Comparação do Desempenho de Algoritmos Bioinspirados de Otimização Multiobjetivos para Projeto de Amplificadores Raman

Erick de A. Barboza e Carmelo J. A. Bastos-Filho Escola Politécnica de Pernambuco Universidade de Pernambuco Recife, Brasil Email: carmelofilho@ieee.org Joaquim F. Martins-Filho
Departamento de Eletrônica e Sistemas
Universidade Federal de Pernambuco
Recife, Brasil
Email: jfmf@ufpe.br

Marcelo E. V. Segatto
e Maria J. Pontes
Departamento de Engenharia Elétrica
Universidade Federal do Espírito Santo
Vitória, Brasil
Email: segatto@ele.ufes.br

Resumo—Este trabalho apresenta a análise do desempenho de alguns algoritmos multiobietivos conhecidos, quando utilizados para a otimização do projeto de amplificadores Raman banda larga. O foco do projeto é definir as configurações dos lasers de bombeio utilizados no Raman, com o objetivo de obter amplificadores Raman com alto ganho, baixa variação de ganho e baixo custo. Foram considerados os algoritmos baseados em enxame de partículas: MOPSO-CDR e SMPSO; e os algoritmos evolucionários: NSGAII e SPEA2, pois o problema é representado através de valores contínuos e discretos. Com o intuito de sugerir o algoritmo mais adequado para otimizar o problema, foi realizado um conjunto de simulações para que fossem analisadas a capacidade de convergência e a diversidade das soluções geradas. Foram utilizadas métricas bem conhecidas para comparar as Frentes de Pareto obtidas, são elas: hypervolume, spacing, maximum spread e coverage. A partir dos resultados, foi possível definir o SPEA2 como o algoritmo mais adequado para otimizar esse problema específico.

I. Introdução

O constante aumento na demanda por tráfego de dados, causado pelos novos serviços de telecomunicações, tem impulsionado o uso de outras bandas de transmissões em sistemas de comunicações ópticas que utilizam Multiplexação por comprimento de onda (WDM, do inglês – *Wavelength Division Multiplex*) [1].

Apesar do Amplificador de Fibra dopada com Érbio (EDFA, do inglês – *Erbium-Doped Fiber Amplifier*) ter sido usado de forma satisfatória desde os anos 80, ele não é capaz de prover um ganho plano em toda a banda de transmissão S+C+L (1460nm - 1610nm).

Recentemente Amplificadores Raman (RFA, do inglês – *Optical Raman Fiber Amplifier*) têm sido investigados como uma alternativa aos EDFAs, pois esse tipo de amplificador possui algumas características interessantes como: baixa figura de ruído e uma banda larga e ajustável [2] [3]. Além disso, RFAs podem distribuir a amplificação através de toda a fibra de transmissão [4].

Canais diferentes em um sistema WDM podem ser amplificados com ganhos diferentes devido à natureza não plana do espectro de ganho Raman. O uso de múltiplos lasers

de bombeio com comprimentos de ondas diferentes, pode diminuir este efeito. Neste caso, cada laser provê um ganho não uniforme, mas o espectro de ganho gerado por diferentes lasers pode ser sobreposto, resultando em um espectro de ganho combinado. A escolha correta do comprimento de onda e da potência de cada laser de bombeio pode fazer com que o ganho combinado tenha um perfil plano em uma larga faixa de comprimentos de onda [2] [5].

A dificuldade dessa tarefa está na interação que existe entre os lasers de bombeio devido ao efeito Raman. Essa interação tem um comportamento não-linear, o que torna difícil achar o ajuste correto das potências e dos comprimentos de ondas dos lasers de bombeio [3]. Devido a isso, algumas metaheurísticas têm sido propostas para resolver essa problema, como por exemplo: *Simulated Annealing* [2], Redes Neurais [6], Algoritmo Genético [7], Buscas por cardumes de peixes [8] e Otimização por enxame de partículas [9].

