Evolution of digital circuits using CUDA to
determine the fitness function in genetic algorithm
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Abstract—This paper proposes the use of Evolutionary Com-
puting applied to the synthesis of digital circuits in the disjunctive
normal form. Due to the computational cost of the employed
technique, the platform of digital synthesis was implemented
using parallel processing in order to reduce processing time.
Performance comparisons were accomplished, proving that the
digital platform using CUDA had considerable overall gain
performance. A case study of digital synthesis was accomplished
with simple digital comparators circuits. The presented result in
this paper demonstrates the feasibility of the synthesis of com-
binational digital circuits by Evolutionary Computation, which
represents a new design methodology for electronic circuits.

I. INTRODUCTION

In recent years a new possibility has surged by the applica-
tion of biological concepts to technological development: the
conception of evolution capable devices, defined as Darwinian
machines, more commonly known as Evolutionary Hardware
(EHW) [1]. The implementation of such devices involves
concepts and techniques of Evolutionary Computing, Genetic
Algorithms and reconfigurable electronic circuits, leading to-
wards the construction of autonomous, self-adaptive and fault
tolerant systems [2] [3].

Genetic Algorithms (GAs) are applied to complex prob-
lems with high computational costs, such as the one of Evolu-
tionary Hardware. Due to this, the concept of parallel genetic
algorithms is widespread, that typically reduces the processing
time that yields to a satisfactory result in comparison to
an equivalent sequential process. These are accomplished by
multicore processing, computer clusters and more recently also
by general-purpose graphics cards also known as GPGPU
(General-Purpose Computing on Graphics Processing Units).

The main objective of this work is to investigate methods
for synthesizing digital electronic circuits using hardware
evolution techniques. This was implemented in the form of
a simulation on a parallel and distributed high performance
processing platform using multicore processing implemented
in a GPGPU. Throughout the use of a truth table as input, the
evolutionary algorithm must encounter a digital circuit that all
its entries match the input truth table and also has the smallest
possible size (least number of circuit elements).
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II. EVOLUTIONARY ELECTRONIC

In 1991 Louis [4] introduced the concept of evolutionary
algorithms as a tool for designing digital circuits, where the
concept was used to interconnect digital ports for solving a
specific problem, such as the parity function. DeGaris [1],
in 1993, introduced the concept of Evolutionary Hardware
(EHW). In 1996 Higuchi et al. [5], evolved digital circuits
for pattern recognition. In the same year, Thompson [6]
intrinsically evolved a circuit in an FPGA system. These are
some of the milestones of this new research area, which has
since then gained interest of various researchers.

Degaris [1] defined some classifying categories within this
research area regarding the following design properties: project
type, design and nature of evolutionary platform. Regarding the
nature of the project, the applications can either be classified
as analogue or digital; the evolutionary platform can be either
classified as extrinsic and intrinsic. Extrinsic applications are
those in which the circuits are evaluated throughout circuit
simulating environments such as SPICE [7], [8], on the other
hand, in intrinsic applications, the characteristics of a circuit
can be modified in real time in order to improve its perfor-
mance in some or several requirements [9]. This technique
is normally accomplished by by the use of programmable
integrated circuits [10]. Finally, project type categories are
divided into optimization and synthesis of circuits.

The design approach to EHW can be either classified as
direct or indirect according to the chromosome representation
level. The direct approach to EHW encodes bit circuit archi-
tecture as chromosomes, which specifies the connectivity and
circuit element functions (usually the port-level) circuits. In
contrast, the indirect approach does not directly involve bits
circuit architecture. It uses a high-level representation, such as
trees or grammar as chromosomes representatives. These trees
or grammars are then used to generate circuits [11].

