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Abstract—Multi-label learning first arose in the context of
text categorization, where each document may belong to several
classes simultaneously. In this paper, we propose a hybrid ap-
proach, called Multi Label K-Nearest Michigan Particle Swarm
Optimization (ML-KMPSO). It is based on two strategies. The
first strategy is the Michigan Particle Swarm Optimization
(MPSO), which breaks the multi-label classification task into
several binary classification problems. The second strategy is
ML-KNN, which is complementary and takes into account the
correlations among classes. We evaluated the performance of
ML-KMPSO using two real-world benchmark datasets: Yeast
gene functional analysis and natural scene classification. The
experimental results show that ML-KMPSO produced results
that match or outperform well-established multi-label learning
algorithms.

Index Terms—Multi-label classification, Particle swarm opti-
mization, Data mining

I. INTRODUCTION

Real applications such as semantic scene classification, pro-
tein function classification, text categorization, and music cat-
egorization, among others, are increasingly require multi-label
classification methods. Problems with two or more classes are
considered special cases of multi-label classification, where
each instance has only a single label.

In a classification problem, the examples are associated with
a single label Y of a label set Y and |Y| > 1. When |Y| = 2,
the problem is called a binary classification problem, and when
|Y| > 2, it is called a multi-class classification problem.
However, there are several real problems where data may
belong to more than one class simultaneously ( |Y | ≥ 2) and
the classes are not disjoint, in this case, the problem is called
a multi-label classification (MLC) problem. This generality of
multi-label problems makes it more difficult to solve.

An intuitive method to solve this problem is to decompose
it into multiple independent binary classification problems, but
such method does not consider the correlations between the
different labels of each instance and the expressive power
of such a system may be weak. Another method to solve
this problem is to adapt single label classification algorithms
for multi-label classification problems, such as multi-label
decision trees [2], multi-label kernel methods [3], multi-label
neural networks [4] and Multi-Label k-Nearest Neighbor (ML-
KNN) [5]. In this case, the results are still not good enough
and this issue remains open and is attracted much attention

from researchers.
In this paper, we propose a hybrid approach, ML-KMPSO.

It is based on two strategies. The first strategy is the Michi-
gan Particle Swarm Optimization (MPSO), which breaks the
multi-label classification task into several binary classification
problems, but it does not take into account the correlations
among the various classes [6], [7]. The second strategy is ML-
KNN [5], which is complementary and takes into account the
correlations among classes.

In practice ML-KMPSO works as follows. First, for each
test instance, it identifies its KNNs in the training set and
calculates their prior probabilities. Then, the classification
model is generated by MPSO and a set of expert classification
particles are identified. Based on statistical information gained
from the labeled sets of these neighbor instances, i.e., the
number of neighbor instances including the MPSO classifi-
cation particles belonging to each possible class, maximum
a posteriori (MAP) [8] principle is utilized to determine the
label set for that test instance (the classification result).

The performance of the ML-KMPSO is tested through
two different multi-label learning problems, more specifically
Yeast gene functional analysis and natural scene classification.
The experimental results show that ML-KMPSO produced
results that match or outperform well-established multi-label
learning algorithms.

The rest of the paper is organized as follows: Section
2 discusses the multi-label classification problem, Section 3
provides an overview of PSO, Section 4 presents the PSO
and MPSO classification algorithms, Section 5 describes the
proposed approach, Section 6 the experiments are presented
and discussed, and Finally, the conclusions and future works
are given in Section 7.

II. MULTI-LABEL CLASSIFICATION (MLC)

Research on multi-label classification was initially moti-
vated by the challenge present in text categorization, as many
labels may be associated with the same document [8].

In a multi-label problem, each instance is associated with a
set of labels Y, where Y ⊆ Y , being Y a set of labels.

In [9], the classification problem is defined as follows: Since
X a training set, Y = {1, 2, ..., k} a label set. Given a training
set of the form 〈xi, Yi〉, xi ∈ X , Yi ∈ 2|Y|, where 2|Y| are all
possible combinations of Y . The goal of the learning system is



to output a multi-label classifier h : X → 2|Y| that maximizes
a function f(x), such that f(x) return values of 2|Y| with the
smallest error. The difficulty of defining the error in multi-label
is that various combinations of labels are possible.

In most cases, the multi-label approach induces an order-
ing of the possible labels of a given instance according to
f(x, ln). thus, we can formally define rankf (x, l) as rankf
of label l for instance x, such that if f(x, l1) ≤ f(x, l2) then
rankf (x, l1) ≤ rankf (x, l2).