Porém, devido ao conflito natural entre ganho e planicidade de ganho, técnicas de otimização multiobjetivo se mostram mais apropriadas para a solução deste problema. Considerando isso, Bastos-Filho e colaboradores [10] propuseram a utilização de um algoritmo de otimização multiobjetivos baseado em enxame de partícula para alcançar bons resultados no projeto de um amplificador para uma banda de 40 canais WDM.

Visando diminuir a dificuldade ocasionada pelo aumento do conjunto dos lasers possíveis de serem utilizados, considerando uma banda larga de amplificação, Barboza e colaboradores adaptaram a metodologia de [10] para obter resultados considerando uma banda larga de 123 canais [11]. Esta nova metodologia utiliza conjuntamente informações contínuas e discretas para representar o problema.

O algoritmo utilizado em [11] foi o MOPSO-CDR (*Multiple Objective Particle Swarm Optimization*), que pertence a categoria de algoritmos de otimização baseado em enxames de partículas. Entretanto, devido ao aumento da dimensionalidade e a representação com domínios discreto e contínuo, algoritmos de otimização baseados em enxame de partículas podem não ser tão promissores quanto os algoritmos de computação

evolucionária. Portanto, o objetivo deste trabalho é realizar uma comparação do desempenho de alguns dos algoritmos multiobjetivos mais usados, e que são baseados em inteligência de enxame e em computação evolucionária, para determinar qual deles é o mais adequado para o problema em questão.

Na Seção II deste artigo é apresentado o problema e como ele é representado nos algoritmos multiobjetivos. Na Seção III são apresentados os algoritmos utilizados na comparação. Na Seção IV é apresentada a metodologia e o arranjo das simulações realizadas. Na Seção V são apresentados os resultados e uma análise acerca da utilização de informação prévia na criação de uma inicialização guiada. Por fim, na Seção VI é apresentada a conclusão e os tópicos de trabalhos futuros.

II. DESCRIÇÃO E REPRESENTAÇÃO DO PROBLEMA

Nessa Seção é apresentada a abordagem utilizada para definir o processo de otimização e a representação do problema. Essa abordagem segue a formulação proposta por [11].

O cálculo do ganho teórico do Raman, assim como as restrições causadas pelos ruídos, são geralmente realizados através de métodos de simulações numéricas. Entretanto, expressões analíticas aproximadas permitem a obtenção de resultados precisos em um menor tempo computacional. A evolução das potências de sinal e de bombeamento, tanto copropagante quanto contra-propagante, resultante da interação entre bombeio e sinal em um amplificador Raman é goverdada por uma par de equações não-lineares, como está bem descrito em [4] e [12].

O processo de otimização tem dois componentes principais: o otimizador Multiobjetivos (MO) e o simulador analítico (Figura 1). O otimizador gera as potências e os comprimentos de onda dos lasers de bombeio e envia-os para o simulador. O simulador irá retornar o ganho *on-off* médio e o *ripple* do amplificador com as configurações passadas como parâmetro. O ganho *on-off* de um canal é a diferença entre a potência do canal quando o amplificador Raman está ligado, em relação a potência do canal quando o amplificador Raman está desligado. O *ripple* é a diferença entre o ganho *on/off* máximo e o ganho *on/off* mínimo, considerando todos os canais de transmissão.

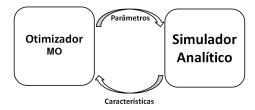


Figura 1: Ilustração da interação entre o otimizador multiobjetivo e o simulador analítico.

A. Simulador Analítico

Neste trabalho foi utilizado um simulador analítico desenvolvido por Cani e outros em [12]. Esse simulador é uma ferramenta de simulação computacional criada para analisar sistemas de comunicação óptica multicanal com amplificadores

Raman de múltiplos bombeios. O simulador é baseado em um modelo analítico aproximado da propagação dos bombeios e do sinal, ao longo do enlace óptico. O objetivo desse simulador é avaliar o ganho obtido pelos canais do sinal de dados.