A. Evolution of Digital Circuits

The first research using evolutionary algorithms for the
synthesis of digital circuits was proposed by Louis in 1991 [4].
There are some important reasons that demonstrate the feasi-
bility of such applications: digital circuits have a higher fidelity
simulations than those of analogue circuits and they are more
widely used in complex systems [12]. The evolution of digital
circuits as reconfigurable FPGAs allowed the first intrinsic



experiment in 1996 by Thompson [6], after that, several
researchers performed experiments of intrinsic syntheses as
Koza [13][14], Zebulum [12], Stoica , Higuchi [5], Yao [11],
Zhang et al. [10], among others. A survey on evolutionary
hardware design for electrical and mechanical systems can be
found on [15].

Digital systems can be classified into four levels of ab-
straction: 1 - level of circuit elements, such as transistors and
resistors; 2 - level of logic gates; 3 - Boolean equations using,
for example, conjunctive normal form or sum of products;
4 - architectural level using ALU’s, multiplexers, and other
memories.

Hardware representation by Boolean expressions is widely
used in this type of project since this brings a high level of
abstraction, which is of interest in the context of Evolutionary
Computation. Furthermore, this representation fits within the
context of combinational circuits, i.e. circuits that the output
depend only on binary input voltages.

The Figure 1 shows a hypothetical function translated into
a ternary vector, where each gene is represented by a mini-
term expression. It is necessary to know the number of literals
(inputs) of the circuit. In this representation 0 is a neglected
literal, 1 is a literal with logic level true value and 2 is an
absent literal.
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Level representation of Boolean functions (Adapted from [12])

Fig. 1.

Over the last few years many researchers have created
evolving digital circuits applications as Zebulum [12] brought
new methodologies for the design and optimization of layout
in VLSI chips; Nedja and Mourelle [16] synthesized a digital
circuit for a RSA-Based Cryptosystem; Higuchi [17] used
Evolutionary Electronics for an artificial hand to be attached
to a human arm.

IIT. PARALLEL PROGRAMMING PLATFORMS

The parallel and distributed computing seeks to achieve
high performance in time by optimizing the processing ca-
pacity of available machines, that is, exploiting in efficient
manner the parallelism in the developed algorithms. There are
different middleware that allow both parallel and distributed
programming applications. These techniques can be combined
to better exploit the levels of parallelism in an application
according to the available architecture. For the development
of parallel and distributed applications there are middlewares
that support sequential programming languages. Among them:
MPI [18], OpenMP [19], RMI [20] , CORBA [20] , CUDA
[21], and others. In this section we present some characteristics

of the MPI and CUDA platforms which were used to obtain
high performance in time through parallelism in this work.

A. Message Parsing interface (MPI)

MPI is a standard widely used by the scientific community
for data communication in parallel computing. It is popular
because it provides a platform for writing message passing
programs with a practical, portable and efficient methodology.
It is ideal for applications where it is necessary to obtain
high performance for both multicore processing and clusters of
processors. According to Pacheco [18] and Quinn [19], MPI is
widely used to accomplish the exchange of messages among
threads of a parallel applications developed for a distributed
environment. This standard has been implemented for C, C++,
Fortran and Java (underdeveloped version). With the use of
MPI is possible to make a natural and elegant disjunction of
a problem, with its main characteristics being portability and
efficiency. By its features, the MPI standard has also a wide
acceptance in the industry [22].

B. Compute Unified Device Architecture (CUDA)

CUDA is a parallel computing architecture of NVIDIA
Corporation using programming languages such as CUDA C,
OpenCL, DirectCompute and CUDA Fortran aiming to exploit
parallel processing of NVIDIA GPU’s. Its main advantage is
that is a multithreaded general purpose architecture that has
gained interest of the scientific community [23]. For users
familiar with the C programming language, the CUDA parallel
programming framework was developed in order to offer fast
learning for new users [24].

The framework’s three main abstractions are: group hier-
archy threads, shared memory and synchronization. Based on
these abstractions, the programmer decomposes the problem
into independent processing blocks that are either divided into
processing segments or threads. Furthermore, this problem’s
data must be stored in a hierarchically organized memory.

