be found in [13]. 

(viii) Quasi opening quotient (QoQ): It is the relationship between the glottal signal opening at the exact instant of the 
oscillation and the closing time [9]. It has been used in some works to classify emotions [14]. 

(ix) Speed quotient (SQ): defined as the ratio of the opening phase length to the closing phase length [8].   
  

 
Figure 1 – Parameters Ko e Ka obtained from the glottal signal. 

2.2.2 Frequency Domain Parameters 

(i) Difference between harmonics (DH12): Also known as H1-H2 and it is the difference between the values of the 
first and second harmonics of the glottal signal [15][16]. This parameter has been used to measure vocal quality. 

(ii) Harmonics relation factor (HRF): It relates the first harmonic (H1) with the sum of the energy of the other 
harmonics (Hk) [17]. It has also been used to measure vocal quality. 
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2.2.3 Parameters that Represent Variations and Perturbations in the Fundamental Frequency 

(i) Jitter: variations in fundamental frequency between successive vibratory cycles [18] [19]. Changes in jitter may 
be indicative of neurological or psychological difficulties [1]. 

(ii) Shimmer: variations in amplitude of the glottal flow between successive vibratory cycles [18] [19]. Changing the 
shimmer is found mainly in the presence of mass lesions in the vocal folds, such as polyps, edema, or carcinomas 
[1]. 

3 Model Used for Voice Pathologies Classification 

The model has two stages, the first stage is to obtain the abovementioned parameters from the glottal signal, and the second 
stage is the classification of pathologies of the voice by using a multilayer perceptron type neural network. The steps are shown 
in Figure 2. 

 

Figure 2 – Two stages of model 

3.1 Inverse Filtering  

For each vocal register, the corresponding glottal signal was obtained by inverse filtering PSIAIF and the parameters were 
extracted using the Aparat [10] and Praat [21] software. The following parameters were obtained: fundamental frequency (fo), 
jitter, shimmer, Ko, Ka, NAQ, AQ, CIQ, OQ1, OQ2, Oqa, Qoq, SQ1, SQ2, DH12, and HRF. The parameters were separated 
according to the groups to which they belonged. OQ was divided into OQ1 and OQ2, the open quotients calculated from the 
so-called primary and secondary openings of the glottal flow. The difference between OQ1 and OQ2 is that OQ1 is calculated 
from the closure of the glottal flow until the closure of the next glottal flow, and OQ2 is calculated from de opening until the 
closure of the glottal flow; SQ, as well, was divided into speed quotients calculated from the primary and secondary openings 
of glottal signal. 

3.2 Classification of pathologies of the voice Using Neural Networks  

With the parameters of the glottal signal, pathologies are classified with a neural network type (MLP) [18]. The neural network 
classification model is developed to classify the speaker into the three groups: speakers with nodule on the vocal cords; 
speakers with vocal cords paralysis; and speakers with normal voices. These groups will be the outputs of the neural network 
in which 70% of the database was used for training, 20% as the validation set (to avoid the network overtraining and to choose 
the number of processors and the hidden layers), and 10% for testing. For this neural network model was chosen early stopping 
to avoid over training the neural network, with this purpose we used the validation set. 

4 Database 

Most of the works on disease classification just classify speakers into two groups: speakers with disease (all kinds of disease) 
and speakers with normal voices [2], [3], [4], and [20]. The major difference on this work is the fact that the type of disease is 
classified, letting the patient knows if he/she has nodule or paralysis on the vocal cords, or neither one. 

The speakers that belong to the pathology groups (nodule and paralysis) have different types of the disease, as show in Tables 
1, 2. 

The developed database is composed of 249 records consisting of voices of both women and men, with different ages, and it is 
divided into three groups: 12 speakers with nodule on the vocal cords; 8 speakers with vocal cords paralysis; and 11 speakers 
with normal voices. Eight voice records were taken from each speaker. This database was obtained randomly in Rio de Janeiro 
among people in treatment. The following tables describe the speakers. 

 

Table 1 – Speakers with Nodule on the Vocal Cords (F – Female, M – Male). 