B. Otimizador Multiobjetivos

Três objetivos foram utilizados nas simulações: minimizar o *ripple*, maximizar o ganho *on/off* médio e minimizar a quantidade de lasers utilizados.

Tanto os algoritmos baseados em otimização por enxame de partícula como os algoritmos evolucionários, representam o problema a ser otimizado através de um conjunto de valores codificados dentro dos seus componentes (partícula ou indivíduo). Como definido em [11], para otimização do projeto de amplificadores a representação do problema é feita através de um vetor com 10 posições. A Tabela I mostra um exemplo de como o problema é representado através de um vetor no qual cada posição está relacionada a um laser utilizado no amplificador, definido através de uma potência e um comprimento de onda. As posições com índice entre 4 e 8 têm potência zero.

Tabela I: Exemplo de uma representação para um amplificador com 3 lasers.

Índice	0	1	2	3	 9
Potência (W)	0,0	0,0	0,231	0,236	 0,219
Comp. de Onda (nm)	1404	1418	1431	1443	 1507

III. ALGORITMOS DE OTIMIZAÇÃO MULTIOBJETIVOS

Nesta Seção os algoritmos envolvidos na comparação serão brevemente descritos. Foram utilizados os métodos originalmente propostos para cada algoritmo, porém com a adição das modificações propostas em [11]. Nas subseções seguintes serão apresentados pequenos resumos de cada algoritmos, destacando-se as características específicas e os operadores utilizados em cada caso.

A. MOPSO-CDR

O algoritmo MOPSO-CDR foi proposto por Santana e colaboradores em 2009 [13] e é baseado na versão multiobjetivos do PSO (MOPSO) [14]. O principal diferencial do MOPSO-CDR é o uso do *crowding distance* (CD) na seleção do líder social (\vec{G}_{Best}) e do líder cognitivo (\vec{P}_{Best}) e consequentemente para guiar as partículas durante o processo de otimização. O mesmo mecanismo é utilizado para remover soluções que estão em regiões mais ocupadas do arquivo externo (*crowding distance* pequeno), se o tamanho deste arquivo exceder o limite definido. O pseudocódigo do MOPSO-CDR é apresentado no Algoritmo 1.

B. SMPSO

O SMPSO foi proposto em 2009 por Nebro e colaboradores [15]. Esse algoritmo incorpora um mecanismo de constrição com o objetivo de limitar a velocidade máxima das partículas.

Algoritmo 1: Pseudocódigo do MOPSO-CDR.

1 Inicialize o enxame;

6

7

8

- 2 Determine os líderes iniciais do arquivo externo;
- 3 Qualifique os líderes considerando crowding distance;
- 4 enquanto critério de parada não for alcançado faça

para cada partícula faça

Aplique o operador de turbulência utilizado no

MOPSO;

Selecione líder usando crowding distance e seleção por roleta:

Atualize velocidade e posição;

Avalie a qualidade da partícula;

Atualize $P_{best}(t)$ usando torneio binário; 10

Atualize líderes do arquivo externo; 11

Qualifique os líderes por crowding distance; 12

13 Retorne o Arquivo Externo.

O objetivo da constrição da velocidade é aumentar a capacidade de busca do algoritmo. O SMPSO é baseado em outro algoritmo chamado de OMOPSO [16], porém difere desse em alguns aspectos como: a constrição da velocidade, um novo mercanismo para tratar soluções de borda e o uso de um operador de mutação polinomial [15].