CUDA’s memory hierarchy is divided into three different
levels as described below:

e global memory: manipulated by all instantiated
blocks and threads. It has the largest amount of
memory available among all levels and its access is
very slow compared to the shared memory.

e local memory: manipulated only by a given thread,
with serious size restrictions. The term “local” does
not indicate that it has a fast access, due to the fact
that both the local and the global memory are located
beyond the processing core.

e shared memory: it is shared and manipulated by all
threads instantiated by in a given block. It is the fastest
manipulation level after the registers, because it is
located within the processing chip.

All levels of memory have their disadvantages. It is neces-
sary to emphasize that both the global and the local memory
can be allocated at runtime by the CPU and they are slower in
access time. Shared memory can not be allocated at runtime,
as it is defined with a static size. It has superior access
performance compared to the to global and local memories.



In most cases the performance is increased when data is
transferred from the global or local memory to the shared
memory [25].

The CUDA programming framework suppresses the com-
plexity of NVIDIA GPU’s. As programmers do not write code
directly to the hardware, they use the predefined functions in
the CUDA API. Another advantage of this is that even if the
NVIDIA makes changes to the hardware architecture, older
codes will continue to function, as they were written using the
APL

// Kernell definition xxxx

__global__ void VecAdd(floatx A, floatx B, floatx C)
{

int 1 = threadIdx.x;

C[i] = A[i] +BI[1i];
}

int main ()

{
// Kernel invocation with N threads
VecAdd <<< 1, N >>> (A, B, C);

Within the CUDA programming framework is interesting
to highlight a set of function markers that defines which codes
run at the CPU or at the GPU:

e _ global__: Defines the function as a kernel, i.e., it
will be invoked by the CPU and will be physically
executed by the GPU. In the code highlighted above,
the CPU code makes a call to a kernel with one block
and N threads.

e _ device__: This marker defines that the function will
be compiled for the GPU and will be invoked by the
GPU.

e _ host__: This marker defines that the function will

be compiled for the CPU and will be invoked by the
CPU. According to GPU developer NVIDIA [24] this
marker can be used with the __device__ and indicates
that the same code can be executed by both the GPU
and CPU.

The CUDA programming framework assumes that both
the GPU and the CPU have separate memories [24]. In this
context, the GPU is referred as “device” and the CPU is
referred to as "host”. Basically every program involving GPU
processing has the following steps:

1)  The host allocates memory in the device;

2)  The host transfers data to the device into allocated
memory;

3)  The host invokes the execution of kernels by passing
pointers as parameter to the memory’s device;

4)  Results are transferred from the device back to the
host;

5)  The memory is deallocated in the device.

In this processing methodology, the occupation of process-
ing cores is surpassed. Processing blocks are handled by the
CUDA scheduler, which handles load distribution among cores
in order to get the best possible performance (Figure 2).
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Fig. 2.

With the increased acquisition of this technology by re-
searchers, the number of applications is ever increasing, with
the following examples: videos [26] and images processing
[27] [28], computational biology and chemistry, fluid dynamics
simulation, image reconstruction in computed tomography,
seismic analysis, ray tracing, and others [24].

IV. GENETIC ALGORITHMS IN PARALLEL PROGRAMMING

The Genetic Algorithm (GA) parallelism is presented in
the literature considering both single and multiple populations.
The main implementations of parallel genetic algorithms that
are presented by Cantupaz [29] are:

e  global single-population master-slave GAs;
e fine-grained single population GAs [30];
e  multi-population coarse-grained GA,;

e  hybrid GAs.

The combination of different models of parallel genetic
algorithms, associated with the presented computational ar-
chitecture has the potential to produce good quality solution
results and with high computational performance.

In the GAs literature there are studies that explore different
techniques for parallel and distributed programming in order to
achieve good overall performance. Zhang et al. [31] proposed
a parallel genetic algorithm implementation coded in C and a
MPI master-slave model for the optimization of parameters in
a flexible multi-body model.

