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Abstract –This paper proposes a simple and innovative method to design rule bases for inference systems by joining well-
known theories to treat uncertainty, such as probability and fuzzy systems. The rule base design is based on some modifications
in the Wang-Mendel method in the sense that all the information obtained from the training set can be considered. The proposed
method provides fuzzy rules where each consequent is determined in a probabilistic way. The resulting fuzzy system is applied in
a classification problem and has its performance compared with a fuzzy classifier obtained by the original Wang-Mendel method.
The results show that the design method being proposed outperforms the traditional WM method, especially when data is noisy.
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1. Introduction

Since the emergence of fuzzy sets theory by [1], it was supposed to be joined with the Theory of Probability, to produce a
better treatment of uncertainty. There is an extensive discussion about the theme in the literature: some authors agree with such
combination [2, 3], while others limit themselves to just compare the two theories [4, 5].

Some approaches aim to develop hybrid systems for the treatment of uncertainty as in [2] and [3]. However, these are not the
first results joining both theories. Other authors have also previously succeeded in developing fuzzy techniques with probability
theory, such as fuzzy random variables [6, 7], which give rise to fuzzy probability distributions [8] and the central limit theorem
for these types of variables; as well as the probabilistic fuzzy set described in [9].

In the context of combination or cooperation, [2] formalized the Probabilistic Fuzzy Logic and Probabilistic Fuzzy Logic
Systems (PFS). In PFS both types of uncertainty are treated. The rule base is comprised of fuzzy rules whose consequents are
distributed in different fuzzy sets, each one associated with a given probability measure. What happens in the system proposed
by [2] is that some rules have several consequents with different probabilities of occurrence, which can be seen as a set of rules
with the same antecedents and different consequents.

The PFS proposal inspired the methodology presented in this paper since we can also associate probabilistic weights to each
possible consequent in the rule. Although our methodology considers that the weights associated with each possible consequent
are determined based on a probabilistic measure, we can use the system in a traditional way (i.e. deterministically), considering
only the consequent with the highest weight.

The structure of this paper is divided as follows: after this introduction, Section 2 presents a brief review of the classical Wang-
Mendel (WM) algorithm as well as an analysis of WM method in the context of fuzzy partition of input variables. Section 3
describes the main operation steps of the proposed method for generating fuzzy rules based on probabilistic weights, detailing
the inspiration in the Bayes Theorem for their calculation; besides it presents a simple example to illustrate the methodology.
Section 4 is dedicated to the presentation and analysis of the results. Finally, Section 5 concludes the paper and proposes some
future works.

2 WANG-MENDEL ALGORITHM

There are several approaches to automatic rule generation, which generally can be classified as evolutionary and non-
evolutionary ones. The first type will not be addressed in this paper, nevertheless, an interesting overview of it is given in [10].

One of the most popular non-evolutionary algorithm for rule bases generation is the Wang-Mendel algorithm [11]. Wang-
Mendel method is widely used for generating FIS rules with general scope (with applications ranging from control to classifica-
tion problems).

2.1 A Brief Review of WM Method

The WM approach can be briefly described in the following. Given a training base T , consisting of size(T ) pairs (x, y)
where x = (x1, ..., xn) is the input vector and y is the output; and considering a fuzzy partition for each fuzzy variable Xv,
v = 1, ..., n, where Lv is the total of linguistic terms in the fuzzy partition of variable Xv; a rule Rt is created for each
pair (x, y). The linguistic term lv chosen for each variable Xv in the rule Rt is lv = arg max (µlv (xv)), lv = 1, ..., Lv,
i.e., lv is associated with the membership function that has the highest membership degree at point xv. Then an initial rule
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base (RBcomplete = {R1, R2, ..., Rt, ...Rsize(T )} with every rule generated) is obtained. RBcomplete may contain conflict-
ing rules, i.e. there may exist several rules with the same antecedents and different consequents (i.e. the same premise
but different conclusions). So, a final reduced rule base RBreduc is created by reducing RBcomplete: at most one rule is
kept for each possible antecedent (premise), and its consequent (conclusion) is chosen based on the firing strength value
(FSt = µl1(x1) t µl2(x2) t ... t µln(xn)), where t is a t-norm and µlv (xv) is the compatibility degree associated with
the linguistic term lv chosen for Xv .