No SMPSO, as partículas se movem no espaço de busca de acordo com a equação:

$$\vec{v}_i(t+1) = \chi \left\{ \omega \ \vec{v}_i(t) + c_1 r_1 [\vec{P}_{best_i} - \vec{x}_i(t)] + c_2 r_2 [\vec{G}_{best} - \vec{x}_i(t)] \right\}, \tag{1}$$

que é diferente da equação clássica do PSO [17] devido à presença do coeficiente de constrição (χ). Esse fator de constrição foi proposto em [18] e é utilizado para limitar a velocidade seguindo a equação:

$$\chi = \frac{2}{2 - \varphi - \sqrt{\varphi^2 - 4\varphi}},\tag{2}$$

onde φ é dado pela equação:

$$\varphi = \begin{cases} c_1 + c_2, & \text{se } c_1 + c_2 > 4, \\ 1, & \text{se } c_1 + c_2 \le 4. \end{cases}$$
 (3)

C. NSGAII

Deb e colaboradores [19] propuseram o NSGAII (Nondominated Sorting Genetic Algorithm II) em 2002. O NSGAII utiliza uma técnica que separa as soluções em Frentes de Pareto distintas de acordo com o critério de dominância. Além disso, ele utiliza o método de crowding distance para ordenar as soluções de uma mesma Frente de Pareto, preservando assim a diversidade. Após ordenar as soluções baseado nas Frentes de Pareto e no crowding distance, o NSGAII utiliza elitismo a cada iteração para selecionar os indivíduos que continuarão na população. O algoritmos do NSGAII é apresentado no Algoritmo 2.

D. SPEA2

Em 2001, Zitzler e colaboradores propuseram o SPEA2 (Strength Pareto Evolutionary Algorithm 2) [20]. O pseudocódigo do SPEA2 é apresentado no Algoritmo 3. O valor de

Algoritmo 2: Pseudocódigo do NSGAII.

- 1 Inicialize uma população P randomicamente com N indivíduos;
- Avalie todos os indivíduos da população;
- Classifique os indivíduos em Frentes de Pareto distintas, usando dominância;
- enquanto critério de parada não for alcançado faça

enquanto N novos indivíduos são criados faça 5

Selecione pais usando torneio binário;

Crie um novo indivíduo usando cruzamento e mutação;

Avalie a aptidão do indivíduo;

Acrescente a solução em P; 9

6

7

8

10

Classifique os indivíduos em Frentes de Pareto distintas, usando dominância;

11 Avalie crowding distance para cada indivíduo;

Descarte os piores indivíduos. 12

fitness de uma solução é avaliado utilizando o valor do strength (S) e o valor do raw fitness (R). O S(i) representa o número de soluções dominadas pela solução i. O valor de S(i) é utilizado para se obter o valor de R(i), pois R(i) é a soma dos S(i)das soluções que dominam a solução i. Portanto, R(i) = 0 é o valor de raw fitness de uma solução não dominada. Um valor alto de R(i) significa que i é dominada por muitas soluções. No SPEA2, a densidade é estimada com base no inverso da distância para o k-ésimo vizinho mais próximo.

Algoritmo 3: Pseudocódigo do SPEA2.

- 1 Gere uma população inicial e um arquivo externo vazio;
- 2 enquanto Critério de parada não for alcançado faça

Calcule o fitness dos indivíduos;

Copie os indivíduos não dominados para o arquivo externo; 4

se Tamanho do grupo de indivíduos exceder o limite do arquivo externo então

Utilize o mecanismo de truncamento;

senão

5

6

Preencha o arquivo com os melhores indivíduos

dominados:

Selecione os pais usando torneio binário;

10 Aplique recombinação e mutação;

Adicione os indivíduos no conjunto de descendentes. 11

IV. METODOLOGIA E ARRANJO DAS SIMULAÇÕES

Nesta Seção é apresentado os parâmetros definidos para as simulações, assim como, a forma de obtenção dos resultados.

A. Parâmetros

O simulador foi configurado para levar em conta uma banda de amplificação de 123 canais WDM nas bandas C+L, entre 1510 nm e 1610 nm. Também foi definido que os amplificadores são distribuídos e usam o esquema contra-propagante em uma fibra monomodo com 75 km de comprimento. A potência total deve ser igual ou menor a 1 W.