Berger and Barkaoui [32] also proposed a parallel imple-
mentation for a hybrid genetic algorithm applied to the vehicle
routing problem with time windows, where two populations
evolve by competing where each uses different strategies.

A review of the literature involving parallel computa-
tion and evolutionary algorithms is presented by Alba and
Tomassini [33].



V. SYNTHESIS OF DIGITAL CIRCUITS

In this section, the evolutionary synthesis methodologies
employed to the synthesis of digital circuits at a functional
level are explained in detail. Furthermore, CUDA parallel
processing techniques are also approached in order to reduce
time in the synthesis process.

A. Methodology Representation in Digital Electronics

One of the factors that most influences the performance
of an evolutionary algorithm is the adopted representation
for both genes and individuals due to the fact that these
structures encode probable solutions. This work investigates
the application of such methodologies in logic level functions
at the disjunctive normal form, also known as sum of products.

1) Level Representation of Functions: Among the logical
representations, the Boolean function corresponds to the high-
est level of abstraction among chromosome and the circuit
itself, since the circuit can be represented by an algebraic
Boolean expression where the output can be either 1 or 0.
In the case of a combinational function of N inputs, each gene
must have N internal variables (or literals) and each of these
variables can assume three possible values:

e 0 - indicates that the entry in this variable must be
denied;

e | - indicates that the entry in this variable should not
be denied;

e 2 - indicates that the entry in this variable is absent,
therefore disregarded from the expression.

In the disjunctive normal form presented in this work, dis-
junctions from conjunctions of literals occur. The disjunction
is equivalent to an OR gate and the conjunction is equivalent to
an AND Gate. An example of a Boolean function in disjunctive
normal form with its corresponding equivalent digital circuit
is presented in Figure 3.

output = (B AND C) OR (A AND B) OR (A AND C) OR ( A AND B AND C)

inputs

output

Fig. 3. Boolean expression and corresponding digital circuit

2) Genes: The data structure representation of digital cir-
cuits should facilitate genotype-phenotype mapping. Through-
out the use of the ternary representation previously described
and modelled in the disjunctive normal form, each gene must

map a literal conjunction, i.e. each literal represented in a gene
receives an input value (e.g. a truth table). Depending on its
state (0, 1 or 2), its value will be altered and an additional
AND operation will occur with the other literals of this gene
(Figure 1).

The above described gene mapping structure is known in
the literature as minterm and has this designation only in the
sum of products representation.

3) Individuals: An individual in the functional representa-
tion must be capable of decoding its chromosome to a complete
Boolean expression that can be a possible solution of the
input truth table. This chromosome, or genes vector, does the
mapping of disjunctions among minterms, result of which is
a binary number that may be equal to truth table’s output.
The quality of an individual in this problem depends directly
to the quantity of hits that it presents for a determined input
truth table. This quality is also dependent to the number of
minterms on its chromosome. In this work, when a solution’s
fitness is the closets to zero, it is considered the best solution
within a population, i.e. the evolution occurs only when there
is a minimization of an individual’s fitness.

The fitness function proposed in this paper is represented
by Equation 1 for integer values.

Fitness=s+ (p-e) (1)

where, e is the error for an individual, s is the chromosome
size and p is the penalties applied to errors of individuals.

In order to make the fitness calculation easier, the size of a
chromosome always has weight 1. Penalties are also applied to
errors that individuals present in the rows of truth table. It can
be noticed that in the minimization process of a Boolean circuit
given a determined truth table, errors can not be tolerated in
the evolutionary process.

4) Hierarchically Structured Population : The hierarchi-
cally structured population of this work utilized a tree array
data structure, where each node is an individual. The root
node, also known as a leader node, of a sub-tree is always
a better solution than those of the branched nodes. Individuals
in the branches are known as followers. Figure 4 represents a
population in a ternary tree data structure.