Both [10] and [8] grouped the methods to solve the multi-
label problem into two groups:
• The first category is more intuitive, is decomposition of

the problem into multiple independent binary classifica-
tion problems;

• The second category is algorithm adaptation for multi-
label classification problems.

Figure 1 shows the methods that are found in the literature
for the multi-label problem as organized hierarchically by
Carvalho et.al [11]. Next we discuss some of these methods.
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Fig. 1. Methods used in Multi-Label Classification Problems [11]

One well-known approach for multi-label learner is Boos-
Texter. It was proposed by Schapire and Singer [1] and
maintains a set of weights on every instance-label pairs of
the training set and those pairs that are hard/easy to predict
correctly will get incrementally higher/lower weights.

The multi-label kernel method RANK-SVM proposed by
Elisseeff and Weston [3], maximizes the sum of the margins
for all categories simultaneously, ranking the relevant cate-
gories of each instance in the training set higher than the
irrelevant categories.

Zhang and Zhou [5] proposed an instance-based multi-label
lazy learning approach named ML-KNN, derived from the
traditional KNN algorithm. In detail, first it identifies, for each
unseen instance, the K nearest neighbors in the training set.
Then, based on statistical information gained from the labeled
sets of these neighbor instances, it employs the maximum a
posteriori (MAP) principle to determine the label set for the
test instance.

We propose a hybrid approach to solve the MLC problems,

which puts together the algorithm adaptation and the algorithm
independent class as seen in Figure 2.
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Fig. 2. New Configuration of Methods used in Multi-Label Classification
Problems

III. PARTICLE SWARM OPTIMIZATION ALGORITHM

The Particle Swarm Optimization algorithm (PSO) is
a population-based optimization method first proposed by
Kennedy and Eberhart [12]. The PSO technique finds the
optimal solution using a population of particles. Each particle
represents a candidate solution to the problem. PSO basically
simulates bird flocking in a two-dimension space, where each
particle represents a candidate solution to the problem [12],
[13]. We may define the PSO as follows:

• Each individual particle i has the following properties: A
current position in search space, xi, a current velocity,
vi, and a personal best position in search space, yi.

• The personal best position, yi, corresponds to the position
in search space where particle i presented the smallest
error as determined by the objective function f , assuming
a minimization task.

• The global best position denoted by y̆ represents the
position yielding the lowest error amongst all the yi.

During each iteration of the algorithm, every particle in the
swarm is updated using equations 1 and 2. The velocity update
step is:

vi,j(t + 1) = wvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] + (1)
c2r2,j(t)[y̆j(t)− xi,j(t)]

where c1 and c2 are two positive constants, r1 and r2 are
two random numbers within the range [0,l], and w is the inertia
weight.

The current position of the particle is updated to obtain its
next position:

xi(t + 1) = xi(t) + vi(t + 1) (2)

Equation 1 consists of three parts. The first part is the
current speed of the particle, which shows its current state;
the second part is the cognition term, which expresses the
”best experience” of the particle itself; the third part is called
social term, and reflects the information sharing among the
swarm. These three parts together determine the particle’s
space searching ability. The first part has the ability to balance
the whole and search a local part. The second part causes the



swarm to have a strong ability to search the whole and avoid
local minimum. The third part reflects the information sharing
among the particles, leading the particles towards known good
solutions. Under the influence of these three parts, the particles
may reach an effective and best position.

Equations 3 and 4 define how the personal and global best
values are updated at time t, respectively. It is assumed that
the swarm consists of s particles ( thus i ∈ 1..s).

yi(t + 1) =

{
yi(t) f(yi(t) ≤ f(xi(t + 1)))
xi(t + 1) f(yi(t) > f(xi(t + 1)))

(3)

y̆(t) = min(f(y), f(y̆(t))) (4)
y ∈ y0(t), y1(t), ..., ys(t)

The algorithm consists of executing iteratively the update
equations presented. The pseudo-code for the basic PSO
algorithm:

1) Initialize swarm
2) While maximum iterations or minimum error criteria is not

attained
a) For each particle

i) Update the particle velocity (Eq. 1)
ii) Update the particle position (Eq. 2)

iii) Update the particle best known position (Eq. 3)
iv) Update the swarm best known position (Eq.4 )

Fig. 3. PSO pseudo code

In the next section we describe the adaptation of PSO for
the classification problem.

IV. THE PSO AND MPSO CLASSIFICATION ALGORITHM

Recently, some work has already been done to adapt PSO
to classification problems and most of it concerns rule-based
classifiers. In [14], PSO is used to extract induction rules to
classify data; the standard PSO algorithm is executed several
times, generating a single rule each time and using only
unclassified patterns for subsequent iterations. In [15], [16]
and [17], the standard PSO is used for rule extraction for only
discrete classification problems. In [18] the PSO is used to
generate clusters.