Para os algoritmos o número máximo de iterações foi definido como 25000, o tamanho do enxame/população é 100 e a capacidade do arquivo externo são 200 soluções.

Os valores de iteração e população são altos devido a alta dimensionalidade do problema.

O MOPSO-CDR foi configurado com uma frequência de mutação igual a 0,5, c_1 e c_2 iguais a 1,49445 e ω decaindo linearmente de 0,4 até 0 [11].

O SMPSO utilizou uma probabilidade de mutação de 10%, c_1 e c_2 são escolhidos de forma aleatória em cada atualização de velocidade, tendo os valores restritos ao intervalo [1, 5; 2, 5], enquanto ω tem valor fixo igual a 0,1 [15].

Tanto o NSGAII como o SPEA2 utilizaram: cruzamento do tipo SBX, mutação polinomial e torneio binário para escolha dos pais [20]. A probabilidade de cruzamento foi de 90% em ambos os algoritmos, assim como a probabilidade de mutação foi de 10%.

Os parâmetros específicos, em cada algoritmo, foram determinados de acordo com a análise feita nos artigos originais.

B. Avaliação de Desempenho

Algumas métricas para a avaliação de desempenho de algoritmos de otimização multiobjetivos já foram propostas [21] [22], e neste trabalho foram selecionadas as quatro métricas mais utilizadas. Foi utilizado o Coverage para analisar a habilidade de convergência de um algoritmo em comparação a outro. O Maximum Spread e Spacing foram utilizados para avaliar a dispersão e a diversidade das soluções ao longo da Frente de Pareto. Foi também utilizado um indicador híbrido, o Hypervolume, para avaliar simultaneamente a convergência e o espalhamento das Frentes de Pareto obtidas.

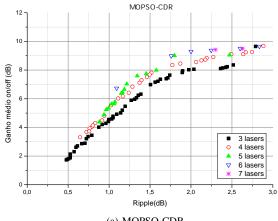
A métrica *Hypervolume* define a área no espaço de objetivos coberta pela Frente de Pareto. Spacing retorna uma estimativa da diversidade da Frente de Pareto obtida. Maximum Spread avalia a extensão máxima coberta pelas soluções não dominadas na Frente de Pareto. Coverage é utilizado para comparar duas Frentes de Pareto. Por exemplo, suponha que A e B são duas Frentes de Pareto. O valor C(A, B) = 1 significa que todas as soluções em B são fracamente dominadas por A. Por outro lado, C(A, B) = 0 significa que nenhuma das soluções em B é fracamente dominada por A.

Para o problema apresentado, uma Frente de Pareto com um bom nível de convergência possui valores de Hypervolume e Maximum Spread altos, representando assim que essa Frente de Pareto é largamente distribuída no espaço de objetivos. Além disso, um valor pequeno para o Spacing representa soluções bem distribuídas na Frente de Pareto.

V. RESULTADOS

A Figura 2 mostra as Frentes de Pareto retornadas após uma execução dos algoritmos MOPSO-CDR e SMPSO. Para que a Frente de Pareto fosse representada em 2D, as soluções foram agrupadas pela quantidade de lasers. É possível perceber que os dois algoritmos foram capazes de obter soluções com uma boa diversidade, principalmente para o grupo de soluções com poucos lasers (menor custo).