Leader

Best individual

> Clusters

Followers

Fig. 4. Population in ternary tree (adapted from Toledo [34]).

B. Evolutionary Methodologies in Digital Electronic

This subsection presents the multi-population genetic algo-
rithm with the populations structured in hierarchical trees, as
proposed by Toledo et al. [35]. The crossover and mutation
processes for this type of application are also described.



1) Multi-populational Genetic Algorithm: The operation of
the multi-population genetic algorithm used in this study is
described by the following pseudo-code by Toledo et al. [35].

Method MultiPopulationGeneticAlg
begin
repeat
for i = 1 to numberOfPopulatoins do
initializePopulation (pop(i));
evaluatePopulationFitness (pop(i));
structurePopulation (pop (1)) ;
repeat
for 7 = 1 to numberOfCrossover do
selectcParents (indivualA, individualB);
newInd = mutation (newInd);
if (executeMutation newInd)
then
newInd = mutation (newInd);
evaluateFitnessIndividual (newInd) ;
insertPopulation (newInd, pop(i));
end
structurePopulation (pop(i));
until (populationCovergence pop(i));
end
for i =1 to numberOfPopulations do
executeMigration pop(i);
end
until (stop criterion)
end

The first loop described in the pseudo-code is re-
sponsible for initializing the population. The function
initializePopulation () generates populations with random
individuals acquired from external data. This external data’s objective
is to establish constrains within the search domain, and is configured
by two files:

e truth table of the circuit to be synthesized;

e  configuration file that contains data for: population’s struc-
tures, types of crossover and mutation, runtime platform,

etc.
The function evaluatePopulation() is responsible
for evaluating the individuals of each generation. Function

structurePopulation () organizes individuals in a hierarchical
tree, as explained in subsection V-A4.

Function selectParents (indA, INDB), which is the
next step of the algorithm, tends to choose the fittest individuals
in order to get the best combinations among them, but it is not
guaranteed that the crossing of the best individuals generate good
descendants. It is also worth noting that nothing prevents good
descendants to be generated by the crossing of individuals with low
fitness. The first step is to drawn a cluster or sub-tree within the
population tree, afterwards, the root node and one of its followers
that is randomly chosen form the crossing pair.

With the recombination performed by function
crossover (Inda, INDB), the new generated individual
may go through the process of mutation in function

mutation (newInd), according with a criterion explained
below. Finally the new individual’s fitness is evaluated by
evaluateFitnessIndividual (newInd) and it is inserted
in the population by function insertPopulation (newInd,
pop (1)). If its fitness is better than one of its parents, it will
replace the parent with the worst fitness that participated in the
crossing process.

The operations of selection, recombination and mutation de-
scribed above are repeatedly performed in a loop defined by a

parameter n. coded as numberOfCrossover, which is calculated
by Equation 2.
Ne = Ps * Cr (2)

where n. is the number of crossovers, indicating the number of
generated individuals, p, is the size of the population concerned and
¢, 1s the crossover rate, which is a recombination rate calculated for
this population.

In this work, each population is structured in a ternary tree with
13 individuals. The adopted recombination rate value was 10, conse-
quently 130 individuals are generated. After this step, the population
is internally ordered by function structurePopulation() so
that population’s structure obeys the hierarchy within the tree.

The processes described above repeats until a specified population
has converged. This occurs when no new individuals are inserted
in the population, as a consequence the next population will be
processed.

The last phase of the algorithm consists of a migration procedure.
In this process the best individuals are migrated to ring-shaped
adjacent populations, as exemplified by the arrows of Fig. 5, where
the migration among populations organized in three ternary trees can
be observed.

s haa bk

Fig. 5.

Example of migration among three populations (adapted from [34]).

The stopping criterion for the the multi-population genetic algo-
rithm is defined by a time execution limit.