In a standard PSO approach, a potential solution is encoded
in each particle. The information that has to be encoded is the
set of prototypes and the prototype classes. There is another
method, called Michigan PSO (MPSO) that uses the Michigan
approach. The method MPSO results are quite competitive
compared to other methods. In the MPSO approach, a member
of the population does not encode the whole solution to the
problem, but only part of it. The whole swarm is the potential
solution to the problem [6], [14]. The advantages of the
Michigan approach against the standard PSO approach are:
a) scalability and computational cost, as particles have much
lower dimension; and b) flexibility and reduced assumptions,

as the number of prototypes in the solution is not fixed [6],
[14].

The pseudo code of the MPSO method is shown in Figure
4 and described in detail in [6], [14]. The equation changes
in comparison with the standard PSO are the introduction of
a repulsion force and the use of a dynamic definition of the
neighborhood of a particle. When moving, each particle selects
another one from what it is called a ”non-competing” set as a
leader for attraction, and a second one from a competing set
as a leader for repulsion.

1) Load training patterns
2) Initialize swarm
3) Insert N particles of each class in the training patterns
4) Until max. number of iterations reached or success rate is 100

a) Calculate which particles are in the competing and non-
competing sets of particles for every class

b) For each particle
i) Calculate Local Fitness

ii) Calculate Social Adaptability Factor
iii) Find the closest particle in the non-competing set for

the particle class (attraction center)
iv) Find the closest particle in the competing set for the

particle class (repulsion center).
v) Calculate the particle’s next position based on its

previous velocity, previous best position, attraction
center and repulsion center

c) Move the particles
d) Assign classes to the patterns in the training set using

the nearest particle
e) Evaluate the swarm classification success
f) If the swarm gives the best success so far, record the

current positions of the particles as ”current best swarm”
5) Delete, from the best swarm found so far, the particles that can

be removed without a reduction in the classification success
value.

6) Evaluate the swarm classification success over the validation
set and report result

Fig. 4. MPSO pseudo code

During each iteration, both neighborhoods are defined dy-
namically and take into account the particles classes. In this
case, particles cooperate with particles from different classes
and compete with particles from the same class. The MPSO
uses the concept of local fitness. A single particle is measured
as ”good” if it classifies correctly patterns in its surroundings.
The particle fitness calculation does not take into account how
the rest of the patterns are classified [6].

The MPSO is very efficient generating a swarm of spe-
cialized particles in pattern-recognition and is may be easily
adapted to different classes of problems [6], [7]. In this paper,
we present an adaptation of MPSO to solve the MLC problem,
called the ML-KMPSO. As the name indicates, ML-KMPSO
is derived from both ML-KNN and MPSO.

V. ML-KMPSO
The proposed Multi Label K-Nearest Michigan Particle

Swarm Optimization (ML-KMPSO) is based on two strategies.
The first strategy is the Michigan Particle Swarm Optimization
(MPSO), which breaks the multi-label classification task into



several binary classification problems. The second strategy is
ML-KNN, which is complementary and takes into account the
correlations among various classes.

Figure 5 provides the pseudo code for the ML-KMPSO
algorithm and it is works as follows. Given a training data
set, a test data set, the number of neighbors (k) and the
quantity of particles to be produced for each label (Q). First,
it calculates the prior probabilities from the training set, then
it generates the classification model using MPSO (step 2)
and identifies a set of expert classification particles. Note
that in step 5 of MPSO (see Figure 4), unused particles are
marked for removal from the solution (swarm) starting with
the particle with the worse local fitness value. If this action
doesn’t reduce the swarm classification accuracy, the particle is
definitely removed. Finally, according to statistical information
gained from the labeled sets of these neighbour instances,
i.e., the number of neighbor instances including the MPSO
classification particles belonging to each possible class, it uses
the maximum a posteriori (MAP) [8] principle to determine the
label set for the test instance, which becomes the classification
result.

1) Compute the prior probabilities of all labels using training set
2) Compute swarm with MPSO (see Figure 4)
3) Merge expert classification particles with training set
4) Compute the posterior probabilities of all labels using k

neighbours using merged data
5) Determine the label set for each test instance using MAP

Fig. 5. Summary of ML-KMPSO pseudo code

In the next section we evaluate the performance of the ML-
KMPSO using two different multi-label learning problems:
Yeast gene functional analysis [3] and natural scene classifi-
cation [19]. The experimental results are compared with ML-
KNN [8] [5], BoosTexter [1] and Rank-SVM [3] methods.