A Figura 3 mostra as Frentes de Pareto retornadas após uma execução dos algoritmos NSGAII e SPEA2. Percebese que os algoritmos evolucionários foram capazes de obter



(a) MOPSO-CDR

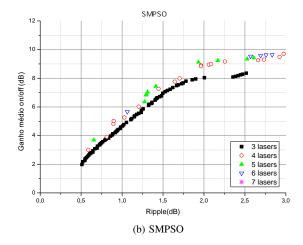
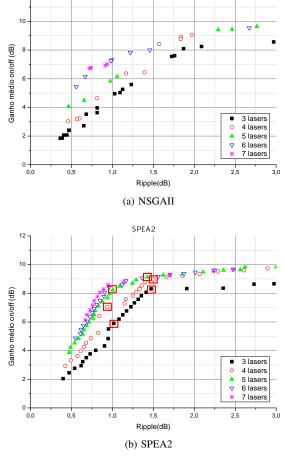


Figura 2: Frente de Pareto retornada pelos algoritmos de otimização por enxame de partículas, com as soluções agrupadas pela quantidade de lasers.

soluções com um ganho mais alto, para o mesmo valor de ripple, em relação aos algoritmos baseados em inteligência de enxames. O NSGAII adicionou mais lasers às soluções para obter ganhos mais altos, enquanto o SPEA2 conseguiu obter ganhos similares com amplificadores menos custosos.

A Figura 4 mostra os box-plots das métricas após 30 execuções de cada algoritmo. As métricas refletem a superioridade do SPEA2 quanto ao espaçamento das soluções (Spacing pequeno) e à capacidade de convergência (Hypervolume alto), pois o box-plot do SPEA2 para essas métricas não se sobrepõe aos dos outros algoritmos. Com relação ao Maximum Spread, não é possível definir a superioridade de um dos algoritmos apenas pela visualização dos box-plots, porém esta métrica sozinha não é determinante na análise, já que um algoritmo pode ter um alto valor de Maximum Spread e não ter convergido.

As soluções da Figura 3b foram destacadas com retângulos para mostrar a capacidade deste algoritmo de gerar soluções com ripple entre 1 e 1,5 dB com ganhos entre 6 e 9 dB. Em [11] foram obtidas soluções com ripple em torno de 1,5 dB e ganho de 10 dB, entretanto a potência máxima do amplificador



NSGAII

Figura 3: Frente de Pareto retornada pelos algoritmos evolucionários, com as soluções agrupadas pela quantidade de lasers.

era de 1,5 W, o que facilita a obtenção de ganhos mais altos, e acarreta em outras dificuldades como: aumento do consumo energético e aumento dos efeitos não-lineares.

A. Análise acerca da utilização de informação para criar uma inicialização guiada

Os histogramas apresentados na Figura 5 representam a frequência relativa de utilização dos lasers nas soluções do SPEA2 com *ripple* menor do que 1,5 dB. Os lasers foram agrupados em intervalos de comprimento de onda distintos de acordo com a Tabela II. É possível perceber que alguns dos intervalos, como os subgrupos 1 e 4, são utilizados frequentemente enquanto outros, como os subgrupos 5, 6, 7 e 10, não são utilizados nunca.

Devido a esta nova informação, foi criado um operador de inicialização para guiar parte das soluções para as regiões do espaço de variáveis que privilegiem o uso dos lasers mais utilizados. Na Figura 6 está apresentada a evolução do *Hypervolume* ao longo das iterações com e sem o operador de inicialização guiada. É possível perceber que a nova inicialização melhorou o desempenho do SPEA2 nas primeiras

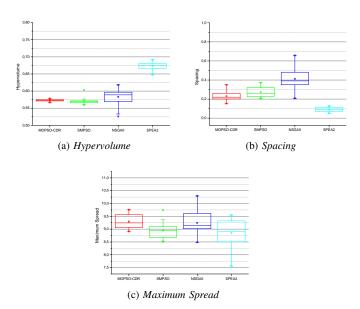


Figura 4: *Box-plot* das métricas *Hypervolume*, *Spacing* e *Maximum Spread*, após 30 execução de cada algoritmo.

iterações. A falta de outros operadores que funcionem no restante do processo de otimização pode ter sido determinante para o desempenho final similar entre as técnicas. Entretanto, essa solução já se mostra promissora para casos em que a avaliação de *fitness* é custosa, e seja necessário que o algoritmo retorne bons resultados em um tempo reduzido.