Speaker Gender Age Description of the Disease 

Speaker 1 F 42 Bilateral nodules and small slit 

Speaker 2 F 38 Bilateral nodules with mid-posterior slit 
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Speaker 3 F 24 Vocal nodules with moderate and severe cleft significant anterior and posterior 

Speaker 4 F 53 Vocal nodules slotted hourglass 

Speaker 5 F 53 Vocal nodules with fissure 

Speaker 6 F 38 Bilateral nodules with mid-posterior slit 

Speaker 7 F 34 Bilateral nodules with mid-posterior slit 

Speaker 8 F 32 Fibrous nodules - mid-posterior slit - great vocal effort 

Speaker 9 F 29 Bilateral nodules with mid-posterior slit 

Speaker 10 F 33 Vocal nodules with fissure 

Speaker 11 F 28 Vocal nodules with slight fissure 

Speaker 12 F 28 Bilateral nodules with mid-posterior slit 

 

Table 2 – Speakers with Vocal Cords Paralysis (F – Female, M – Male). 

Speaker Gender Age Description of the Disease 

Speaker 13 M 50 
Paralysis of right vocal fold with scar retraction in the middle 1/3 - cleft anterior 

fusiform sequel laryngeal trauma 

Speaker 14 M 50 Idiopathic palsy of the right hemilarynx with mild bowing of the free edge 

Speaker 15 M 24 Vocal cord paralysis with right fusiform slit 

Speaker 16 F 69 
Right vocal cord paralysis in paramedian position with a slight bend and a 

slight cleft spindle - paralytic falsetto 

Speaker 17 F 45 Vocal cord paralysis in the left median position and para-median 

Speaker 18 F 43 Palsy and idiopathic right hemilarynx positioned at the median 

Speaker 19 M 66 
Pearrencial palsy with moderate bend to the left of the free edge (trauma of 

intubation) 

Speaker 20 M 53 Right vocal cord paralysis in paramedian position - left vocal fold stiffness 

 
 

Table 3 – Speakers with No Disease (F – Female, M – Male). 

Speaker Gender Age 

Speaker 21 F 56 

Speaker 22 M 30 

Speaker 23 F 41 

Speaker 24 M 46 

Speaker 25 F 61 
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Speaker 26 M 35 

Speaker 27 M 63 

Speaker 28 M 48 

Speaker 29 M 26 

Speaker 30 F 56 

Speaker 31 F 56 

5 Results 

5.1 Analyses of Parameters for Classification 

In order to evaluate the influence of each input parameter in the classification of voice diseases, Matlab boxplot function was 
used. The boxplot is shown for each of the parameters extracted from the glottal signal for this work, in order to see their 
behavior in each type of pathology in normal voices and to compare their behavior. Boxplot is a convenient way of graphically 
depicting groups of numerical data, and it was used in this work to analyze the influence of each parameter in correctly 
classifying each disease [22].  

The fundamental frequency does not undergo major changes between the three groups compared. The parameter Ko that shows 
the closing phase of the vocal cords is higher in normal voices as shown in Figure 3 (a). CIQ parameter, AQ, NAQ, OQ1 and 
OQ2 show that normal voices have more intensity in the voices compared with pathologies as shown in Figure 3 (f), (g), and 
(h). The parameters SQ1 and SQ2 are lower in normal voices, which indicate a shortening in the structure of the vocal cords 
when one has these diseases, especially paralysis, as shown in Figure (l), (m). In such condition, the structure of the vocal 
cords is greatly compromised this is indicated for jitter and shimmer, as shown in Figure 3 (o) and (p). Jitter and shimmer 
parameters vary the most in the voice when paralysis occurs. Jitter and Shimmer are very high in voices with paralysis, proving 
to have affected the most the vocal cords. 

 
(a)     (b)    (c) 

 
(d)    (e)    (f) 

 
(g)    (h)    (i) 
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(j)    (k)    (l) 

 
(m)    (n)    (o) 

 
 (p)  

Figure 3 – Boxplot for each of the parameters extracted from the glottal signal. K0 (a), Ka (b), OQ1 (c), OQ2 (d), ClQ (e), 

AQ (f), NAQ (g), OQa (h), QoQ (i), SQ1 (j), SQ2 (k), F0 (l), DH12 (m), HRF (n), Jitter (o), Shimmer (p). 

5.2 Classification results with the parameters of the glottal signal 

The original database was divided into training, validation and test sets, where 70% of the database was used for training, 20% 
as the validation set, and 10% for testing. After lots of tests varying the number of the processors, the best result came up with 
8 processors in the hidden layer.  