Although the WM method can be considered one of the simplest way to generate rules from data, it can be improved to not
discard some important information present in the training set. In the next section, we present an analysis of the WM method
based on a fuzzy partition of the input space to support this assumption.

2.2 Analysis of Wang-Mendel Method in a Classification Context

Before presenting the proposed method, it seems necessary a more detailed analysis of claims that the method of Wang
Mendel (WM) can disregard important information that may be present in the training dataset.

In WM method for classification problems for example, several points are associated with different classes, and the goal is
to build a rule base through these points, considering only the information of firing strength of each generated rule. Instead of
analyzing the WM method based only on the points associated with the rules and their firing strengths, here we will analyze WM
based on the universes partition.

First we set the number of linguistic terms {L1, L2, ..., Ln} for each variable Xv and perform a fuzzy partition of the input
space generating a total of Regions Of Interest (RoIr) equal to TotRoI =

∏n
v=1 Lv .

Then we can rewrite WM method in the following way:

1. For a region of interest RoIr, with r = 1, 2, ...,TotRoI , resulting from the partition of the input space, create a fuzzy rule
associated with every point in that region. In the rule’s premise, for each input variable, select the membership function
(MF) with the highest compatibility degree. So, the region of interest (RoIr), which the point belongs to, is based on the
support of the MF selected in the premise {Ar

1 ×Ar
2 × ...×Ar

n} of its associated rule. Moreover, it can be noticed that all
the rules (points) with the same premise are in the same region of interest (see Fig. 1 (a) for an example with n = 2);

2. Calculate the firing strength (FS) of each rule in the region of interest (RoIr), using an appropriate operator, e.g. t-norm
(see Fig. 1 (b)). Here we will consider that the Firing Strength (FS(x)) of each rule or point x can be viewed as the
membership degree (MD(x)) of that point to the region of interest (the higher is such degree, the more it belongs to the
region of interest).

3. Eliminate redundancies and inconsistencies in the region of interest: for each subset of rules with the same premise, only
the rule with the highest firing strength (FS) remains. Another way to describe this step is: for each region of interest,
choose only one point to represent it (the one with the highest membership degree (MD)).

Fig. 1 (a) and Fig. 1 (b) illustrate steps 1 and 2, respectively. In Fig. 1 (a), three points p, k and m in the region of interest
will generate three fuzzy rules. In Fig. 1 (b) we can see that the FS of each rule depends on the MF selected to be its premise.
Now imagine that the premises of the rules associated with p and k appear also in 10 other rules of that region. That is, 10 points
assigned to Class 1 and used for training, activate the same membership functions in the premise and therefore are in the same
region of interest. Now suppose that the premise of the rule associated with m appears only in one rule in this same region of
interest. That is, this point, is the unique one associated with class 2 in the same region, but it has a slightly higher membership
degree (MD), or in other words, the rule associated with m has a slightly higher FS. What will happen is that the rule associated
with m will remain in the base as the unique representant of that region of interest, but perhaps it does not correctly represent all
the information available.

Based on this new analysis we can see that a region will be represented only by one point (the one with the highest MD),
ignoring all the remaining information available in this region. Then, we can conclude that the WM method may ignore a lot of
information in its rule-base data driven process. So, in the next section we will propose an improvement in the classical WM
method to deal with such problems.

3 RB DESIGN AND PROBABILISTIC WEIGHTS

Aiming to overcome the problems discussed in the previous section, and to present a method for the automatic generation of
fuzzy rules based on probabilistic weights, this section presents an alternative to the WM method, summarized in the following
steps:

1. Set the number of linguistic terms and perform the fuzzy partition of the input space (based on the expert knowledge or
any automatic method as for example a clustering-based method). Let C be the total of classes (or the total of linguistic
terms in the consequent) for the considered application domain.