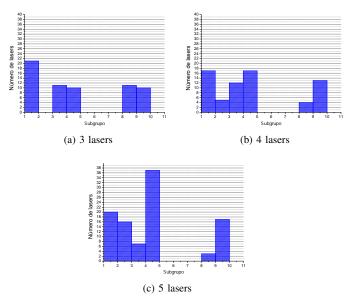


Figura 5: Histograma representando a frequência de utilização dos subgrupos de lasers pelas soluções do SPEA2 com ripple menor que 1,5dB.

Tabela II: Relacionamento entre os subgrupos e os intervalos de comprimentos de onda.

Subgrupo	Intervalo (nm)	Subgrupo	Intervalo (nm)
1	1404 - 1415	6	1458 - 1464
2	1417 - 1425	7	1466 - 1474
3	1426 - 1437	8	1477 - 1488
4	1438 - 1449	9	1489 - 1499
5	1450 - 1457	10	1500 - 1508

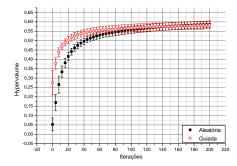


Figura 6: Evolução da média, com barra de erro, do *Hyper-volume* para as primeiras iterações do SPEA2.

VI. CONCLUSÃO

Neste trabalho foram comparados os desempenhos de alguns dos algoritmos de otimização multiobjetivos mais conhecidos nas áreas de otimização baseada em enxame de partículas e computação evolucionária, quando aplicados para o projeto de amplificadores Raman. Foram considerados os seguintes objetivos conflitantes: *ripple*, ganho *on/off* médio e quantidade de lasers (custo). O desempenho dos algoritmos foram avaliados através das métricas *Hypervolume*, *Spacing*, *Coverage* e *Maximum Spread*.

O SPEA2 se mostrou o algoritmo mais adequado, considerando o cenário definido, pois retornou uma Frente de Pareto com soluções que representam o melhor compromisso entre os objetivos conflitantes e foi superior aos outros algoritmos nas métricas *Hypervolume*, *Spacing* e *Coverage*. Essa superioridade de um algoritmo evolucionário pode ter sido consequência, principalmente, da nova representação do problema proposta em [11], que adicionou um espaço discreto na otimização.

Além disso, a utilização de informações adquiridas pela análise das melhores soluções do SPEA2 se mostrou promissora para a construção de uma inicialização que acelera o processo de otimização. Como trabalhos futuros, podem ser desenvolvidos operadores que potencializem, ao longo das iterações, a convergência utilizando a informação de frequência relativa de utilização dos lasers.

REFERÊNCIAS

- [1] R. Tkach, "Scaling optical communications for the next decade and beyond," *Bell Labs Technical Journal*, vol. 14, no. 4, pp. 3–9, 2010.
- [2] M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical-fiber raman amplifiers backward-pumped with multiple laser diode pumps," *IEEE Photonics Technology Letters*, vol. 13, no. 9, pp. 948–950, Setembro 2001.