2) Crossover and Mutation: The problem concerning
crossover of chromosomes with different sizes is to establish a criteria
in relation to a new individual’s chromosome size. This work, adopted
a procedure known as uniform crossover, its criterion for the child’s
chromosome size is a random number between the smaller and the
larger size for both parent’s chromosome size. This procedure is
described by the following pseudo-code for the Uniform Crossover
Algorithm.

Method uniformCrossover (pl, p2, child)

begin
major = max(pl.size, p2.size);
j=0;
while(j < major) begin
if ((rand()%2 == 0) and (pl.size > 1)
then

child.chromo.push_back (pl.chromo[]j]);
else if (p2.size > 7J);
then
child.chromo.push_back (p2.chromo[]j]);
J++i
end
end

In this code, the variable major stores largest parent chro-
mosome size involved in the crossing. After this, the process of
copying genes from parents to descendant begins, where a draw
occurs (rand () $2) with equal probability among parents. This will
indicate which parent will contribute with its gene. The parent can
only pass a gene to its descendant if it is drawn and if the gene is at
position J.

In this algorithm neither the crossover generated individuals
rate or mutation generated individuals rate were used. Thus, every
individual is generated by crossover and it may pass throughout



the mutation operator. What defines this is is a parameter called
probability of mutation.

If the individual is selected for mutation, a routine initiates for
each one of the individual’s gene. Each gene will have a probability
equal to 50% of passing throughout only one of the three types of
mutation:

e  Removes the current gene;
° Adds a random gene to a chromosome end;

e  Alters the value of only one literal chosen randomly within
the minterm (gene), the current value of this literal will be
replaced by a random value.

C. Implementation Using CUDA

The highest computational cost task involved in the evolution of
the digital circuits is the task of calculating fitness. In this step it
is necessary to check all outputs of the truth table for a particular
individual, where the number lines with errors for and individual (e)
is encountered and applied to Equation 1.

To reduce communication overhead of host and device, all indi-
viduals generated by crossover and mutation are inserted in a vector
described by Equation 2. This vector is passed to the method of
evaluation of individuals in the GPU by the Pseudo-code evaluation
of individuals presented bellow.

Method evaluateFitness (individuals)

begin
allocateMemoryGpu (chromos, individuals.bytes);
allocateMemoryGpu (errors, individuals.size);
transferMemory (chromos, individuals.chromos) ;

for i = 0 to individuals.size do
KernelErrors <<< linesOfTable, entriesTable
>>>(chromos[i], individuals[i].tam_chromo,

errors[i],table, outputs);

transferMemory (individuals.errors, errors);

deallocateMemoryGpu (chromos) ;

deallocateMemoryGpu (errors);

penaltiesApply (individuals, individuals.errors);
end

At first, this method allocates memory for chromosomes and the
error vector in the GPU. After this, it transfers the chromosomes
to the device and makes reference to kernel. The next step is to
transfer the error vector for the host and finally the method deallocates
the memory used in the device and calculates the individual’s fitness
using Equation 1.

To implement the error calculation in GPU code, it was necessary
to diagnose the highest possible level of parallelism that could be
applied for this problem. The encountered solution was to calculate
the error of one row, as this calculus is independent among rows
of the truth table. By the adoption of such solution each processing
core may be responsible for evaluating one truth table row of
every individual. Throughout the acknowledgement the CUDA
programming paradigm that the blocks are scaled to be processed
in the cores, illustrated by Fig. 2, each block will be responsible
for the evaluation of only one row exclusively; i.e. the quantity of
blocks that perform the kernel is always the number of rows of
the truth table.

1) Parallel Fitness Calculation Algorithm: The error calcu-
lation method was implemented to be performed in the GPU and its
pseudo-code is presented bellow.