2. For every region of interest RoIr resulting from the input space partition, associate a fuzzy rule with each point in that
region as described in step 1 of Section 2.2.
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Rule p : If x1 is Ar
1 and x2 is Ar

2 then class is class1

Rule m : If x1 is Ar
1 and x2 is Ar

2 then class is class2

Rule k : If x1 is Ar
1 and x2 is Ar

2 then class is class1

(a)WM: Step 1. Resulting rules in the RoI Ar
1 ×Ar

2

FS of Rule p = µ(x1p) t µ(x2p)

(b)WM: Step 2. Firing Strength (FS) of Rule p

Figure 1: Classic WM Algorithm: Steps 1 and 2

3. Calculate the firing strength FSi(x) for each rule (or point x) associated with class Ki, as described in step 2 of Section
2.2. FSi(x) can be viewed as a measure of how much the point x of class Ki belongs to the region of interest RoIr:
FSi(x) = MDi(x), where MDi(x) is the membership degree of a point x with class Ki to the region RoIr and can be
calculated using an appropriate t-norm.

4. Calculate for every class or consequent Ki, i = 1, ..., C, Ni = total number of points of class Ki in RoIr. Ni can be
viewed as a measure of how many times the rule ”If x1 is Ar

1 and x2 is Ar
2 then y is Ki” appears.

5. Calculate N = total number of points in RoIr. N can be viewed as a measure of how many times the premise ”If x1 is Ar
1

and x2 is Ar
2” appears.

6. Calculate P (Ki) = Ni/N , the initial probability of occurrence of the consequent Ki in RoIr.

7. Define HBesti = max(MDi(x)), where Besti = {x | class of x is Ki and MDi(x) = HBesti}, i.e. Besti is the set of
points in RoIr with class Ki for which the membership degree is maximum or Besti is the set of best points of class Ki

in RoIr. Finally, define Best =
∪
Besti, i.e. Best is the set of best points in RoIr, independently of their class.

8. Inspired in the Bayes Theorem combine the frequency information P (Ki) with the quality information HBesti to obtain
the final probabilistic weight: wKi = P (Ki) ·HBesti/P (Best).
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As in the classical WM method, regions with no points (null RoIs) will not produce any rule. This is because we consider
wKi = 0, for all i, since P (Ki) = 0, for i = 1, ..., C. Another point is that more information is being considered since not only
the quality of the points but also their frequency is taken into account to calculate wKi , i.e., to define the rule’s consequent (the
one with the highest wKi).

The complete step-by-step description for the proposed algorithm will be detailed as an example in Section 3.2. The final
step (step 8), which used Bayes Theorem as an inspiration to define the weight associated with each consequent will be detailed
in the next section.

3.1 Probabilistic Weights and the Bayes Theorem

Step 8 of the proposed algorithm, instead of using only a frequency analysis (P (Ki)) based on the number of points of a class
in the region of interest, allows us to combine it with the information of the points’ quality, measured by the membership degrees
of the points to the region i.e. the membership of points to the fuzzy sets that define the region of interest. In this section, we
will detail the motivation for the use of the Bayes Theorem to combine frequency and quality information in the calculus of each
weight.

Generally speaking, when we have a fuzzy system’s rule base obtained by an automatic generation algorithm like the one
proposed in this paper, each region of interest RoIr, which will be further represented by a fuzzy rule with multiple classes
(consequents), could be understood as a sample space (Ω = RoIr), that can be partitioned in different classes (Ki). The aim here
is to obtain a reduced rule base with a weight (wKi) associated with each class Ki of the rule that will be chosen to represent the
region RoIr. Then, we can use the frequency information to calculate this weight. The more points are associated with a class
Ki, the higher is the weight wKi . Nevertheless, it is not interesting that we take into account only the frequency of occurrence
of consequent Ki since points whose membership degrees MDi((x)) are low, are not very representative of the region. So, they
should have lower importance while defining the weight associated with class Ki.