- [3] J. Zhou, J. Chen, X. Li, W. Jiang, and Y. Wang, "A novel pump adjustment method for wdm pumped optical raman amplifier," *Optics Communications*, vol. 248, pp. 407–413, 2005.
- [4] J. Bromage, "Raman amplification for fiber communications systems," IEEE Journal of Lightwave Technology, vol. 22, no. 1, pp. 79–93, Janeiro 2004.
- [5] C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems. San Diego, California, EUA: Elsevier Academic Press, 2005.
- [6] P. Xiao, Q. Zeng, J. Huang, and J. Liu, "A new optimal algorithm for multipump sources of distributed fiber raman amplifier," *IEEE Photonics Technology Letters*, vol. 3, pp. 206–208, 2003.
- [7] G. C. M. Ferreira, S. P. N. Cani, M. J. Pontes, and M. E. V. Segatto, "Optimization of Distributed Raman Amplifiers Using a Hybrid Genetic Algorithm With Geometric Compensation Technique," *IEEE Photonics Journal*, vol. 3, no. 3, pp. 390–399, 2011.
- [8] H. M. Jiang, K. Xie, and Y. F. Wang, "Optimization of pump parameters for gain flattened Raman fiber amplifiers based on artificial fish school algorithm," *Optics Communications*, vol. 284, no. 23, pp. 5480–5483, 2011.
- [9] —, "Flat gain spectrum design of Raman fiber amplifiers based on particle swarm optimization and average power analysis technique," Optics and Lasers in Engineering, vol. 50, no. 2, pp. 226–230, 2012.
- [10] C. Bastos-Filho, E. Figueiredo, E. Barboza, J. Martins-Filho, M. Segatto, S. Cani, and M. Pontes, "Simple design of raman fiber amplifiers using a multi-objective optimizer," in 11th International Conference on Intelligent Systems Design and Applications (ISDA), Novembro 2011, pp. 1128 – 1133.
- [11] E. Barboza, C. Bastos-Filho, J. Martins-Filho, M. Segatto, M. Pontes, and M. O. L. Beninca, "Designing a 100 nm bandwidth raman fiber amplifier using multi-objective optimization," in MOMAG 2012, Agosto 2012.
- [12] S. Cani, L. de Calazans Calmon, M. Pontes, M. Ribeiro, M. Segatto, and A. Cartaxo, "An analytical approximated solution for the gain of broadband raman amplifiers with multiple counter-pumps," *Journal of Lightwave Technology*, vol. 27, no. 7, pp. 944 –951, 2009.
- [13] R. A. Santana, M. R. Pontes, and C. J. A. Bastos-Filho, "A multiple objective particle swarm optimization approach using crowding distance and roulette wheel," in ISDA '09: Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications. Pisa. Itália: IEEE, 2009.
- [14] C. A. Coello Coello and M. S. Lechuga, "Mopso: A proposal for multiple objective particle swarm optimization," in *Proceedings of the* 2002 Congress on Evolutionary Computation, 2002. CEC'02., vol. 2. IEEE, 2002, pp. 1051–1056.
- [15] A. J. Nebro, J. Durillo, J. Garcia-Nieto, C. Coello Coello, F. Luna, and E. Alba, "Smpso: A new pso-based metaheuristic for multi-objective optimization," in *IEEE symposium on Computational intelligence in multi-criteria decision-making*, 2009. mcdm'09. IEEE, 2009, pp. 66–73.
- [16] M. R. Sierra and C. A. C. Coello, "Improving pso-based multi-objective optimization using crowding, mutation and?-dominance," in *Evolution*ary Multi-Criterion Optimization. Springer, 2005, pp. 505–519.
- [17] J. Kennedy and R. Eberhart, "Particle swarm optimization," in *Proceedings of IEEE International Conference on Neural Networks*, 1995., vol. 4. IEEE, 1995, pp. 1942–1948.
- [18] M. Clerc and J. Kennedy, "The Particle Swarm Explosion, Stability, and Convergence in a Multidimensional Complex Space," *IEEE Transactions* on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.
- [19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: Nsga-ii," *IEEE Transactions on Evolutionary Computation.*, vol. 6, no. 2, pp. 182–197, 2002.
- [20] E. Zitzler, M. Laumanns, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele, and L. Thiele, "Spea2: Improving the strength pareto evolutionary algorithm," 2001.
- [21] J. Knowles and D. Corne, "On metrics for comparing nondominated sets," in *Proceedings of the 2002 Congress on Evolutionary Computa*tion, 2002. CEC'02., vol. 1. IEEE, 2002, pp. 711–716.
- [22] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca, "Performance assessment of multiobjective optimizers: An analysis and review," *IEEE Transactions on Evolutionary Computation*, vol. 7, no. 2, pp. 117–132, 2003.