Method operation(a,b)

begin
return ("a and b) or (a and "b);
end

Method kernelErrors (chromo, tam_chromo,
errors, table, outputs)
begin
_shared_aND;
_shared_oR;
_local_bid = blockIdx.x;
_local_tid = threadIdx.x;
_local_var_thread = table[bid] [tid];

if (bid==0) and (tid == 0) then
errors = 0;

for 1 = 0 to tam_chromo do
aND = 1;
synchronizeThreads () ;
if (operation(var_thread, chromo[i] [tid])== 1)
then
aND = 0;
synchronizeThreads () ;
if (aND == 1)
then
oR = 1;
break;
end
end

if (tid == 0)
then
if (oR <> outputs([bid])
then
atomicAdd (errors, 1);
end

To understand the working principle of this algorithm is necessary
to acknowledge that:

e  The number of blocks used is always the number of rows
in the table and these are actually instantiated in one
dimension,;

e  The amount of threads involved in the calculation of errors
for each block is always equal to the number of entries in
truth table. These are also instantiated in one dimension;

° Variables identified as _shared_ are shared among all
threads of a block, as all blocks have access to this variable;

e  Variables identified as _local_ are manipulated only by a
single thread, as all threads in all blocks have this variable;

e  Parameter inserted variables are GPU global memory blocks,
where all threads of all blocks have access;

. The sysncronizeThreads () function synchronizes all
threads of a block. It is not possible to synchronize threads
from different blocks using this function;

e  The function atomicAdd () is a CUDA library function
that allows that only one thread can handle one variable at
a time, excluding the possibility that several threads have
access to the same critical region at the same time.

In the Parallel Fitness Calculation Algorithm, at first, each thread
identifies which block it acts through the call of blockIdx.x and
each thread identifies its position within the block by the calling
of threadIdx.x. With every thread identified, only the one that
contains identifiers (0.0) initializes the global variable errors
with 0 value.



The variable aND stores an individual’s minterm result in the truth
table’s row where the block is processing on, where the default output
value for a minterm is 1. The variable oR stores an individual’s final
result in the same row, where an individual’s default output value for
a particular truth table row is 0.

After initialization of variables, the threads run the
function operation (var_thread, chrome [i][tid])
synchronized and in parallel, where the objective of this function
is to detect if the minterm’s output is 0. This function only returns
value 1 if:

e  The truth table’s input is O and the minterm’s variable has
value 1;

e  The truth table’s input is 1 and the minterm’s variable has
value 0.

After the thread’s synchronization, each thread evaluates if the
minterm’s output is 1 (1f (aND == 1)) and they assign 1 to
the individual’s output (oR=1; ). The individual’s evaluation within
a block is terminated by the break command. In the case of a
minterm’s output does not result in 1, the evaluation of next minterm
in the loop begins.

When the evaluations in a block are finished, only thread 0
of each block can verify if an individual committed an error for a
row of the truth table, if so, it is accounted by the calling of function
atomicAdd (errors, 1).

VI. RESULTS AND DISCUSSION

This section presents the performance results of sequential, multi-
threading, and sequential with GPU implementations of digital circuit
synthesis.

For the tests a computer with the following characteristics was
used:

e Intel Core™ 2 Duo E8400 @ 3GHz, with 4GB of RAM;
° NVIDIA GeForce GTX 285 with 240 cores of 1.47GHz.

Three algorithm versions were implemented, described in section
V-B1 called Seq_CPU, Mult_CPU and Seq_c_GPU, where:

e Seq_CPU is a sequential implementation of the algorithm
running by the CPU only.

° Mult_CPU is a parallelized implementation with multi-
threading, where the evolution of each population is per-
formed on a different thread, and only the migration step
described in Figure 5 is accomplished in a sequential man-
ner. This implementation is entirely executed by the CPU.

e  Seq_c_GPU is a sequential implementation of the algorithm
for CPU, where the error calculation is accomplished by
parallel computing by the GPU, as described in Section V-C.