Since we assume that RoIr is the sample space, in the rest of this section, we will describe each idea behind step 8, omitting
the notation RoIr, remembering that for the computation of the final rule base, the whole process (steps 2 to 8) must be repeated
for each RoIr in the fuzzy partition considered (see Section 3.2 for more details).

The principal goal of step 8 is to calculate the probability of occurrence of consequent Ki, given that we got the best infor-
mation (Best) in the region considered. Thus it is possible to rewrite the Bayes’ theorem as:

P (Ki|Best) =
P (Ki

∩
Best)

P (Best)
, (1)

where:
P (Ki|Best): final probability of the consequent being Ki, given that we got the points with the highest membership degree.
P (Ki

∩
Best): probability of getting at the same time the points associated with the consequent Ki and the ones with the highest

membership degree.
P (Best): Probability of getting the best points.

By using Conditional Probability Theorem, the intersection in equation 1 can be rewritten as

P (Ki|Best) =
P (Ki) · P (Best|Ki)

P (Best)
, (2)

where:
P (Ki): initial probability of consequent Ki, calculated as described in algorithm’s step 6.
P (Best|Ki): probability of getting the best points given that we got points associated with the consequent Ki.

Assuming that Ω = RoIr = K1

∩
K2

∩
...

∩
KC , which is true since one point can be associated with only one class, we

calculate P (Best) based on the total probability as

P (Best) =
∑
i

P (Ki) · P (Best|Ki). (3)

In this paper we considered an heuristic assumption to associate P (Best|Ki) to HBesti . Since we can assume that, the higher
is the membership degree of a point, the higher is the probability of it being member of the set Best, we considered here that
P (Best|Ki) = HBesti = max(MDi(x)), where MDi(x) is the membership degree to RoIr of a point x with consequent Ki.

We obtain therefore a normalized probability:

P (Ki|Best) =
P (Ki) ·HBesti

P (Best)
, (4)

which combines both the membership degree that is used in the traditional method of Wang-Mendel (although there they are not
separated by class) with the initial probability (calculated by the number of points associated with each class). Moreover, we
conclude that in the proposed approach, the rule chosen to represent the region of interest considers information in a probabilistic
and ‘possibilistic’ (fuzzy) way.
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3.2 A Simple Example

Let Aq
1, q = 1, ..., L1, and Aq

2, q = 1, ..., L2 be the labels that define the fuzzy partition of the input space X1×X2. Consider
three regions of interest RoIr, r = 1, ..., 3, where RoI1 = support(A1

1) × support(A1
2), RoI2 = support(A2

1) × support(A2
2)

and RoI3 = support(A3
1) × support(A3

2). Let the set of rules and their respective firing strengths (or membership degrees MD)
obtained by the proposed algorithm (step 2 and step 3), as shown in Table 1.

Table 1: Complete Rule Base for the example
RoIr If x1 is and x2 is then Y is MDi(x)

1 A1
1 A1

2 1 0.8
1 A1

1 A1
2 1 0.9

1 A1
1 A1

2 2 0.7
2 A2

1 A2
2 2 0.9

2 A2
1 A2

2 2 0.6
2 A3

1 A3
2 1 0.3

3 A3
1 A3

2 3 0.5
3 A3

1 A3
2 3 0.4

Then we use steps 4, 5, and 6 to compute the initial probabilities (P (Ki)) for each class in each region of interest. Thereafter
we aggregate redundant rules representing them by only one rule with the maximum membership degree associated (HBesti),
according to step 7. Then, the rule base can be reduced to the form of Table 2.

Table 2: The reduced rule base for the example
RoIr If x1 is and x2 is then Y is P (Ki) HBesti

1 A1
1 A1

2 1 2/3 0.9
1 A1

1 A1
2 2 1/3 0.7

2 A2
1 A2

2 2 2/3 0.9
2 A2

1 A2
2 1 1/3 0.3

3 A3
1 A3

2 3 1 0.5

Now, we calculate the total probabilities P (Best) for each region RoIr, r = 1, ..., 3, according to equation 3.