VI. EXPERIMENTAL EVALUATION

A. Datasets

Two commonly-used multi-label datasets where used in the
experiments: the Yeast dataset [3] and the Scene dataset [19].

Yeast [3] is a biological dataset formed by micro-array
expression data and phylogenetic profiles for 2417 genes,
where each gene is associated with a set of 14 functional
classes (Figure 6) of the Yeast Saccharomyces cerevisiae.
Elisseeff and Weston [3] preprocessed the Yeast data set and,
in order to make it easer, only the known structures of the
functional classes are used.

Scene [19] is a natural scene image dataset where each
image is categorized into semantic classes such as beach,
sunset, foliage, field, mountain, and urban. Table I shows the
detailed description of the images in the dataset.

Table II shows some statistics about the datasets, such as the
numbers of examples in the training and test sets, number of
numeric attributes, label cardinality, and label density. Label
cardinality is the average number of labels per example, while
label density is the same number divided by the number of
possibles labels.

Fig. 6. First level of the hierarchy of the gene functional classes. There are
14 classes. [3]

TABLE I
SUMMARY OF THE NATURAL SCENE IMAGE DATA SET

Class Total
Desert 340
Mountains 268
Sea 341
Sunset 216
Trees 378
Desert + mountains 19
Desert + sea 5
Desert + sunset 21
Desert + trees 20
Mountains + sea 38
Mountains + sunset 19
Mountains + trees 106
Sea + sunset 172
Sea + trees 14
Sunset + trees 28
Desert + mountains + sunset 1
Desert + sunset + trees 3
Mountains + sea + trees 6
Mountains + sunset + trees 1
Sea + sunset + trees 4
Total 2000

TABLE II
MULTI-LABEL STATISTICS FOR THE DATASETS USED

Attributes Distinct Label Label
Dataset Examples Numeric Labels Subsets Cardinality Density
Yeast 2417 103 14 198 4.327 0.302
Scene 2000 294 5 15 1.24 0.248

B. Evaluation Methodology

For the sake of evaluating the performance of the learning
methods, we choose commonly-used criteria in multi-label
classification, as proposed by Schapire and Singer in [1]. Given
a set of multi-label instances S = {(x1, Y1), ..., (xP , YP )}, a
learned ranking function f(·, ·) and the corresponding multi-
label classier h(·):

(A) HammingLoss evaluates how many times an instance-
label pair is mispredicted.

HLS(h) =
1

P

P∑
i=1

|h(xi)4Yi|
|Y |

(5)



where4 stands for the symmetric difference between two sets,
predict labels (h(xi)) and correct labels (Yi).

(B) One-error evaluates how many times the top-ranked
label was not in the set of possible labels.

OES(f) =
1

P

P∑
i=1

[
[arg max f(xi, y)] /∈ Yi

]
(6)

where y ∈ Y . The term [arg max f(xi, y)] represents the
maximum value of the function f(). The smaller the value of
One− ErrorS(f), the better the performance.

(C) Coverage is defined as the distance to cover all possible
labels assigned to a sample x. It is loosely related to precision
at the level of perfect recall.

CoS(f) =
1

P

P∑
i=1

max rankf (xi, y)− 1 (7)

where y ∈ Y . The smaller the value of coverage is, the
better the performance is.

(D) Ranking Loss evaluates the average fraction of label
pairs that are reversely ordered for the instance

RLS(f) =
1

P

P∑
i=1

1

|Yi||Y i|
|(y1, y2)|f(xi, y1) 6< f(xi, y2), (8)

(y1, y2) ∈ Yi × Y i

(E) Average Precision is the average precision taken for
all the possible labels and it can evaluate algorithms as a
whole. It measures the average fraction of labels ranked above
a particular label y ∈ Yi which is actually in Yi. The best
performance is reached when average precision is equal to
1. The larger the value of average precision is, the better
performance is.

APS(f) =
1

P

P∑
i=1

1

|Yi|
× (9)∑

y∈Yi

|{y′|rankf (xi, y
′) 6< rankf (xi, y

′), y′ ∈ Yi}|
rankf (xi, y)

C. Experimental Results

To ensure more reliable results, all experiments were
performed using 10-fold cross-validation. In this validation
method, the set of examples is divided into 10 folds, each
iteration of the algorithm uses nine folds for training and one
fold for testing.