The Neural Network has three outputs: speakers with nodule on the vocal cords, containing 93 voice records, speaker with 
vocal cords paralysis, containing 67 records, and speaker with normal voice, containing 89 records. Correctly classified 
instances with 8 processors in the hidden layer achieved a result of  95.83% using the test set (10% of the original database), 
the confusion matrix is show in Table 4 (a). 

5.3 Classification results with Mel-frequency cepstral coefficients (MFCCs) 

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up an MFC. They are derived from a 
type of cepstral representation of the audio clip (a nonlinear "spectrum-of-a-spectrum"). Are common in speaker recognition, 
which is the task of recognizing people from their voices [2]. To compare the results obtained in the classification of voice 
pathologies with the parameters of the glottal signal, it gets the 12 MFC coefficients of each of the recordings from the 
database through the MFCC technique, best known for that sort of speaker [2]. 

The original database was divided into training, validation and test sets, where 70% of the database was used for training, 20% 
as the validation set, and 10% for testing. After lots of tests varying the number of the processors, the best result came up with 
6 processors in the hidden layer.  

The Neural Network has three outputs: speakers with nodule on the vocal cords, containing 93 voice records, speaker with 
vocal cords paralysis, containing 67 records, and speaker with normal voice, containing 89 records. Correctly classified 
instances with 6 processors in the hidden layer achieved a result of 75% using the test set (10% of the original database), the 
confusion matrix is show in Table 4 (b). 

The classification was successful with the parameters of the glottal signal, despite having fewer samples for voices with 
paralysis and factors such as gender and age difference between speakers, reaching the conclusion that the parameters of the 
glottal signal are good discriminators for classifying voice disorders. 
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Most studies of the classification of voice pathologies only use two classes, normal voices and voices patients [23], this study 
with three classes: two diseases and normal voices have superior results with the parameters of the glottal signal while the 
database is different. 

 
Table 4 – Confusion Matrix for both classifications 

Nodule Paralysis Normal   Nodule Paralysis Normal  

 8 0 0 
Nodule 

 6 2 0 
Nodule 

0 8 0 Paralysis 
 

1 5 0 Paralysis 

0 1 7 Normal 
 

1 1 7 Normal 

 
Table 5 – Measures statistics of the parameters for each class   

 

 

Table 5 shows that the statistical measurements of the parameters of each class to determine how each parameter behaves in 
each class. Ka and Ko their averages are nearly equal to the voices with nodule, and paralysis but its value is lower compared 

to normal voices, we can conclude that on average the patients voices glottal signal the opening and closing time is less than 
the shortening may denote vocal cords. For the group of parameters OQ1, OQ2, CIQ, AQ, NAQ, OQA, QoQ, which belong to 
the parameters in time domain and its standard deviation averages are higher than for normal voices to the voices with nodule, 
and paralysis. SQ1 and SQ2 to the values of standard deviation to the media and the voices are lower than for normal voices 
with nodule, and paralysis. In the parameters of the glottal signal in time domain the results of standard deviation and average 

for the voices with paralysis and nodule are very similar and follow the same trends.  
For the parameter values DH12 media and standard deviation for the voices with paralysis and nodule are higher than normal 
voices. For the parameters of the glottal signal frequency-domain Jitter Shimmer HRF standard deviation and the average are 
too high for voices with the voices palsy compared with nodule and nodule voices are higher than in normal voices. The 
parameters in the frequency domain are better distinguish the voices with paralysis the voices with nodule. 

6 Conclusions 

This paper presented the proposal of a new voice pathologies classification model that is able to distinguish between nodule 
and paralysis on the vocal cords. This paper uses parameters from the glottal signal and two voice pathologies, which is a 
novelty, to develop a model for the classification made in this work, we created a database of speakers with these two diseases, 
paralysis or nodule on the vocal cords and speakers with normal voices. The speakers have different ages and gender. The 
results obtained were satisfactory and better than those achieved in other works. However, it is important to note that it is not 
conclusive that separately the parameters will correctly identify the voice pathology, but it is conclusive that when they are 
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combined the performance is improved. The method of the parameters of the glottal signal is compared with the traditional 
MFCC method has better performance. 
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