RoI1 : P (Best) = 2/3 · 0.9 + 1/3 · 0.7 = 0.83;

RoI2 : P (Best) = 2/3 · 0.9 + 1/3 · 0.3 = 0.70;

RoI3 : P (Best) = 1 · 0.5 = 0.50.

Finally, in step 8, the probabilistic weights are calculated according to equation 4. The final reduced rule base with the
possible consequents is given in Table 3.

Table 3: The rule base (with all possible consequents) for the example
If x1 is and x2 is then Y is wKi

A1
1 A1

2 1 (2/3 · 0.9)/0.83
A1

1 A1
2 2 (1/3 · 0.7)/0.83

A2
1 A2

2 2 (2/3 · 0.9)/0.70
A2

1 A2
2 1 (1/3 · 0.3)/0.70

A3
1 A3

2 3 (1 · 0.5)/0.5

The most simple way to use the proposed approach is a deterministic way: a classical FIS where the consequent considered
in each rule is the one with the highest weight.

The main question that arises when we use the data driven rule design proposed could be: if we discard the probability
information (i.e. if we do not consider the conflicts in the training data) what is the contributions of the proposed approach? We
can emphasize that the weights computation alone represents a contribution, since unlike other approaches it considers both types
of information (quantitative and qualitative) and even if we do not use the system in a stochastic way, the contributions emerge
as we will show in the experiments described in the next Section.
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Table 4: The final rule base obtained
If x1 is and x2 is then Y is wKi

A1
1 A1

2 1 wK1 = 0.7189
A2

1 A2
2 2 wK2 = 0.8571

A3
1 A3

2 3 wK3 = 1

4 EXPERIMENTS AND RESULTS

The experiments conducted concern the application of the method to a classification problem considering different levels of
separability among classes. We intend to compare efficiencies of the WM algorithm, and the probabilistic method proposed.

In order to determine how different the methods behave when we decrease the “separability” in data, two instances of clas-
sification problems were produced with different means (µ) and variances (σ) in the Gaussian used to generate the training and
the testing points. Figures 2 and 3 illustrate the points generated for instances a and b with µ for classes (1,2,3) = (10,30,50) and
and µ for classes (1,2,3)= (10,20,30), both with σ=9.
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Figure 2: Points Distribution for the Instance a
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Figure 3: Points Distribution for the Instance b

Since the goal of this study does not include the automatic partition of the universe, the functions used to generate the points
were the same used in the partitions (for all the methods being compared).

We used a total 1000 points for each class, dividing them into five groups of 200 points each. Then, we proceeded with
cross-validation (more specifically 5-fold cross validation [12]). This way, the last four groups, totaling 800 points were used for
training the algorithms, while the initial 200 points group was used for testing. Then another group was used for testing and the
other for training and so on, until all groups have had the chance to participate in the testing phase. In the training phase, the
rule base was obtained by each specific method in each fold. Table 5 illustrates the rule base obtained by both methods (WM
and Probabilistic) for the instances a and b, fold 1. The results, in terms of performance, are presented in Table 6 considering
the means obtained from five folds of the cross-validation procedure. As a criterion for comparison we used the percentage of
correct outputs

PCO =
PC

PT
· 100, (5)

where PC = total number of test points correctly classified and PT = total test points.
After obtaining the fuzzy rules by each method, these rules were implemented as a classifier. In the case of the proposed

method, since we have a probabilistic weight associated with each possible label, the rule consequent was defined as the label (or
fuzzy set) associated with the highest probabilistic weight (the ones emphasized in Table 5). Then we use the conventional infer-
ence for fuzzy classifiers After each rule infers its class output associated with its activation degree, these labels are aggregated
by the maximum, ie, the class indicated on system output will be the one whose rule has the highest activation degree. Since
there is no defuzzification in fuzzy classifiers, the output classification is the label obtained by the suggested system. In the test
phase, the actual values were compared with those estimated by the systems being compared.