For the tests five truth table instances were used from comparators
in digital form A > B, where A is represented in the first half of
the inputs and B in the second half. When A is greater than B the
logic output should be 1. These instances have 4, 6, 8, 10 and 12
entries respectively being called by the names of Comp_4, Comp_6,
Comp_8, Comp_10 and Comp_12.

The performance results are described in the Mean column of
Table I, and it indicates the number of individuals that were generated
and evaluated during the execution period described by the Time
column. Ten executions were accomplished for each instance in every

! Average individuals who passed through the implementation of the evolu-
tionary process.

TABLE 1. PERFORMANCE OF THE IMPLEMENTATIONS SEQ_CPU,
MuLT_CPU AND SEQ_C_GPU.
Config. Instance | Table rows | Time (s) | Mean'
Seq_CPU Comp_4 16 4 1.53E+06
Mult_CPU Comp_4 16 4 2.16E+06
Seq_c_GPU Comp_4 16 4 3.71E+05
Seq_CPU Comp_6 64 16 T.09E+06
Mult_CPU Comp_6 64 16 2.04E+06
Seq_c_GPU Comp_6 64 16 9.08E+05
Seq_CPU Comp_8 256 64 1.18E+05
Mult_CPU Comp_8 256 64 2.19E+05
Seq_c_GPU Comp_8 256 64 2.29E+05
Seq_CPU Comp_10 1024 256 2.98E+04
Mult_CPU Comp_10 1024 256 5.81E+04
Seq_c_GPU Comp_10 1024 256 8.55E+04
Seq_CPU Comp_12 4096 1024 7.83E+03
Mult_CPU Comp_12 4096 1024 1.43E+04
Seq_c_GPU Comp_12 4096 1024 2.32E+04

implementation. From these ten runs the mean value was extracted.
The execution time is extented from one instance to another according
to the complexity of each instance; e. g., from one instance to another
the execution time is multiplied by four.

The results in Table I indicate that the Mult_CPU implementation
has performance gain that reaches 95% higher than of Seq_CPU in
the Comp_10 instance, since the utilized processor has only two cores
and this instance is the one that most benefits from parallelism.

Mult_CPU implementation had a 5.8 times better performance
than the Seq_c_GPU implementation and Seq_CPU implementation
’s performance was 4.1 times better than Seq_c_GPU implementa-
tion, both running the same instance Comp_4. This lower Mult_CPU
result was caused by communication overhead, which in this case is
large compared to the GPU processing time. Another important factor
is that using a table with only 16 rows, the maximum number of
processing cores used by the GPU is 16, as explained in subsection
V-Cl1.

From the instance Comp_8 with 256 rows, using GPU became
feasible as all the cores could be used in parallel, as the implemen-
tation Seq_c_GPU had a 5%, 47% e 62% superior performance than
the Mult_CPU implementation in the Comp_8, Comp_10 e Comp_12
instances respectively. Beyond that, the Seq_c_GPU implementation
had a superior performance over the Seq_CPU implementation of
94% , 187% and 197% in same respective instances.

These benchmark results highlight that the use of GPU is feasible
when its possible to use all its processing cores and also when the
ratio of communication overhead over processing on GPU is very
low.

VII. CONCLUSION

This work presented a methodology for the synthesis of digital
electronic circuits in disjunctive normal form. It was automated using
a multi-population genetic algorithm. For this type of application, a
truth table must be used as input as well as a set of parameters for
the evolutive platform.

Increasing the number of entries in the truth table causes an
exponential increase of computational cost for synthesis. To minimize
the runtime platform this work investigated the use of parallel
programming on a GPU with CUDA technology, where it was
possible to increase performance by up to 197% compared to the
sequential processing. However the use of GPU is feasible only when
you can use all your processing power and also when the ratio of
communication overhead over processing on GPU is very low.

The results presented in this paper demonstrate the feasibility
of the synthesis of combinational digital circuits by Evolutionary



Computation, but with the exponential growth of the problem it may
required other techniques to be aggregated to the methodology.
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