Table III presents the comparison of ML-KPMSO with oth-
ers algorithms for the multi-label classification problem (ML-
KNN, and BoosTexter Rank-SVM) for the dataset Yeast. The
result is presented using all the evaluation metrics that were
mentioned in subsection VI-B. For each evaluation criterion,
down arrow indicates that the smaller the better while up arrow
indicates that the higher value is the better.

As seen in this table, the ML-KMPSO performed better in
all the five metrics when compared to BoosTexter and Rank-
SVM. Considering ML-KNN, it was better just for the one-
meter error, and was similar for most of the remaining metrics.

TABLE III
RESULT ON YEAST DATA

Algorithms
Metrics ML-KNN BoosTexter Rank-SVM ML-KMPSO
HL ↓ 0.194 ± 0.010 0.220 ± 0.011 0.207 ± 0.013 0.198 ± 0.008
OE ↓ 0.230 ± 0.030 0.278 ± 0.034 0.243 ± 0.039 0.225 ± 0.045
Co ↓ 6.275 ± 0.240 6.550 ± 0.243 7.090 ± 0.503 6.355 ± 0.232
RL ↓ 0.167 ± 0.016 0.186 ± 0.015 0.195 ± 0.021 0.172 ± 0.009
AP ↑ 0.765 ± 0.021 0.737 ± 0.022 0.749 ± 0.026 0.762 ± 0.012

The ranking of the best methods for each metric is shown in
Table IV.

TABLE IV
PERFORMANCE BETWEEN EACH MULTI-LABEL LEARNING ALGORITHM ON

THE YEAST DATA

Metrics Algorithms
HL ML-KNN > ML-KMPSO > Rank-SVM > BootTexter
OE ML-KMPSO > ML-KNN > Rank-SVM > BootTexter
Co ML-KNN > ML-KMPSO > BootTexter > Rank-SVM
RL ML-KNN > ML-KMPSO > BootTexter > Rank-SVM
AP ML-KNN > ML-KMPSO > Rank-SVM > BootTexter

The results for the Scene dataset are in Table V. ML-
KPMSO was very promising, being the best considering
the Hamming Loss and Coverage metrics, second in One-
Error and third in Ranking Loss and Average Precision. The
improvements associated with Coverage (Co) and Hamming
Loss (HL) are a consequence of the low cardinality and density
of the dataset, which favors MPSO that comprises several
expert classifiers and is able to predict accurately a larger
number of tuples (samples xi - labels Yi) On the other hand,
Rank-SVM provided the worst results.

TABLE V
RESULT ON SCENE DATA

Algorithms
Metrics ML-KNN BoosTexter Rank-SVM ML-KMPSO
HL ↓ 0.169 ± 0.016 0.179 ± 0.015 0.253 ± 0.055 0.153 ± 0.010
OE ↓ 0.300 ± 0.036 0.311 ± 0.041 0.491 ± 0.135 0.311 ± 0.036
Co ↓ 0.939 ± 0.100 0.939 ± 0.092 1.382 ± 0.381 0.872 ± 0.274
RL ↓ 0.168 ± 0.024 0.168 ± 0.020 0.278 ± 0.096 0.173 ± 0.013
AP ↑ 0.803 ± 0.027 0.798 ± 0.024 0.682 ± 0.093 0.796 ± 0.018

TABLE VI
PERFORMANCE BETWEEN EACH MULTI-LABEL LEARNING ALGORITHM ON

THE SCENE DATA

Metrics Algorithms
HL ML-KMPSO > ML-KNN > BootTexter > Rank-SVM
OE ML-KNN > ML-KMPSO > BootTexter > Rank-SVM
Co ML-KMPSO > ML-KNN > BootTexter > Rank-SVM
RL ML-KNN > BootTexter > ML-KMPSO > Rank-SVM
AP ML-KNN > BootTexter > ML-KMPSO > Rank-SVM

The experimental results show that the proposed algorithm
outperforms other approaches such as Rank-SVM , BootTexter
and matches ML-KNN. We believe that further calibration to
adjust the parameters of MPSO in the context of the proposed
approach should enable better results than the ML-KNN.



VII. CONCLUSION

This paper presented a hybrid approach to solve MLC
problems called ML-KMPSO, which is an adaptation of
the Michigan Particle Swarm Optimization for Multi-label
Problem. The paper has compared the ML-KMPSO to others
well-established multi-label methods (ML-KNN, RankSVN
and BoosTexter) and the experimental results using two real-
world dataset empirically show that our proposal outperforms
or at least matches those methods, indicating that it is very
promising method.

As future work we plan to perform more experiments
towards adjusting parameters and to fully evaluate the efficacy
of ML-KMPSO.
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