As already mentioned, the percentages of correct answers in each experiment are summarized in Table 6. We can use the
standard deviation indicated in Table 6 to construct the limits of the confidence interval (95%), so that in the first instance, we
have (80.4689%, 81.7311%) for the WM method, and (82.5269%, 84.2731%) for the proposed probabilistic method. So, we can
conclude that the proposed method outperformed WM (with 95% of confidence).

For the second instance, there is higher difference between results of the two methods. After the confidence intervals were
constructed, (56.5831%, 59.3503%) for WM and (65.7845%,68.2155%) for Probabilistic, it is also possible to affirm with 95%
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Table 5: Rule Base obtained by the WM and Probabilistic Methods: Instances a and b, Fold1
Probabilistic WM

If X1 is and X2 is then Class is wKi class
Instance a Instance b Instance a Instance b

1 1 1 0.9764 0.8462 1 1
1 1 2 0.0236 0.1458
1 1 3 0 0.0080
1 2 1 0.5364 0.5937 1 1
1 2 2 0.4636 0.3694
1 2 3 0 0.0368
1 3 1 0 0.1979
1 3 2 1.0 0.5631 2 2
1 3 3 0 0.2390
2 1 1 0.5411 0.6131 1
2 1 2 0.4589 0.3484 2
2 1 3 0 0.0385
2 2 1 0.0317 0.1924 1
2 2 2 0.9286 0.6626 2
2 2 3 0.0397 0.1450
2 3 1 0 0.0295
2 3 2 0.4643 0.3750 2
2 3 3 0.5357 0.5955 3
3 1 1 0 0.2090
3 1 2 1.0 0.5973 2 2
3 1 3 0 0.1937
3 2 1 0 0.0367
3 2 2 0.4710 0.3446 2
3 2 3 0.5290 0.6187 3
3 3 1 0 0.0019
3 3 2 0.0294 0.1791
3 3 3 0.9706 0.8190 3 3

Table 6: Correct Classification Percentage (PCO)
Instance Approach Fold1 Fold2 Fold3 Fold4 Fold5 Average Std. dev.

a Prob 83.5000% 84.1667% 82.3333% 83.8333% 83.1667% 83.40001% 0.7032%
a WM 81.3333% 80.8333% 80.5000% 81.8333% 81.0000% 81.1000% 0.5083%
b Prob 65.5000% 66.6667% 68.0000% 67.1667% 67.6667% 67.0000% 0.9789%
b WM 58.0000% 56.1667% 58.0000% 58.5000% 59.1667% 57.9667% 1.1143%

of confidence that, although all the results deteriorated when compared with the first experiment, the probabilistic method out-
performed the Wang-Mendel based approach. The reasons why the results deteriorated in the second instance can be explained
by the new input partition space since the antecedents have higher intersection levels giving rise to activation of more fuzzy rules
than in the first case.

Results show that the proposed method seems to contribute less when the classes are more separated (easy defined). However,
in the presence of noise, the use of probabilistic information in the proposed approach seems to turn it less influenced by the
noise, since the proposed method :

• achieved better results than the Wang-Mendel (with less deteriorated results) according to the results shown Table 6;

• provided the same rules in both instances, according to the results shown in Table 5.

5 CONCLUSIONS

The paper presented an analysis of Wang- Mendel method based in the input fuzzy partition. In order to overcome the
detected problem in WM of loosing information in the rule base design based on a training data set, we proposed a new approach
to generate fuzzy rules, by means of probabilistic weights. The proposed method was presented (including a simple example)
with a special attention to its relation with the Bayes Theorem.

The effectiveness of the new method was tested in a classification problem where the proposed algorithm was compared with
the classic WM. Apparently the new method, while presenting itself better, differed little from the WM algorithm, when the
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experiment considered that classes to be identified are reasonably distinct from each other. However, in situations where the
classes are less distinct, the probabilistic method has achieved a gain of almost 16% over the comparison algorithm.

In the future we intend to test the proposed approach in real problems to evaluate its effectiveness when compared with fuzzy
and non-fuzzy based approaches.
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